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Introduction 
 
Near infrared reflectance (NIR) spectroscopy is widely-used 
for prediction of chemical composition of dried forages. Our 
laboratory has developed large databases of dried forage 
samples. However, these calibrations cannot be used for the 
direct measurement of fresh samples in on-field studies. The 
development of a specific and robust calibration for fresh 
samples is a large task which requires several hundred 
chemical measurements and a lot of time. So it is preferable 
to try to use the databases of dried forages already available 
in order to simplify this process. There are many methods to 
transfer calibrations (Fearn, 2001). In the present work, we 
tested two different strategies. The first study compared the 
use of NIR predictions obtained from dried samples and the 
use of reference laboratory data as input for fresh forage 
calibration. The second study was to transfer directly wet 
spectra into a database of dry spectra, by emulation of dry 
spectra by spectral regression (PLS prediction), as can be 
done for calibration transfer between instruments (e.g. 
Forina et al., 1995; Peng et al., 2011). 
 

Materials and methods 
 
Spectral databases 
 
For this study, 103 grass samples (Dactylis sp. and Festuca 
sp.) were collected from the DIASCOPE platform for 
experimentation (INRA-Mauguio, France). The grasses 
(varieties and wild accessions) came from a wide panel 
originating in 15 countries. Each grass sample was cut at the 
ear emergence stage.  
Whole, fresh, unground samples were scanned in 
reflectance mode immediately after cutting (FRESH 
database) with a LabSpec Pro spectrometer (ASD, Boulder, 
CO, USA) fitted with a High Intensity Contact Probe (spot 
diameter 10 mm). Each sample was scanned 15 times and 
spectra were averaged in order to take heterogeneity into 
account. All samples were then dried and ground to 1 mm 
before being scanned in reflectance mode on a NIRSystems 

6500 spectrometer (Foss, Silver Spring, MD, USA). The 
samples were analysed in standard circular cups (diameter 
3.75 cm), in duplicate, with two different cup fillings and 
then averaged (DRY database). For prediction of dried 
ground samples in the first study, an existing database of 
about 1000 samples of forages from a wide range of species 
or origins was used (CIRAD, unpublished data). The 1000 
samples were scanned on the same NIRSystems 6500 
spectrometer. 
 
Chemical analysis 
 
The forages were analysed according to the European 
Standards for crude protein (CP, Kjeldahl method) NF EN ISO 
5983-2 and acid detergent lignin (ADL, Van Soest method) 
NF EN ISO 13906. In this paper, all data (measured or 
predicted) are expressed on a dry matter basis (%DM), even 
when related to spectra taken on fresh samples. 
 
Spectra pre-treatment and calibration 
 
Data treatment was performed with WinISI software 
(Infrasoft International, Port Mathilda, PA, USA). All spectra 
were pre-treated with SNV and detrend, on a 2

nd
 derivative, 

after elimination of visible wavelengths. Given the limited 
number of samples available, samples were randomly 
divided into two groups: 78 as a calibration set and 25 as a 
validation set. Calibration equations were obtained using 
the modified partial least squares (mPLS) regression 
procedure of WinISI software. Calibration statistics 
presented are the standard error of calibration (SEC) and the 
coefficient of determination (R²cal). Validation performed 
on the independent dataset of 25 samples led to the 
calculation of the standard error of prediction (SEP) and the 
coefficient of determination of validation (R²val). 
 
 
 
 

Procedures  
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The first study concerned the calibration on FRESH 
database. Calibration was performed with reference data 
originating either from wet chemistry (CP_w and ADL_w) or 
from data issued from CP and ADL prediction by a general 
database of dry forages (n= 1000; SEP = 0.83% and 0.73% for 
CP_p and ADL_p respectively). Validation w as always 
performed with wet chemistry values. The objective of the 
second study was to emulate dry spectra from fresh spectra. 
For this feasibility study, we used reduced spectra (62 
wavelengths from 1130 nm to 2472 nm with gap = 22 nm) in 
order to simplify calculations. Absorbance values from DRY 
spectra were used as dependent (Y) variables to develop PLS 
models with FRESH spectra. With these calibration 
equations, we could transform FRESH spectra into DRY 
spectra in order to test CP and ADL prediction. Validation 
was performed on the independent validation set emulated 
using the same procedure. 
 

Results and discussion 
 
Calibration with FRESH database 

Reference chemical measurements of the FRESH database 
were quite variable: CP_w ranged from 10.48 to 25.46%DM 
and ADL_w ranged from 1.14 to 5.23%DM (Table 1). 
Validation set covered the same range as calibration set. 
For CP, calibration of FRESH database with (i) reference 
laboratory values or (ii) values predicted by NIR on dried 
samples led to SEC = 0.82% vs 0.75% and R²cal = 0.93 vs 
0.93. Validation on the independent dataset led to 
SEP = 1.55% and R²val = 0.64 if the calibration was done with 
measured data and SEP = 1.48% and R²val = 0.67 if the 
calibration based on data predicted by NIR on dried samples 
(Table 2). 
For ADL, calibration of FRESH database with (i) reference 
laboratory values or (ii) values predicted by NIR on dried 
samples led to SEC = 0.33% vs 0.57% and R²cal = 0.78 vs 
0.70. Validation on the independent dataset led to 
SEP = 0.52% and R²val = 0.58 if the calibration was done with 
measured data and SEP = 0.67% and R²val = 0.47 if the 
calibration based on data predicted by NIR on dried samples 
(Table 2). 

 
The comparison between the two calibration strategies 
(Figure 1) showed similar results with a good relationship 
between predictions i.e. R² = 0.88 for CP and R² = 0.80 for 
ADL. There was no significant bias and the slope of the 
regression was not significantly different from 1.  

Therefore, for calibration development of fresh samples, it is 
possible to use values predicted by equations based on dry 
samples rather than reference laboratory values without 
introducing a major bias in prediction. 

 
 

 
Table 1. Descriptive statistics of wet chemistry values for calibration and validation set 
 

Constitutent Calibration        Validation       

  N Min Max Mean SD  N Min Max Mean SD 

CP_w 78 10.48 25.46 16.89 3.17  25 11.13 20.55 16.22 2.57 

ADL_w 77 1.14 5.23 2.61 0.87  25 1.31 4.59 2.57 0.81 

N : number of samples; SD : standard deviation 

 

 
 
Table 2. Calibration statistics for prediction of CP and ADL content with wet chemistry values (CP_w and ADL_w) or predicted 
values on dried samples (CP_p and ADL_p) 
 
 

Constituent N Mean SD Terms SEC R²cal SEP R²val 

CP_w 76 16.78 3.05 6 0.82 0.93 1.55 0.64 

CP_p 76 16.70 2.82 6 0.75 0.93 1.48 0.67 

ADL_w 67 2.45 0.70 3 0.33 0.78 0.52 0.58 

ADL_p 73 2.67 1.03 2 0.57 0.70 0.67 0.47 

   N : number of samples used for calibration; SD : standard deviation; SEC : standard     
error of calibration; R²cal : coefficient of determination of calibration; SEP : standard 
error of prediction; R²val : coefficient of determination of validation 
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Figure 1. Relationship between predictions obtained with wet chemistry values and predicted values on dried samples of validation set 

 
 
Calibration with emulated dry spectra 
 
Calibration equations developed with the FRESH database 
for the 62 absorbance values from the DRY database had an 
average R² = 0.75 (range of R² from 0.30 to 0.98). Figure 2 
presents an example of relationship between measured 

absorbance and emulated absorbance for one wavelength 
(2054 nm) typically attributed to a near infrared absorption 
band of protein. 

  
 

 
 
Figure 2. Relationship between measured absorbance and emulated absorbance for one wavelength (2054 nm) which corresponds 
to a protein absorption band 
 
 
These equations were used to import FRESH spectra into the 
DRY database (spectra emulation). The emulated spectra 
allowed the development of calibrations for CP and ADL in 
the DRY database and to compare performance of equations 
based on (i) “real” DRY spectra of the 75 calibration samples 
or (ii) spectra emulated from fresh spectra of corresponding 
samples. 

 
 
For CP, the validation of strategies (i) and (ii) had 
respectively SEP = 1.09 vs 1.20%, R²val = 0.83 vs 0.79, 
slope = 0.89 vs 1.09 and bias = -0.27 vs 0.09% (Table 3). For 
ADL, corresponding values were respectively SEP = 0.50 vs 
0.55%, R²val = 0.62 vs 0.57, slope = 1.06 vs 1.29 and  
bias = 0.07 vs 0.05% (Table 3).
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Figure 3. Projection of emulated dry spectra from fresh spectra (□) on the principal component analysis (PCA) score plot of dry 
spectra calibration set (●)  Projection of the emulated dry spectra from fresh spectra (validation set) onto the principal component 
space of the dry spectra calibration set (Figure 3) showed a good integration of the validation set, with an average global 
Mahalanobis distance GH = 0.96. 

 
Table 3. Calibration statistics for prediction of CP and ADL content with measured dry spectra or emulated dry spectra from fresh 
spectra by prediction 

Constituent Spectra 
type 

N Mean SD Terms SEC R²cal SEP R²val Slope Bias 

CP Dry 71 16.86 3.23 6 0.51 0.98 1.09 0.83 0.89 -0.27 

 Emulated 71 16.86 3.23 6 0.51 0.98 1.20 0.79 1.09 0.09 

ADL Dry 70 2.45 0.72 3 0.40 0.68 0.50 0.62 1.06 0.07 

 Emulated 70 2.45 0.72 3 0.40 0.68 0.55 0.57 1.29 0.05 

N : number of samples used for calibration; SD : standard deviation; SEC : standard error of calibration; R²cal : coefficient 
of determination of calibration; SEP : standard error of prediction; R²val : coefficient of determination of validation 

 
 
 
Results of the current study (Table 3 and Figure 3) indicate 
that emulation of dry spectra from fresh spectra obtained by 
prediction could be a successful strategy to transfer fresh 
spectra to a dry spectra database. Moreover, validation with 
emulated dry spectra strategy showed more accurate results 
than with direct calibrations on fresh spectra. This is a 
generalisation of the direct standardisation procedures (DS, 
PDS) used to transfer spectra between similar instruments 
(eg. Forina et al., 1995). However, this strategy must be 
validated with a larger dataset and a fully independent 
validation dataset. 
 

Conclusion 
 
For long term capitalisation of data, fresh forage databases 
have to be developed; those could be based on values 
predicted by existing calibration databases on dry forages. 
However it is probably useful to include some wet chemistry 
values in the databases. In our study there was no significant  
deterioration of SEP or bias due to the use of predicted 
values. For one-shot studies, we can consider the 
development of dry sample databases by transfer of 
emulated spectra.  
 

 
 
Preliminary tests presented in this paper on reduced spectra 
showed the feasibility of this approach. 
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Introduction 
 

The determination of milk fat globule size is of the utmost 
importance because of its influence on the cheesemaking 
characteristics of milk and the rheological, sensory and 
nutritional properties of cheese. (Michalski et al., 2003; Michalski 
et al., 2007). In this work, we evaluated the transferability to a 
low-cost portable NIR spectrometer of a physical-mathematical 
model for predicting the distribution of fat globules in raw milk 
which was developed and optimised on a benchtop FT-NIR 
instrument. In general, an existing model developed on a master 
instrument cannot be applied to spectra recorded under different 
conditions or on a different instrument (slave) because of 
differences in the spectral response. To overcome this practical 
problem, a convenient approach involves the standardisation of 
spectra (Tan and Li, 2007). 

 

 
 
 
 
 
 
 
 
 

Materials and methods 
 
Samples 
 
From a population of 69 Friesian, Jersey and Brown cows, 34 
individual raw milk samples were selected for the standardisation 
procedure and 35 samples were used as an independent set for 
validation. 

 
NIR instrumentation 
 

The samples were scanned with the master instrument (FT-
NIR; NIRFlex N-500, Büchi Italia, Italy) and the slave instrument 
(Polychromix DTS-1700; LABPOD-MEMS) (Figures 1 and 2) which 
is a portable, robust and low cost spectrometer. The two 
instruments have different working principles. FT-NIR uses a 
polarisation interferometer based on the Fourier transform while 
Polychromix is based on DTS™ (Digital Transform Spectroscopy in 
Hadamard transform) technology with a spatial light modulator 
based on MEMS (Micro Electro-Mechanical Systems) technology. 
The instruments have different spectral resolution, 8 cm

-1
 for FT-

NIR and 12 nm for Polychromix; both have an InGaAs detector 
with that of the FT-NIR having an extended range; the tools also 
differ in the diameter of the measurement spot (2 mm for the FT-
NIR and 5 mm for Polychromix) and for the light collimation. 
Moreover in the Polychromix instrument, the radiation passes 
through optical fibres. 
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Figure 1. Master spectrometer FT-NIR NIRFlex N-500. Figure 2. Slave spectrometer Polychromix DTS-1700. 

Spectroscopic analysis 
 

Milk samples, diluted 1:4 with deionised water, were placed 
in 40 ml test tubes and heated at 40 ± 1 °C. They were scanned 
with the two NIR spectrometers using a quartz flow cell with an 

optical path of 200 m. FT-NIR spectra were acquired in 
transmission mode (32 scans, resolution of 8 cm

-1
, 3 replicates 

per sample) in the range 4000-10000 cm
-1

. Slave spectra were 
collected in transmission mode (100 scans, resolution of 12 nm) 
from 935 to 1692 nm. 

 
The SCATTER model  
 
The model, developed in Visual Basic for Excel and optimised 

for NIRFlex N-500 (Cabassi et al., 2012), calculates, given the fat 
concentration, the optical density produced by scattering of milk 
fat globules. On the basis of the Weibull distribution, the model 
calculates the number of globules in a defined diameter range, 
returning a distribution curve from which it generates a 
theoretical NIR spectrum. When the measured NIR spectrum is 
input to the model, model inversion is performed by minimising 
the sum of squared differences between the measured and the 
theoretical spectrum. At the end of the process, the new 
distribution curve is given. The model uses two spectral windows 
(1000-1360 nm and 1580-1800 nm) which are free from 
absorption bands and thus characterised only by scattering 
absorbance. 

 
Reference particle size analysis 
 

The size of milk fat globules was determined with a 
granulometer Mastersizer 2000 (Malvern Instruments Ldt., UK) 
equipped with a single laser source at 633 nm. The particle size 
distribution was calculated according to Mie theory with the 
"Multiple Narrow mode” model. Working parameters were 
chosen according to Michalski et al. (2001): water was used as 

dilution medium ( 1:600) to avoid multiple scattering 
phenomena; the refractive indices were set at 1.33 for water and 
at 1.458 for milk fat, the absorption coefficient for liquid fat was 
set to 0.5 * 10

-5
. In order to avoid fat crystallisation, all 

measurements were made at 40 ± 1 °C. Among the parameters 
provided by the instrument, the Sauter Mean Diameter, D [3,2], 
was chosen as the best descriptor of the particle size distribution. 

 
 
 
 

Software 
 

Computations were performed with MATLAB 7.0 (The 
MathWorks, Inc., USA) for Windows and PLS_ToolBox 4.0 
(Eigenvector, USA). 

 
Standardisation procedure 
 
The standardisation procedure was carried out with the 

MATLAB function 'stdgen' which offers a choice of two methods; 
direct standardisation (DS), in which the whole slave spectrum is 
used to fit each spectral point on the master spectrum, and 
Piecewise Direct Standardisation (PDS), which provides a spectral 
window on the slave instrument to reconstruct each spectral 
point on the master instrument (Tan and Brown, 2001). 
 

 

Results and Discussion 
 

Spectral differences 
 

Figure 3 shows the NIR absorbance spectra of milk samples 
measured with the two spectrometers. A clear difference 
between the two series was observed, due mainly to a shift of the 
signals of interest on both the wavelengths and absorbance axes, 
caused by differences in the working principle of each.

 
Figure 3. NIR absorbance spectra of milk samples measured 
with FT-NIR (blue) and LABPOD (red) spectrometers. 
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Standardisation 
 

Spectra pretreatment: the spectrum of the empty cuvette 
and of water were subtracted from absorbance spectra acquired 
by the master instrument; wavenumbers were converted into 
wavelengths and the order of variables was reversed (Figure 4).  

Absorbance spectra acquired with the slave instrument were pre-
treated by applying moving average smoothing (segment size 7) 
and were corrected by subtracting the average spectrum of 
water. In this case, a background measurement is made using an 
empty cuvette, the spectrum of which  is automatically 
subtracted by the software (Figure 5).

The spectral range of the two instruments overlap only between 
1000 and 1690 nm and the number of absorbance points are 
extremely different (1501 for the master instrument and 100 for 
the slave) because of the different resolution. Thus, in order to 
optimise the standardisation process, a MATLAB routine (called 
mattdiff, Figure 6) was create. 'Mattdiff' compares all 
wavelengths of FT-NIR with those of Polychromix, calculates their 
differences, in absolute value, and creates a matrix. Then the 
routine associates the 100 wavelengths of the two instruments 
whose difference is less than 1 (arbitrarily chosen value). 
 

Selection of spectra and standardisation: when performing a 
standardisation process, it is possible to select samples to be 
included in the standardisation subset which best represent the 
variability of the considered parameter(Wang et al., 1991). The 
selection can be done on the basis of the sample leverage or on 
the basis of sample scores calculated from  a PLS model 
predicting fat content. All possible combinations between the 
standardisation mode and the use of an extended (n = 34) or 
restricted (n = 5) data set, selected on the basis of the leverage or  
the PLS on fat content, were evaluate.

 

 
 
 
Performance of standardisation 
 
The standardisation matrix obtained was used to transform an 
independent data set of 35 new slave spectra to which the 
SCATTER model was applied. Among all the possible 
combinations investigated, the best correlation between the D 
[3,2] parameter calculated for the master spectra and that 
calculated for the standardised slave spectra was obtained by 
applying the PDS standardisation using all 34 spectra (Figure 7). A  
 

 
 
good correlation between the two calculations was obtained, 
with a coefficient of determination in independent validation R

2
 o 

f 0.867 and a SEP=0.39  indicating good spectral standardisation . 
As shown in Figure 8, the differences between the master and the 
slave spectra after the PDS procedure were considerably 
reduced, indicating that most of the spectral differences have  
been compensated for through the standardisation.

 
 
 

 

 

  
Figure 4. Master spectra pretreatment. Figure 5. Slave spectra pretreatment. 
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function 

[MatCoppia]=mattdiff(VettA,VettB,ddiff) 

 

 %Sizing of wavelength vectors  

CicloA =size(VettA); 

CicloB =size(VettB); 

 

 % creation of matrix of differences between 

wavelength 

for i=1:CicloA(1,2); 

   for j=1:CicloB(1,2); 

       matdiff(i,j)=abs(VettA(i)-VettB(j)); 

   end 

end 

  

% creation of matrix of wavelength minima  

MinRig=min(matdiff); 

MinCol=min(matdiff'); 

  

%initialization of Matpos 

Matpos(1:size(MinRig,2))=0; 

  

%creation of matrix of correlations between 

wavelengths  

rc3=size(MinRig); 

for i=1:rc3(1,2); 

    if find(MinCol==MinRig(i)) 

        if MinRig(i)<ddiff;  

            posmincol=find(MinCol==MinRig(i)); 

 

            indc=abs(i-posmincol); 

            valfincol=min(find(MinCol==MinRig(i))); 

            if length(indc)>1 

                k=1; 

                for j=1:length(posmincol) 

                    if find(Matpos==posmincol(j)) 

                        k=k+1; 

                    end 

                end 

                valfincol=posmincol(k); 

            end 

            Matpos(i)=valfincol; 

        end 

    else 

        Matpos(i)=0; 

    end 

end 

  

%creation of matrix of matching position  

rc4=size(Matpos); 

j=0; 

for i=1:rc4(1,2); 

    if Matpos(i)>0; 

       j=j+1; 

       MatCoppia(1,j)=i; 

       MatCoppia(2,j)=Matpos(i); 

    end 

end 

Figure 6. ‘Matdiff’ routine. 

 

  
Figure 7. Correlation between D [3.2] calculated with the SCATTER 
model for master and standardised slave spectra. 

Figure 8. Master (blue) and standardised slave (red) spectra. 
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Conclusions 
 

After the standardisation procedure, the slave spectra could 
be used to measure fat globule size as could the master spectra. 
The good results obtained show that the size of the fat globules 
in milk can be determined using spectra acquired with a low cost 
and low resolution spectrometer, if properly standardised. The 
reduction of the cost of this analysis has interesting implications 
regarding the on-line analysis to be carried out directly in the 
barn. 
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