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Way of Doing Matters!

Contract Design and Resource Allocation

VERY PRELIMINARY

Ludivine Roussey and Raphael Soubeyran

September 11, 2012

Abstract

We consider a contract design problem where an agent runs a project that requires two kinds of

actions/inputs. We consider a new type of asymmetric information: whereas the principal can

control the global amount of resources (working time, effort, money, etc) that the agent puts into

the project, he has no information (or no direct control) regarding the ‘way” the agent produces,

i.e. he has no information on the allocation of the resources between the two actions/inputs. This

model differs from the multitask problem (see Holmstrom and Milgrom 1987). We show that the

optimal incentive contract cannot reach the first best although the principal can contract upon

the total amount of resources spent by the agent. Moreover, we show that the second best level

of resources is lower (or equal) to its first best level. We also discuss how the principal chooses

to make or buy depending on the substitutability/complementarity of the actions. Our model

applies to optimal production contract design with asymmetric information on the production

process and to optimal budget design in federations when the central government has no control

on the allocation of local governments’ spendings.

Keywords: Contract Theory, Principal-Agent Model, Production Process, Resource Alloca-

tion.

JEL codes: D82, D86
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1 Introduction

In modern societies, products and services as well as production processes are increasingly so-

phisticated. This trend is reinforced by the demand for quality and technological goods and by

increasingly global economic relationships (through international trade and political and economic

integration). As a consequence, the control of end-users (clients, consumers, voters, etc.) over

production/decision processes is getting more difficult.

In this paper, we consider a contract design problem where an agent is expected to run a project

requiring the combination of two different kinds of actions. We highlight a new type of information

asymmetry: whereas the principal can control the global amount of resources (working time, ef-

fort, money, etc) that the agent puts into the project, he has no information (or no direct control)

regarding the way the agent produces. Then, the principal cannot contract directly upon how the

agent chooses to allocate the resources between the two actions of the project. While principal-

agent models have studied in depth the conflict of interest between one principal and one agent

related to the level of resources spent by the agent (moral hazard) and to the selection of the agent

(adverse selection), the way the agent chooses to allocate his resources between the various tasks

he has to perform (i.e. his production practices) has received little attention. And yet, in many

economic situations, there can be a conflict of interest between the principal and the agent coming

from the information asymmetry (or lack of control) over the allocation of resources within the

production process that may induce economic inefficiency.

Asymmetries of information over a production process concern goods for which it is difficult to

know from consumption experience or observation how it has been produced (e.g. wine, fine food,

high technology goods, etc). A typical example of is wine production. Vineyard owners (principals)

often hire wine makers (agents) to produce a wine with specific characteristics. The final quality

of the wine depends on the involvment and effort of the wine maker during the different steps of

vinification: selection of the grapes, harvesting time and method, fermentation, etc. The vineyard

owner may be able to evaluate the final quality of the wine and he cannot monitor and control

the wine maker’s work at each step of vinification. Moreover, it is very costly to hire experts to

assert which step of the production process has been managed properly or not. Another example is

manager labor contract: consider an employer who hires a manager to improve the value of sales.
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In order to do so, the manager has to boost relationships with former customers and to look for

new ones by sending e-mails. The firm can fix the working time of the manager ex-ante and control

the value of sales ex-post. However, according to individual data protection legislations, it is often

forbidden to check managers’ e-mails. In this context, if the manager neglects one of thess two

activities, even if he invests a lot in the other one, this may be detrimental to the firm. The ‘way

of doing”’ problem is also present in federal political systems. The central government may want

to control the budgets of its federal states, even if the allocation of the local budgets is left to local

authorities.

Although multiple-activity principal-agent models focuses on how an agent splits his time be-

tween several activities (see Holmstrom and Milgrom 1987, 1991, 1994 and Itoh 1991), they differ

from our model because they consider that the principal can get signals (albeit imperfect) on indi-

vidual actions and that he cannot control the total level of effort exerted by the agent. Multi-tasking

problems typically consider an agent who has to exert some effort in two (or more) tasks with the

principal receiving one ”performance” signal for each task. The main problem for the principal is

then that task-targeted incentives may offset across tasks. In contrast, in our paper, we consider

the case where the principal receives only one ”global performance” signal, which is the source of

the asymmetric information regarding the production process.

Our model shares with team production models (Holmstrom 1982, McAfee and McMillan 1991,

Che and Yoo 2001, Winter 2009) the assumption that the principal receives only one signal for the

level of production and not one signal for each task as in the multi-task literature. However, this

litterature considers that the tasks can be clearly affected to different agents. The closest model to

ours is MacDonald and Marx (2001), but they do not consider that the principal has control over

the total amout of resource.

We show that our problem turns out to be a trade-off between incentives and resource spending:

high powered incentives align the objective of the agent with the objective of the principal but

reduces the (risk averse) agent payoff. Participation of the agent may be maintained with a decrease

in the expected level of resource invested. However, we show that the optimal second best contract

does not always distort resource spending compared to the first best situation. The paper focuses

on the two polar cases of perfect substitutability and perfect complementarity between the tasks.

We discuss how this affect the results aformentionned and how this affects the principal choice to
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make or buy depending on the substitutability/complementarity of the actions.

The paper is organized as follows. Section 1 presents the model. Section 2 sets out our main

assumptions. In Section 3, we show our results for the case of perfect substitutes and in Section 4,

our results for the case of perfect complements. Section 5 concludes.

2 Production and Contract

A principal wants to hire an agent to carry out a project. Completion of the project requires that

the agent invests resources in two different kinds of action A and E. Let a denote the amount of

resources allocated to action A and e the amount of resources allocated to action E. Typically a

and e may be interpreted as the agent’s time or money spent, or effort exerted, on action A and E

respectively. To carry out the project, the agent is required to invest a total amount of resource T

that can be allocated between action A and action E. Thus,

T = a+ e. (1)

This constraint means that, for the agent, spendings on action A and spendings on action E

are perfect substitute uses of the total amount of resource T that he is required to invest.

Whereas the contract specifies how much the agent must spend for the project (T ), it does not

specify how the agent must allocate resources between action A and action E. Indeed, we assume

that the principal is able to observe/verify/monitor the agent’s total investment for the project but

that he has no way/mean/permission to verify how the resources have been shared out amongst the

different actions. However, the agent’s resource allocation choice is of importance for the principal

since the project’s observable outcome f̃ – which is observed by the principal – is affected by the

(unobservable) levels of resources a and e that the agent puts into (resp.) action A and E. We

assume that the project’s outcome is also affected by a normally distributed alea ε̃, with mean

0 and variance σ2, whose realization reflects a state of nature. The final outcome can then be
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formally written

f̃ (a, e) = f (a, e) + ε̃,

with f (a, e) being observed by the principal.

Investments in actions A and E positively influence the project’s outcome but also create a cost

for the agent. The agent’s total cost C (a, e) of providing a and e is assumed to be

C (a, e) =
1
2
a2 +

1
2
δe2

with 0 < δ < 1.

The total (expected) project’s profit is then given by

π (a, e) = E
[
f̃ (a, e)− C (a, e)

]
= f (a, e)− C (a, e) , (2)

where E[.] is the expectation operator.

The principal determines the agent’s payment. As the agent’s resource allocation choice is not

observable, the principal rewards the agents according to a (linear) contract based on the project’s

(observable) outcome and the total amount of resource invested. In other words, a contract is

defined by a triplet c ≡ (β, F, T ) that prescribes the (expected) transfert that the agent receives,

βE
[
f̃ (a, e)

]
+ F and the amount of resource invested T such that a + e = T . We assume that

the risk-averse agent’s preferences over wealth is described by a constant absolute risk aversion

utility function. Hence, using the Arrow-Pratt approximation and given a contract c = (β, F, T )

and resource allocation (a, e), the agent’s final (expected) utility is:

U (a, e, c) ' βE
[
f̃ (a, e)

]
+ F − C (a, e)− 1

2
rσ2β2

or

U (a, e, c) ' βf (a, e) + F − C (a, e)− 1
2
rσ2β2 (3)

where r is the (constant) relative risk aversion of the agent.
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We assume, for simplicity, that the principal is risk neutral and, for a given contract c, his

(expected) payoff is:

V (a, e, c) = (1− β)E
[
f̃ (a, e)

]
− F,

or

V (a, e, c) = (1− β) f (a, e)− F, (4)

The principal’s problem is to determine the contract c∗ = (β∗, F ∗, T ∗) that maximizes the

principal’s payoff V (a, e, c) under the condition (i) that the agent maximizes his expected utility

when choosing the allocation of T between A and E (i.e. under the agent’s incentive constraint) and

(ii) that the agent attains a certain minimum utility corresponding to his outside option (i.e. under

the agent’s participation constraint). Let us normalize the outside option to 0, the participation

constraint then writes:

U (a, e, c) ' βf (a, e) + F − C (a, e)− 1
2
rσ2β2 ≥ 0. (5)

Given a contract c = (β, F, T ), the resources invested by the agent in actions A and E, namely

a and e, are characterized by the following incentive constraint :

(a, e) ∈ arg maxU (a, e, c) , (6)

with T = a+ e.

We define social utility as the joint surplus J , i.e. the sum of the principal’s and the agent’s

payoffs. It is given by

J = f − C − 1
2
rσ2

(
βSB

)2
.

To analyze this principal-agent problem, we successively consider two polar cases: we first

assume that actions are perfect substitutes in the project’s production function and then that

actions are perfect complements.
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3 Perfect Substitutes

In this section, we suppose that the two actions A and E are perfect substitutes in the project’s

production function. We then consider the following simple production function:

f̃ (a, e) = a+ γe+ ε̃,

with γ the marginal productivity of task E. The marginal productivity of task A is normalized to

1. We assume that 0 < γ < δ < 1.

3.1 First best

We begin our analysis by looking at the contract design at the first-best situation. The first best is

characterized by the resource levels
(
aFB, eFB

)
that maximize the total (expected) profit defined

by equation (2): (
aFB, eFB

)
∈ arg maxπ (a, e) = a+ γe− C (a, e) ,

Proposition 1: The first-best resource allocation is given by:

eFB =
γ

δ
and aFB = 1.

and then the first best total amount of resources invested is

TFB =
δ + γ

δ
.

At the first-best, the resource allocation is such that the marginal rate of technical substitution

of action A for action E is equal to the ratio of the marginal productivity of action A over action

E,
∂f(a,e)
∂a

∂f(a,e)
∂e

=
∂C(a,e)
∂a

∂C(a,e)
∂e

>
∂T (a,e)
∂a

∂T (a,e)
∂e

,

which is equivalent to

1
γ

=
a

δe
> 1. (7)
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The rate bove measures the additionnal amount of resources that must be invested in action

E to keep out at project’s production level f̄ when the amount of resources invested in action

A is decreased from one unit. Equation (7) tells us that resources put into action E must be

increased (resp. decreased) from more that one unit when resources into action A are decreased

(resp. increased) from one unit.

The first-best output is

fFB =
δ + γ2

δ
,

the first-bes cost is

CFB =
δ + γ2

2δ
,

and the first-best profit – equal to the first-best joint surplus – is

πFB =
δ + γ2

2δ
.

3.2 Second best

We now suppose that the resource allocation chosen by the agent to whom the project has been

delegated cannot be contracted upon by the principal. The principal then designs a contract c

based on the final expected project’s outcome E
[
f̃ (a, e)

]
= f (a, e) taking into account the fact

that under the implemented incentive scheme the agent will desire to choose a resource allocation

that can maximize his own (positive – as we have fixed the agent’s outside alternative expected

utility to 0) utility.

Given the principal expected payoff (4), the agent’s incentive constraint (6), the agent’s participa-

tion constraint (5), and the constraint on the total amount of resource invested (1) defined above,

and using production function (3), the principal-agent problem can be written as

Max
c
{V (a, e, c) = (1− β) (a+ γe)− F} (8)

subject to incentive constraint,

(a, e) ∈ arg max
{
U (a, e, c) = β (a+ γe) + F − 1

2
a2 − 1

2
δe2 − 1

2
rσ2β2

}
, (9)

8



participation constraint,

U (a, e, c) = β (a+ γe) + F − 1
2
a2 − 1

2
δe2 − 1

2
rσ2β2 ≥ 0 (10)

and resource investment constraint,

a+ e = T. (11)

We study this problem by first determining the agent’s resource allocation choice under a given

contract c = (β, F, T ) and then by characterizing the principal’s incentive contract choice according

to the agent’s response.

3.2.1 Agent’s resource allocation choice

For a given contract design c = (β, F, T ), the agent’s incentive constraint can be stated as the

following utility maximization problem

Max
a≥0,e≥0

{
U(a, e) = β (a+ γe) + F − 1

2
a2 − 1

2
δe2 − 1

2
rσ2β2

}
s.t.

a+ e = T

Substituting the resource investment constraint in the agent’s utility function, the first-order

condition for the case of an interior optimum (ã, ẽ) is

∂

∂e

[
β (T − (1− γ) e) + F − 1

2
(T − e)2 − 1

2
δe2 − 1

2
rσ2β2

]
= 0

which is equivalent to
β − ã
βγ − δẽ

= 1. (12)

The numerator of the left-hand side of equation (12) corresponds to the marginal change in the

agent’s utility arising from a marginal increase in a, i.e. the marginal utility of action A (∂U(a,e)
∂a ).

This is positive if and only if a is lower than β. The denominator represent the marginal utility

of action E (∂U(a,e)
∂e ), which is positive if and only if e < βγ/δ. Thus, the left-hand side of equa-
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tion (12) represents the agent’s marginal rate of substitution of action A for action E at (ã, ẽ)

(∂T (a,e)
∂a /∂T (a,e)

∂e ). It tells us the reduction in resources allocated to action E that the agent must

make to compensate for a one-unit marginal increase in his investment in action A. The right-hand

side in (12) accounts for the fact that, for a given T , and increase in one-unit of resource invested

in action A must be compensated by a one-unit decrease in resources invested in action E.

Finally, the first-order condition (12) means that at an interior optimum (ã, ẽ), the agent’s marginal

rate of substitution of action A for action E must be equal to the marginal rate of exchange between

them in the total resource investment constraint imposed by the principal (T = a + e). Here, the

agent reduces resources invested in action E from one unit while increasing resources invested in

action A from one unit to maintain his utility level. This (second-best) marginal rate of substitution

is greater than the marginal rate of substitution prevailing at the first-best situation. Indeed, at

the second-best situation the agent reduces investment in action E from one-unit resource while

increasing investment in action A from one-unit resource to maintain his utility level whereas at

the first-best situation a one-unit increase in resources invested in action A is compensated by a

more-than-one-unit decrease in resources invested in action E to maintain the project’s output level.

Proposition 2: For a given contract design c = (β, F, T ), the agent’s resource allocation that re-

spect his incentive constraint subject to the resource investment constraint imposed by the principal

is such that

ã (β, T ) =
δT + β (1− γ)

1 + δ
, (13)

and,

ẽ (β, T ) =
T − β (1− γ)

1 + δ
. (14)

Let remark that if the principal chooses to fix the total investment to its first best level and does

not provide incentives to the agent, i.e. T = TFB and β = 0, then the resource allocation chosen
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by the agent is

ẽ
(
0, TFB

)
=

δ + γ

δ(1 + δ)
> eFB =

γ

δ

and ã
(
0, TFB

)
=

δ + γ

(1 + δ)
< aFB = 1,

In other words, if the remuneration of the agent does not depend on the output level, the resource

allocation that he chooses is distorted compared to the first best. The agent prefers to allocate

more resources to the less costly action, i.e. the agent puts more resources into action E and fewer

resources into action A compared to the first best.

As β is positive, the agent reduces the amount of resource allocated to action E and increases the

amount of resource allocated to action A.

3.2.2 Principal’s contract choice

Substituting the agent’s (saturated) participation constraint (10) in the principal’s payoff function

(8) and according to the agent’s resource allocation choice (ã (β, T ) , ẽ (β, T )) defined by (13) and

(14), the principal’s problem can be stated as

Max
β,F,T

{
ã (β, T ) + γẽ (β, T )− 1

2
ã (β, T )2 − 1

2
δẽ (β, T )2 − 1

2
rσ2β2

}
with

ã (β, T ) + γẽ (β, T )− 1
2
ã (β, T )2 − 1

2
δẽ (β, T )2 − 1

2
rσ2β2 = −F

Proposition 3: When actions are substitutes, the optimal contract design is

TSB =
δ + γ

δ
= TFB

βSB =
(1− γ)2

(1− γ)2 + rσ2(1 + δ)

FSB =

(
(γ − 1)2

(
δ + γ2

)
+ (γ + δ)2 rσ2

)(
− (γ − 1)2 + (1 + δ) rσ2

)
2δ
(

(γ − 1)2 + (1 + δ) rσ2
)2

When the agent is risk averse, the principal gives him positive incentive. The level of incentive

given is deacresing with respect to the agent’s risk aversion. The total investment expected from
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the agent is fixed to the first-best level. The optimal contract induces a better resource allocation

from the agent. But the first-best outcome cannot be implemented because of risk aversion. These

results show that resource allocation is an issue even if the principal is able to control the agent’s

total investment. The conflict of interest between the principal and the agent then does not concern

the volume of resources that must be put into the project but how these resources are to be splitted

between the different actions needed to carry out the project. This conflict of interest is at the

origin of the agency cost which prevents an efficient design of contract.

3.2.3 Second-best resource allocation

Substituting βSB and TSB in ẽ and ã we can find the second-best resource allocation.

Proposition 4: The second-best resource allocation is such that:

eSB =
1

(1 + δ)

[
δ + γ

δ
− (1− γ)3

(1− γ)2 + rσ2(1 + δ)

]
aSB =

1
(1 + δ)

[
δ + γ +

(1− γ)3

(1− γ)2 + rσ2(1 + δ)

]
.

with aFB > aSB and eFB < eSB.

We can easily check that e(0, TFB) > eSB > eFB and that a(0, TFB) < aSB < aFB. When

the agent receive no incentive, but is asked to invest the first-best total amount of resource, the

resource allocation is distorted in favour of action E, which is less costly to perform. Giving the

agent positive incentives allows to correct (imperfectly) this distortion by making the agent spend

more resource on action A and less resource on action E.

The second-best output is

fSB =
1

1 + δ

[
(δ + γ)2

δ
+

(1− γ)4

(1− γ)2 + rσ2 (1 + δ)

]
,

the second-best cost is

CSB =
1

2 (1 + δ)

(δ + γ)2

δ
+

(
(1− γ)3

(1− γ)2 + rσ2 (1 + δ)

)2
 ,
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and the second-best profit is thus

πSB =
1

(1 + δ)

[
δ + γ +

(1− γ)3

(1− γ)2 + rσ2(1 + δ)

]
+

γ

(1 + δ)

[
δ + γ

δ
− (1− γ)3

(1− γ)2 + rσ2(1 + δ)

]
− 1

2(1 + δ)2

[
δ + γ +

(1− γ)3

(1− γ)2 + rσ2(1 + δ)

]2

− δ

2(1 + δ)2

[
δ + γ

δ
− (1− γ)3

(1− γ)2 + rσ2(1 + δ)

]2

πSB =
(1− γ)4

2 (1 + δ)

[
(1− γ)2 + 2rσ2 (1 + δ)

]
[
(1− γ)2 + rσ2 (1 + δ)

]2 .
The joint surplus is

J = πSB − 1
2
rσ2βSB

4 Perfect Complements

We now suppose that the two actions A and E are perfect complements. The project’s production

function can then be written as:

f̃ (a, e) = min {a, γe}+ ε̃.

We still assume that 0 < γ < δ < 1.

4.1 First best

The first best is characterized by the effort levels
(
aFB, eFB

)
that maximize the total (expected)

profit: (
aFB, eFB

)
∈ arg maxπ (a, e) = min {a, γe} − C (a, e) ,

Proposition 5: The first best resource allocation is such that

eFB =
γ

γ2 + δ
and aFB =

γ2

γ2 + δ
.

Let remark that aFB = γeFB.
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The first-best total amount of resources invested is

TFB =
γ2 + γ

γ2 + δ
.

The first-best output is

fSB =
σ2

σ2 + δ
.

The first-best cost is

CFB =
γ2

2(γ2 + δ)
.

And the first-best profit/joint surplus is

πFB =
γ2

2(γ2 + δ)
.

4.2 Second best

When the principal delegates the realization of the project to an agent whose resource allocation

is not monitored, the principal-agent problem can be written

Max
c
{V (a, e, c) = (1− β) min {a, γe} − F} (15)

subject to incentive constraint,

(a, e) ∈ arg max
{
U (a, e, c) = βmin {a, γe}+ F − 1

2
a2 − 1

2
δe2 − 1

2
rσ2β2

}
, (16)

participation constraint,

U (a, e, c) = βmin {a, γe}+ F − 1
2
a2 − 1

2
δe2 − 1

2
rσ2β2 ≥ 0 (17)

and resource investment constraint,

a+ e = T. (18)
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4.2.1 Agent’s resource allocation choice

Using the resource investment constraint and substituting, the agent’s problem is:

Max
e≥0

{
U(a, e) = βmin {T − e, γe}+ F − 1

2
(T − e)2 − 1

2
δe2 − 1

2
rσ2β2

}
,

with T = a+ e.

Proposition 6: For a given contract design {β, F, T}, the agent’s resource allocation that respect

(16) and (18) is:

ã (β, T ) =


δT−γβ

1+δ if β < δ−γ
γ(1+γ)T

γT
1+γ if δ−γ

γ(1+γ)T ≤ β

and

ẽ (β, T ) =


γβ+T
1+δ if β < δ−γ

γ(1+γ)T

T
1+γ if δ−γ

γ(1+γ)T ≤ β

When β is large (> δ−γ
γ(1+γ)T ), a change in the level of incentive given to the agent does not

change his efforts on action A and E. An increase in T increases both effort on action A and

on action E. We always have ã = γẽ like in the first-best, but if T < TFB, ã and ẽ are smaller

than aFB and eFB respectively. Conversely, if T > TFB, ã and ẽ are greater than aFB and eFB

respectively.

When β = 0 (i.e. when the agent bears the cost of the production without benefiting from the

output) the agent chooses his efforts on action A and action E so that a = δe (that is, a multiplied

by its marginal cost is equal to e multiplied by its marginal cost). We have shown above that the

first best effort levels are such that a = γe. Since we have suppose that γ is lower than δ, this

means that when the agent receives no incentives, he tends to invest relatively too much in action

A and not enough in action E. [But e > a.]

As long as β is not too much high (< δ−γ
γ(1+γ)T ), increasing the level of incentive given to the agent

makes him spend less on A and more on E (for a given T ).
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4.2.2 Principal’s contract choice

Proposition 7: When actions are complements, the contract maximizing the principal’s payoff

subject to the agent’s response is such that

(i) When the agent is not too much risk averse ( r ≤ γ3

(δ−γ)σ2 ),

βSB =
δ − γ
δ + γ2

,

TSB =
(
γ + γ2

δ + γ2

)
= TFB and

FSB =
rσ2

(
γ2 + δ

)
(δ − γ) + γ2

(
2γ − δ + γ2

)
2 (γ2 + δ)2

(ii) and, when the agent is sufficiently risk averse (when γ3

(δ−γ)σ2 < r ),

βSB =
γ2

γ2 + (1 + δ) rσ2
,

TSB =
γ

δ
< TFB and

FSB =
1
2
γ2

δ

(
rσ2 + γ2

) (
(1 + δ) rσ2 − γ2

)
(γ2 + (1 + δ) rσ2)2

.

Corrolary 2: The more the agent is risk averse, the less incentive he receives (i.e. the lower

βSB), the lower the amount of total resources he is expected to spend (i.e. the lower TSB), and

the higher the fixed remuneration he receives (i.e. the higher FSB).

4.2.3 Second-best resource allocation

Proposition 8: When the principal chooses a contract cSB = (βSB, TSB, FSB), the agent’s re-

source allocation choice is such that

(i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2

eSB =
γ

δ + γ2
= eFB and aSB =

γ2

δ + γ2
= aFB,
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and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r

eSB =
γ

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r
< eFB and aSB =

γσ2r

γ2 + (1 + δ)σ2r
,

with aSB < aFB if and only if r < 1
1−γ

γ3

(δ−γ)σ2 .

When the agent is not too much risk averse, the second best efforts are identical to the first

best levels.

The effort on task E decreases with the agents’ risk aversion and the effort on task A is a non-

monotonic function of the agent’s risk aversion.

At the first-best situation and when the agent is not too much risk averse (r > γ3

(δ−γ)σ2 ), we

have a = γe. One can check that when r > γ3

(δ−γ)σ2 , aSB is equal to rσ2δ
rσ2+γ2 e

SB with rσ2δ
rσ2+γ2 greater

than γ. Thus, when r > γ3

(δ−γ)σ2 , aSB is relatively too high compared with eSB (even when its

level is lower than its first-best level). We verify that rσ2δ
rσ2+γ2 is increasing with r so that aSB is

increasingly too high relatively to eSB as the agent’s risk aversion increases.

Corrolary 3: (i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2 , the second-best

production is identical to the first best one:

f(r) =
γ2

δ + γ2
= aSB = γeSB = aFB = γeFB

and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r, the second best production is

f(r) =
γ2

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r
= γeSB < aSB.

When r tends to infinity, f(r) tends to γ2

δ(1+δ) .

Corrolary 4: (i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2 , the second-best cost is

identical to the first best one:

C(r) =
γ2

2(γ2 + δ)
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and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r, the second-best cost is

C(r) =
γ2
(
γ2 + σ2r

)2 + δ
(
γσ2r

)2
2δ (γ2 + (1 + δ)σ2r)2

.

Corrolary 5: (i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2 , the second-best profit

is identical to the first best one:

π(r) =
γ2

2(γ2 + δ)

and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r, the second-best profit is

π(r) =
γ2

2δ (γ2 + (1 + δ)σ2r)2
[
γ4 + σ2r (1 + δ)

(
2γ2 + σ2r

)]

Corrolary 6: (i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2 , the joint surplus is:

J+ =
γ2
(
γ2 + δ

)
− (δ − γ)2 rσ2

2 (δ + γ2)2
if r ≤ γ3

(δ − γ)σ2

and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r, the joint surplus is

J− =
1
2
γ2

δ

γ2 + rσ2

γ2 + (1 + δ) rσ2
if r >

γ3

(δ − γ)σ2

Corollary 7: An increase in the degree of risk aversion r may increase the joint surplus. Indeed,

the second best joint surplus JSB decreases with r for r < γ3

(δ−γ)σ2 , jumps upward at r = γ3

(δ−γ)σ2

and then decreases after.

4.3 Discussion

4.3.1 Inefficiency

Remember that the second best joint surplus is

JSB =

 J+ =
γ2(γ2+δ)−(δ−γ)2rσ2

2(δ+γ2)2
if r ≤ γ3

(δ−γ)σ2

J− = 1
2
γ2

δ
γ2+rσ2

γ2+(1+δ)rσ2 if r > γ3

(δ−γ)σ2 .
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JFB − J+ =
γ2

2(γ2 + δ)
−
γ2
(
γ2 + δ

)
− (δ − γ)2 rσ2

2 (δ + γ2)2

=
(δ − γ)2rσ2

2(γ2 + δ)2
> 0

JFB − J− =
γ2

2(γ2 + δ)
− 1

2
γ2

δ

γ2 + rσ2

γ2 + (1 + δ) rσ2

=
γ2
(
rσ2(δ2 − γ2)− γ4

)
2δ (γ2 + δ) (γ2 + (1 + δ)rσ2)

This is positive if and only if r > γ4

σ2(δ2−γ2)
. We check that γ4

σ2(δ2−γ2)
< γ3

σ2(δ−γ) , so that JFB−J−

is always positive over r > γ3

(δ−γ)σ2 .

Inefficiency due to the agent’s resource misallocation can also be measured by I = γeSB − aSB.

The closer I to 0, the lower inefficiency. When I > 0, decreasing investment in action E would

not reduce the output f (.) whereas it would decrease the total cost. When I < 0, decreasing

investment in action A would decrease the total cost without reducing the output.

Corollary 8: (i) When the agent is not too much risk averse, r ≤ γ3

(δ−γ)σ2 , there is no production

inefficiency,

I = 0,

and (ii) when the agent is sufficiently risk averse, γ3

(δ−γ)σ2 < r, the production inefficiency is nega-

tive,

I =
γ

δ

γ3 − (δ − γ) rσ2

γ2 + (1 + δ) rσ2
< 0,

which means that the effort in task A is inefficiently high.

19



4.3.2 Substitution between expected resource spending and incentives

Corrolary 9: The variable part of the payment scheme and the total amount of resources act as

substitutes.

If the total amount of resources is fixed at its first best level, T = TFB = γ+γ2

δ+γ2 , the optimal (second

best) variable payment, βSB, is:

(i) When the agent is not too much risk averse ( r ≤ γ3

(δ−γ)σ2
1+γ
1+δ ),

βSB =
δ − γ
δ + γ2

(ii) and, when the agent is sufficiently risk averse (when γ3

(δ−γ)σ2
1+γ
1+δ < r),

βSB =
γ2

γ2 + (1 + δ) rσ2

When the total amount of resource is not an instrument in the contract scheme, the incentives

fall down from δ−γ
δ+γ2 to γ2

γ2+(1+δ)rσ2 for a smaller value of the agent risk aversion than in the case

where T is chosen by the principal.

When the principal can use the total amout of resources as an instrument, he chooses TSB <

TFB for larger values of r compared to the present situation where the total amount of resources is

fixed to its first best level. Hence, the principal uses the reduction in the total amount of resources

to be invested by the agent in order to maintain strong incentives (βSB = δ−γ
δ+γ2 ) for larger agent’s

risk aversion. For any r such that γ3

(δ−γ)σ2 > r > γ3

(δ−γ)σ2
1+γ
1+δ , the incentives are reduced here

(βSB = γ2

γ2+(1+δ)rσ2 ) compared to the situation where the principal is allowed to reduce the total

amount of resources to TSB < TFB.

Appendix

Proof of Proposition 1 : The maximization program of the surplus writes as follows:

Max
a,e

{
J = a+ γe− 1

2
a2 − 1

2
δe2
}
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The first order conditions for an interior solution are given by:

1− a = 0,

γ − δe = 0.

And the solution is aFB = 1 and eFB = γ
δ . One can check that J is concave with respect to (a, e)

and then the first order conditions are also sufficient.�

Proof of Proposition 2: The first order condition for an interior effort e is:

∂U

∂e
= −β (1− γ) + (T − e)− δe = 0.

And then ẽ (β, T ) = T−β(1−γ)
1+δ . Using the time constraint, ã follows.�

Proof of Proposition 3: The problem of the principal can be written as:

Max
β,T

{
J =

δT + β(1− γ)
(1 + δ)

+ γ

[
T − β(1− γ)

(1 + δ)

]
− 1

2

[
δT + β(1− γ)

(1 + δ)

]2

− δ

2

[
T − β(1− γ)

(1 + δ)

]2

− 1
2
rβ2σ2

}
(19)

We have

∂J

∂β
=

(1− γ)2

(1 + δ)
− (1− γ)

[
δT + β(1− γ)

(1 + δ)2

]
+ δ(1− γ)

[
T − β(1− γ)

(1 + δ)2

]
− rσ2β (20)

and

∂J

∂T
=
δ + γ

1 + δ
− δ

(1 + δ)2
(δT + β(1− γ))− δ

(1 + δ)2
(T − β(1− γ)) . (21)

Hence, the first order conditions (FOC) can be written as

∂J

∂β
= 0⇔ (1− γ)2

(1 + δ)
(1− β)− rσ2β = 0 (22)

and

∂J

∂T
= 0⇔ δ + γ

1 + δ
− δT

1 + δ
= 0. (23)
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We check that J is concave with respect to β and T so that the first order conditions are also

sufficient.

From equation (22) we get

βSB =
(1− γ)2

(1− γ)2 + rσ2(1 + δ)
(24)

and equation (23) gives

TSB =
δ + γ

δ
= TFB. (25)

Proof of Proposition 5: The maximization program of the surplus writes as follows:

Max
a,e

{
J = min {a, γe} − 1

2
a2 − 1

2
δe2
}

If a ≤ γe, let λ be the corresponding Lagrangian parameter and the first order condition write:

1− a− λ = 0,

−δe+ λγ = 0,

λ (γe− a) = 0, a ≤ γe

One can easely check that one must have λ > 0 and then

a =
γ2

γ2 + δ

e =
γ

γ2 + δ
,

λ = δe/γ.

One can easely check that there is no possible solution such that γe < a. �

Proof of Proposition 6: One can first check that the case where T − e < γe is not possible since

it would imply β < 0.

The case T − e < γe implies that
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U = βγe− 1
2

(T − e)2 − 1
2
δe2 − 1

2
rσ2β2.

The first order condition for an interior solution is

γβ + T − e− δe = 0.

Then

ẽ1 =
γβ + T

1 + δ
> 0

and

ã1 =
δT − γβ

1 + δ
< T.

One can check that ã1 > 0 and ẽ1 < T if and only if β < δT
γ . Moreover, one verifies that

T − e > γe if and only if β < (δ−γ)
γ(1+γ)T . One can easily check that δT

γ > (δ−γ)
γ(1+γ)T .

Hence, the payoff of the agent when β < (δ−γ)
γ(1+γ)T is

U1 = U(ã1, ẽ1) =
γ2β2 + 2γTβ − δT 2

2(1 + δ)
− 1

2
rσ2β2.

Now, when T − e = γe it is immediate that

ẽ2 =
T

1 + γ

and

ã2 =
γT

1 + γ
.

The payoff of the agent is then

U2 = U(ã2, ẽ2) =
1

2(1 + γ)

(
2γTβ − γ2 + δ

1 + γ
T 2

)
− 1

2
rσ2β2

Finally, when β ≥ (δ−γ)
γ(1+γ)T , (ã2, ẽ2) is the only possible solution to the maximization of the
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agent’s utility function. Then, when β < (δ−γ)
γ(1+γ)T we verify that U1 > U2

U1 − U2 =
1

2(1 + δ)
(
γ2β2 + 2Tγβ − δT 2

)
− 1

2(1 + γ)

(
2Tγβ − γ2 + δ

1 + γ
T 2

)
∝ β2γ2(1 + γ)2 + T 2(δ − γ)2 − 2γTβ(1 + γ)(δ − γ) = γ2 (1 + γ)2

(
β − T (δ − γ)

γ (1 + γ)

)2

> 0,

so that (ã1, ẽ1) maximizes the payoff of the agent. �

Proof of Proposition 7: Using the participation constraint and substituting, the problem of the

principal can be rewritten as follows:

Max
(β,T )

{
J (β, T ) = γẽ (β, T )− 1

2
(ã (β, T ))2 − 1

2
δ (ẽ (β, T ))2 − 1

2
rσ2β2

}

J (β, T ) is a continuous function because ã and ẽ are continuous. One can also check that J is

a concave function over β < δ−γ
γ(1+γ)T and over δ−γ

γ(1+γ)T ≤ β. One now study J over each of these

domains.

First consider β < δ−γ
γ(1+γ)T . The joint surplus writes:

J (β, T ) = γ
γβ + T

1 + δ
− 1

2

(
δT − γβ

1 + δ

)2

− 1
2
δ

(
γβ + T

1 + δ

)2

− 1
2
rσ2β2,

and thus the FOCs for an interior solution are:

∂J

∂β
=

γ2 −
(
(1 + δ) rσ2 + γ2

)
β

1 + δ
= 0

∂J

∂T
=

1
δ + 1

(γ − Tδ) = 0

Hence, the solution is

T− =
γ

δ
and β− =

γ2

γ2 + (1 + δ) rσ2
.

And the condition β− < δ−γ
γ(1+γ)T

− is equivalent to

γ3

(δ − γ)σ2
< r.
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Let J− be the joint surplus levels corresponding to (β−, T−):

J− =
1
2
γ2

δ

γ2 + rσ2

γ2 + (1 + δ) rσ2
> 0.

Finally, (β−, T−) corresponds to a local maximum when γ3

(δ−γ)σ2 < r and if γ3

(δ−γ)σ2 ≥ r, since J is

continuous, there is no local maximum over β < δ−γ
γ(1+γ)T .

Second consider δ−γ
γ(1+γ)T ≤ β. The joint surplus writes:

J (β, T ) = γ
T

1 + γ
− 1

2

(
γT

1 + γ

)2

− 1
2
δ

(
T

1 + γ

)2

− 1
2
rσ2β2,

and thus we have:

∂J

∂β
= −rσ2β ≤ 0

∂J

∂T
=

γ + γ2 − T
(
δ + γ2

)
(1 + γ)2

,

then, the maximum is for

β =
δ − γ

γ (1 + γ)
T

γ + γ2 − T
(
δ + γ2

)
(1 + γ)2

= 0

and the solution is

T+ =
γ + γ2

δ + γ2
= TFB and β+ =

δ − γ
δ + γ2

.

Let J+ be the joint surplus levels corresponding to (β+, T+):

J+ =
γ2
(
γ2 + δ

)
− (δ − γ)2 rσ2

2 (δ + γ2)2
.

This level of joint surplus is positive only if

γ2
(
γ2 + δ

)
(δ − γ)2 σ2

≥ r.

Otherwise, the principal will choose T+ = 0 and β+ = 0, and then ã = ẽ = 0 and the joint surplus
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is 0.

Finally,

T+ =


γ+γ2

δ+γ2 if r ≤ γ2(γ2+δ)
(δ−γ)2σ2

0 else

and,

J+ =


γ2(γ2+δ)−(δ−γ)2rσ2

2(δ+γ2)2
if r ≤ γ2(γ2+δ)

(δ−γ)2σ2

0 else
.

Notice that γ3

(δ−γ)σ2 <
γ2(γ2+δ)
(δ−γ)2σ2

.

Finally, there is one local maximum over r ≤ γ3

(δ−γ)σ2 , which is (β+, T+). For γ3

(δ−γ)σ2 < r ≤
γ2(γ2+δ)
(δ−γ)2σ2

, there are two local maxima, (β+, T+) and (β−, T−).

J+ − J− =
γ2
(
γ2 + δ

)
− (δ − γ)2 rσ2

2 (δ + γ2)2
− 1

2
γ2

δ

γ2 + rσ2

γ2 + (1 + δ) rσ2
,

and the difference is positive if and only if

σ4δ (1 + δ) (δ − γ)2 r2 − σ2γ3
(
2δ + γ2 + γδ

)
(δ − γ) r + γ6

(
γ2 + δ

)
≤ 0.

The LHS is a degree 2 polynomial and its determinant is − (δ − γ)3
(
γ3 + 4δ2 + 3γ2δ

)
< 0. Hence

the polynomial is always positive and then

J+ < J−.

Then (β−, T−) is a global maximum over γ3

(δ−γ)σ2 < r ≤ γ2(γ2+δ)
(δ−γ)2σ2

. For r >
γ2(γ2+δ)
(δ−γ)2σ2

, there are

two local maxima, (0, 0) and (β−, T−). We have J(0, 0) = 0 and J− > 0 so that (β−, T−) is a

global maximum over r >
γ2(γ2+δ)
(δ−γ)2σ2

.

Finally (β+, T+) corresponds to the optimal (second-best) contract over r ≤ γ3

(δ−γ)σ2 and

(β−, T−) corresponds to the optimal (second-best) contract over r > γ3

(δ−γ)σ2 and (β−, T−).�

Proof of Corrolary 2:

β is decreasing with r
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When γ3

(δ−γ)σ2 < r, one can check that γ2

γ2+(1+δ)rσ2 <
δ−γ
δ+γ2 . The agent faces less incentives when

he his sufficiently risk averse.

T decreasing with r is immediate.

F is increasing with r

The participation constraint is saturated for the optimal contract. It characterizes the fixed

part of the payment scheme and then it is such that:

USB = βSB min
{
aSB, γeSB

}
− 1

2
(
aSB

)2 − 1
2
δ
(
eSB

)2 − 1
2
rσ2

(
βSB

)2
+ FSB = 0,

or,

FSB = −βSBγeSB +
1
2
(
aSB

)2
+

1
2
δ
(
eSB

)2
+

1
2
rσ2

(
βSB

)
,

Hence, for r ≤ γ3

(δ−γ)σ2 , we have

FSB = − δ − γ
δ + γ2

γ
γ

δ + γ2
+

1
2

(
γ2

δ + γ2

)2

+
1
2
δ

(
γ

δ + γ2

)2

+
1
2
rσ2

(
δ − γ
δ + γ2

)
,

=
rσ2

(
γ2 + δ

)
(δ − γ) + γ2

(
2γ − δ + γ2

)
2 (γ2 + δ)2

which is increasing with respect to r.

For γ3

(δ−γ)σ2 < r, we have:

FSB = − γ2

γ2 + (1 + δ) rσ2
γ
γ

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r
+

1
2

(
γσ2r

γ2 + (1 + δ)σ2r

)2

+
1
2
δ

(
γ

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r

)2

+
1
2
rσ2

(
γ2

γ2 + (1 + δ) rσ2

)2

=
1
2
γ2

δ

(
rσ2 + γ2

) (
(1 + δ) rσ2 − γ2

)
(γ2 + (1 + δ) rσ2)2

.
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The derivative with respect to r is given by:

∂FSB

∂r
=

1
2
σ2γ4 (δ (1− δ) + 2) rσ2 + (3δ + 2) γ2

δ (γ2 + (1 + δ) rσ2)3
> 0,

and this concludes the proof.�

Proof of Corrolary 9:

J
(
β, TFB

)
is a continuous function because ã and ẽ are continuous. One can also check that J

is a concave function over β < δ−γ
γ(1+γ)T

FB and over δ−γ
γ(1+γ)T

FB ≤ β. One now study J over each of

these domains.

First consider β < δ−γ
γ(1+γ)T

FB. The joint surplus writes:

J
(
β, TFB

)
= γ

γβ + TFB

1 + δ
− 1

2

(
δTFB − γβ

1 + δ

)2

− 1
2
δ

(
γβ + TFB

1 + δ

)2

− 1
2
rσ2β2,

and thus the FOCs for an interior solution are:

∂J

∂β
=
γ2 −

(
(1 + δ) rσ2 + γ2

)
β

1 + δ
= 0

Hence, the solution is

β− =
γ2

γ2 + (1 + δ) rσ2
.

And the condition β− < δ−γ
γ(1+γ)T

− is equivalent to

γ3

(δ − γ)σ2

1 + γ

1 + δ
< r.

Let J− be the joint surplus levels corresponding to β−:

J− =
1
2
γ2
(
rσ2 (γ + 1) (δ + 1)

(
δ (1− γ) + 2γ2

)
+ γ2

(
δ + 2γ2 + 2γ3 + δ2 + γ4 + γ2δ

))
(δ + 1) (γ2 + δ)2 (γ2 + (δ + 1) rσ2)

> 0

Finally, β− corresponds to a local maximum when γ3

(δ−γ)σ2
1+γ
1+δ < r and if γ3

(δ−γ)σ2
1+γ
1+δ ≥ r, since J

is continuous, there is no local maximum over β < δ−γ
γ(1+γ)

1+γ
1+δ .
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Second consider δ−γ
γ(1+γ)T

FB ≤ β. The joint surplus writes:

J
(
β, TFB

)
= γ

TFB

1 + γ
− 1

2

(
γTFB

1 + γ

)2

− 1
2
δ

(
TFB

1 + γ

)2

− 1
2
rσ2β2,

and thus we have:
∂J

∂β
= −rσ2β ≤ 0

then, the maximum is for

β+ =
δ − γ

γ (1 + γ)
TFB =

δ − γ
δ + γ2

.

Let J+ be the joint surplus level corresponding to β+:

J+ =
γ2

2 (γ2 + δ)
− (δ − γ)2 σ2

2 (γ2 + δ)2
r.

This level of joint surplus is positive only if

γ2
(
γ2 + δ

)
(δ − γ)2 σ2

≥ r.

with
γ2(γ2+δ)
(δ−γ)2σ2

> γ3

(δ−γ)σ2
1+γ
1+δ

The difference in the joint surplus is given by:

J+ − J− =
γ2

2 (γ2 + δ)
− (δ − γ)2 σ2

2 (γ2 + δ)2
r − 1

2
γ2
(
rσ2 (γ + 1) (δ + 1)

(
δ (1− γ) + 2γ2

)
+ γ2

(
δ + 2γ2 + 2γ3 + δ2 + γ4 + γ2δ

))
(δ + 1) (γ2 + δ)2 (γ2 + (δ + 1) rσ2)

= −
(
rσ2γδ + rσ2γ − rσ2δ2 − rσ2δ + γ4 + γ3

)2
2 (δ + 1) (γ2 + δ)2 (γ2 + rσ2 + rσ2δ)

< 0

Hence,

J+ < J−.

�

Proof of Proposition 8: Point (i) is straightforward. In case (ii), the difference of effort in task
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E relatively to the first best is:

eFB − eSB =
γ

δ + γ2
− γ

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r

=
γ
((
δ2 − γ2

)
rσ2 − γ4

)
δ (γ2 + δ) (γ2 + rσ2 + rσ2δ)

>
γ4δ

δ (γ2 + δ) (γ2 + rσ2 + rσ2δ)
> 0

The difference of effort in task A relatively to the first best is:

aFB − aSB =
γ
(
γ3 − rσ2 (1− γ) (δ − γ)

)
(γ2 + δ) (γ2 + (1 + δ) rσ2)

which is positive if and only if r < 1
1−γ

γ3

(δ−γ)σ2 .�

Proof of Corrolary 8: Point (i) is straightforward. In case (ii), the difference of the share of time

spend in task E is:

eFB

TFB
− eSB

TSB
=

1
γ + 1

− γ2 + σ2r

γ2 + (1 + δ)σ2r

=
rσ2 (δ − γ)− γ3

(γ + 1) (γ2 + (1 + δ) rσ2)
> 0,

�

Proof of Corollary 3: Let us compute the second best level of joint surplus. In case (i) when the

agent is not too much risk averse (r ≤ γ3

(δ−γ)σ2 ), the joint surplus is:

JSB = J+ =
γ2
(
γ2 + δ

)
− (δ − γ)2 rσ2

2 (δ + γ2)2
(> 0),

In case (ii), when the agent is sufficiently risk averse (when γ3

(δ−γ)σ2 < r) it is

JSB = J− =
1
2
γ2

δ

γ2 + rσ2

γ2 + (1 + δ) rσ2
,

We now from the proof of the proposition that J+ < J− for any r. It is sufficient to notice that

∂J+

∂r
= −(δ − γ)2 σ2

2 (δ + γ2)2
< 0,

30



and,
∂J−

∂r
= −1

2
σ2 γ4

(γ2 + rσ2 + rσ2δ)2
< 0,

and this concludes the proof.�

Proof of Corollary 4: In case (i), the result is straightforward, as the efforts are the first best

ones. In case (ii), we have

I = γ
γ

δ

γ2 + σ2r

γ2 + (1 + δ)σ2r
− γσ2r

γ2 + (1 + δ)σ2r

=
γ

δ

γ3 − (δ − γ) rσ2

γ2 + (1 + δ) rσ2
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