P. Vodicka, K. Smetana, . Jr, and B. Dvorankova, The miniature pig as an animal model in biomedical research, Ann. N. Y. Acad. Sci, vol.1049, pp.161-171, 2005.

P. Sauleau, E. Lapouble, and D. Val-laillet, The pig model in brain imaging and neurosurgery, Animal, vol.3, pp.1138-1151, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01409380

M. A. Groenen, A. L. Archibald, and H. Uenishi, Analyses of pig genomes provide insight into porcine demography and evolution, Nature, vol.491, pp.393-398, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00880676

X. Fang, Y. Mu, and Z. Huang, The sequence and analysis of a Chinese pig genome, GigaScience, vol.1, pp.1-11, 2012.

B. Aigner, S. Renner, and B. Kessler, Transgenic pigs as models for translational biomedical research, J. Mol. Med, vol.88, pp.653-664, 2010.

B. A. Clark, M. Alloosh, and J. W. Wenzel, Effect of diet-induced obesity and metabolic syndrome on skeletal muscles of Ossabaw miniature swine, Am. J. Physiol. Endocrinol. Metab, vol.300, pp.848-857, 2011.

M. C. Dyson, M. Alloosh, and J. P. Vuchetich, Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet, Comp. Med, vol.56, pp.35-45, 2006.

Y. Liu, Z. Wang, and W. Yin, Severe insulin resistance and moderate glomerulosclerosis in a minipig model induced by high-fat/ high-sucrose/ high-cholesterol diet, Exp. Anim, vol.56, pp.11-20, 2007.

S. Xi, W. Yin, and Z. Wang, A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis, Int. J. Exp. Pathol, vol.85, pp.223-231, 2004.

Z. P. Neeb, J. M. Edwards, and M. Alloosh, Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine, Comp. Med, vol.60, pp.300-315, 2010.

T. Johansen, H. S. Hansen, and B. Richelsen, The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile, Comp. Med, vol.51, pp.150-155, 2001.

S. Renner, C. Fehlings, and N. Herbach, Glucose intolerance and reduced proliferation of pancreatic ?-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function, Diabetes, vol.59, pp.1228-1238, 2010.

D. Val-laillet, S. Blat, and I. Louveau, A computed tomography scan application to evaluate adiposity in a minipig model of human obesity, British Journal of Nutrition, vol.104, pp.1719-1728, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01409412

H. Bloch, R. Chemama, and E. Dépret, Grand Dictionnaire de la Psychologie, p.1062, 1999.

S. Blat, S. Guérin, and A. Chauvin, Dorsal vagal trunk has a preponderant role to control gastric emptying in pigs, Neurogastroenterology and Motility, vol.10, p.467, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01409451

D. Bligny, S. Blat, and A. Chauvin, Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs, J. Physiol. Pharmacol, vol.56, issue.3, pp.89-100, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01412849

N. Mei, Physiol. Rev, vol.65, pp.211-237, 1985.

S. Blat and C. H. Malbert, The vagus is inhibitory of insulin secretion under fasting conditions, Am J Physiol Endocrinol Metab, vol.281, pp.782-788, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01409447

C. H. Malbert, C. Mathis, and E. Bobillier, Measurement of gastric emptying by intragastric gamma scintigraphy, Neurogastroenterology and motility, vol.9, pp.157-165, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01412861

D. Val-laillet, S. Guerin, and C. H. Malbert, Slower eating rate is independent to gastric emptying in obese minipigs, Physiol. Behav, vol.101, pp.462-468, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01409406

, Bull. Acad. Natle Méd, vol.197, pp.1683-1699, 2013.

A. Gaultier, M. C. Meunier-salaun, and C. H. Malbert, Flavour exposures after conditioned aversion or preference trigger different brain processes in anaesthetised pigs, Eur. J. Neurosci, vol.34, pp.1500-1511, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01409424

S. Kentish, H. Li, and L. K. Philp, Diet-induced adaptation of vagal afferent function, J. Physiol, vol.590, pp.209-221, 2012.

L. A. Blackshaw, S. J. Brookes, and D. Grundy, Sensory transmission in the gastrointestinal tract, Neurogastroenterol. Motil, vol.19, pp.1-19, 2007.

J. M. Andrews, S. M. Doran, and G. S. Hebbard, Nutrient-induced spatial patterning of human duodenal motor function, Am. J. Physiol. Gastro, vol.280, pp.501-509, 2001.

D. Bligny, S. Guerin, and C. Malbert, -Modification du comportement alimentaire secondaire à une réponse inadaptée du tube digestif soumis à des régimes riches en lipides ou en sucres chez le porc, Nutrition Clinique et Métabolisme, p.24, 2010.

D. Bligny, S. Guerin, and A. Chauvin, Long term high lipids or high carbohydrates diets alter antro-duodenal motor patterns irrespective of their caloric contents, Gastroenterology, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01409367

S. W. Derbyshire, -Visceral Afferent Pathways and Functional Brain Imaging, The Scientiifc World Journal, vol.3, pp.1065-1080, 2003.

S. G. Kim, & Ugurbil K. -High-resolution functional magnetic resonance imaging of the animal brain, Methods, vol.30, pp.28-41, 2003.

S. Eickhoff, K. Stephan, and H. Mohlberg, A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data, Neuroimage, vol.25, pp.1325-1335, 2005.

S. Saikali, P. Meurice, and P. Sauleau, A three-dimensional digital segmented and deformable brain atlas of the domestic pig, Journal of Neuroscience Methods, vol.192, pp.102-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01133910

J. Boubaker, D. Val-laillet, and S. Guerin, -Brain processing of duodenal and portal glucose sensing, J. Neuroendocrinol, vol.24, pp.1096-1105, 2012.

H. Berthoud and C. Morrison, The brain, appetite, and obesity, Annu. Rev. Psychol, vol.59, pp.55-92, 2008.

H. Berthoud, Vagal and hormonal gut-brain communication: from satiation to satisfaction, Neurogastroenterol. Motil, issue.1, pp.64-72, 1920.

E. Lapouble, S. Guérin, and C. H. Malbert, Regional brain activation during proximal gastric distension in pigs, Neurogastroenterol. and Motil, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01409383

E. Lapouble, S. Guerin, and C. H. Malbert, Vagal versus non vagal gastric afferent signals processing in the brain, Gastroenterology, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01409375

D. J. Lassman, S. Mckie, and L. J. Gregory, Defining the role of cholecystokinin in the lipid-induced human brain activation matrix, Gastroenterology, vol.138, pp.1514-1524, 2010.

C. Clouard and M. C. Meunier-salaun, & Val-Laillet D. -Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research, Animal, vol.6, pp.118-136, 2012.

C. Clouard, M. Jouhanneau, and M. C. Meunier-salaun, Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs, PLoS One, vol.7, p.37968, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01210334

G. Wang, N. D. Volkow, and F. Telang, Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation, Proc. Natl. Acad. Sci U.S.A, vol.106, pp.1249-1254, 2009.

, Bull. Acad. Natle Méd, vol.197, pp.1683-1699, 2013.

N. D. Vaolkow, G. Wang, and F. Telang, Inverse Association Between BMI and Prefrontal Metabolic Activity in Healthy Adults, Obesity, vol.17, pp.60-65, 2009.

D. Val-laillet, S. Layec, and S. Guerin, Changes in Brain Activity After a Diet-Induced Obesity. Obesity, vol.19, pp.749-756, 2011.

M. Fried, V. Hainer, and A. Basdevant, Inter-disciplinary European guidelines on surgery of severe obesity, Obes. Facts, vol.1, pp.52-59, 2008.

I. Imaz, C. Martínez-cervell, and E. E. García-Álvarez, Safety and Effectiveness of the Intragastric Balloon for Obesity. A Meta-Analysis, Obesity Surgery, vol.18, pp.841-846, 2008.

S. Layec, D. Val-laillet, and D. Heresbach, Gastric tone, volume and emptying after implantation of an intragastric balloon for weight control, Neurogastroenterol. Motil, vol.22, pp.1265-1016, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01409398

S. Layec, E. Lapouble, and D. Val-laillet, Chronic but not accute gastric distension activates brain reward circuit, Gastroenterology, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01409364

L. Van-oudenhove, J. Vandenbergne, and P. Dupont, Cortical deactivations during gastric fundus distension in health: visceral pain-specific response or attenuation of &apos ; default mode&apos ; brain function? A H(2)(15)O-PET study, Neurogastroenterol. Motil, vol.21, pp.259-271, 2008.

A. Biraben, S. Guerin, and É. Bobillier, Activation centrale à la suite d'une stimulation vagale chronique chez le porc: apports de l'imagerie fonctionnelle, Bull. Acad. Vét. France, vol.161, pp.441-448, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01410996

D. Val-laillet, A. Biraben, and E. Bobillier, Chronic Vagus Nerve Stimulation Induces Long Lasting Weight Gain and Daily Consumption Reductions in Adult Obese Animals, Gastroenterology, vol.136, p.584, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01409395

A. Biraben, S. Guerin, and C. H. Malbert, Gastric emptying is not altered by chronic vagal stimulation, Join International Meeting, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01409370

D. Val-laillet, A. Biraben, and G. Randuineau, Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs, Appetite, vol.55, pp.245-252, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01409403

R. Discussion,

P. J. Morgane, Distinct « feeding » and « hunger motivating » systems in the lateral hypothalamus of the rat, Science, issue.3456, pp.887-888, 1961.

M. Ruffin and S. Nicolaïdis, Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior, Brain Research, vol.846, issue.1, pp.23-29, 1999.

J. Thornhill and I. Halvorson, Intrascapular brown adipose tissue (IBAT) temperature and blood flow responses following ventromedial hypothalamic stimulation to sham and IBAT-denervated rats, Brain Research, vol.615, issue.2, pp.289-294, 1993.

W. B. Wilent, M. Y. Oh, C. M. Buetefisch, J. E. Bailes, D. Cantella et al., Induction of panic attack by stimulation of the ventromedial hypothalamus, J. Neurosurg, issue.6, pp.1295-1298, 2010.

W. P. Melega, G. Lacan, A. A. Gorgulho, E. J. Behnke, and A. A. De-salles, Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model, PLoS ONE, vol.7, issue.1, p.30672, 2012.

, Bull. Acad. Natle Méd, vol.197, pp.1683-1699, 2013.

K. Gil, A. Bugajski, M. Kurnik, and P. Thor, Electrical chronic vagus nerve stimulation activates the hypothalamic-pituitary-adrenal axis in rats fed high-fat diet, Neuro Endocrinology Letters, vol.34, issue.4, pp.314-321, 2013.

K. Gil, A. Bugajski, and P. Thor, Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet, Journal of Physiology and Pharmacology : an Official Journal of the Polish Physiological Society, vol.62, issue.6, pp.637-646, 2011.

J. Sobocki, G. Fourtanier, and J. Estany, & Otal P. -Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in riatric surgery, Surgery, vol.139, issue.2, pp.209-225, 2006.

K. A. Boyd, D. G. O'donovan, S. Doran, J. Wishart, I. M. Chapman et al., High-fat diet effects on gut motility, hormone, and appetite responses to duodenal lipid in healthy men, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.284, issue.2, pp.188-96, 2003.

D. Bligny, S. Blat, A. Chauvin, S. Guerin, and C. H. Malbert, Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs, Journal of Physiology and Pharmacology : an Official Journal of the Polish Physiological Society, vol.56, issue.3, pp.89-100, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01412849

F. A. Duca, Y. Sakar, and M. Covasa, The modulatory role of high fat feeding on gastrointestinal signals in obesity, The Journal of Nutritional Biochemistry, issue.10, pp.1663-1677, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004320

C. H. Malbert, The ileocolonic sphincter, Neurogastroenterology and Motility, vol.17, issue.1, pp.41-49, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02682095

G. Cuche, J. C. Cuber, and C. H. Malbert, Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.279, issue.5, pp.925-955, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02693665

H. S. Shin, J. R. Ingram, A. Mcgill, S. D. Poppitt, and . Lipids, CHOs, proteins: can all macronutrients put a '' brake '' on eating?, Physiology & Behavior, vol.120, pp.114-123, 2013.

E. K. Priem, Predominant mucosal expression of 5-HT 4(+h)receptor splice variants in pig stomach and colon, World Journal of Gastroenterology : WJG, vol.19, issue.24, p.3747, 2013.

A. Ettrup, S. Holm, M. Hansen, M. Wasim, M. A. Santini et al., Preclinical Safety Assessment of the 5-HT2A Receptor Agonist PET Radioligand [11C]Cimbi-36. Molecular Imaging and Biology : MIB : the Official Publication of the Academy of Molecular Imaging, vol.15, pp.376-383, 2013.

S. J. Finnema, V. Stepanov, A. Ettrup, R. Nakao, N. Amini et al., Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain, NeuroImage, vol.84, issue.C, pp.342-353, 2014.

M. Michaelides, P. K. Thanos, R. Kim, J. Cho, M. Ananth et al., -PET imaging predicts future body weight and cocaine preference, Neuro-Image, vol.59, issue.2, pp.1508-1513, 2012.

E. Van-de-giessen, S. Hesse, M. W. Caan, F. Zientek, J. C. Dickson et al., No association between striatal dopamine transporter binding and body mass index: A multi-center European study in healthy volunteers, NeuroImage, vol.64, issue.C, pp.61-67, 2013.

H. Berthoud, -Vagal and hormonal gut-brain communication: from satiation to satisfaction, Neurogastroenterology and Motility, issue.1, pp.64-72, 1920.

S. Arora and . Anubhuti, Role of neuropeptides in appetite regulation and obesity -A review, Neuropeptides, vol.40, issue.6, pp.375-401, 2006.

I. E. De-araujo, -Gustatory and Homeostatic Functions of the Rodent Parabrachial Nucleus, Annals of the New York Academy of Sciences, issue.1, pp.383-391, 2009.

, Bull. Acad. Natle Méd, vol.197, issue.9, pp.1683-1699, 2013.

I. Depoortere, -Taste receptors of the gut: emerging roles in health and disease, Gut, vol.63, issue.1, pp.179-190, 2013.

S. Kentish, H. Li, L. K. Philp, T. A. O'donnell, N. J. Isaacs et al., Diet-induced adaptation of vagal afferent function, The Journal of Physiology, vol.590, pp.209-221, 2012.

, Bull. Acad. Natle Méd, vol.197, pp.1683-1699, 2013.