Tools and Applications in Plant Metabolomics at Bordeaux Metabolome-Fluxome Facility (PMFB; http://www.bordeaux.inra.fr/umr619/NMR.htm)

Catherine Deborde, Stéphane Bernillon, Mickaël Maucourt, Cécile Cabasson, Benoît Biais, Patricia Ballias, Duyen Prodhomme, Guillaume Ménard, Daniel Jacob, Joël Masciocchi, Yves Gibon, Dominique Rolin and Annick Moing

PMFB, Centre INRA de Bordeaux, IBVM, BP81, 33140 Villenave d’Ornon

Main collaborations: in Japan (Univ. of Tsukuba - C. Matsukura), in Israel (Volcani Center, A. Schaffer; Ben Gourion University, A. Fait), in UK (Univ of Manchester -R. Goodacre and J.W. Allwood; Oxford Univ, Lee Sweetlove; Oxford Brookes Univ, D. Fell) in France (INRA Avignon, M. Causse, M. Génard, JL. Poëssel; INRA Bordeaux, D. Thiéry ; INRA Montpellier, F. Tardieu ; INRA Sophia Antipolis, P. Frendo).

The Bordeaux Metabolome-Fluxome Facility (PMFB) develops and applies plant metabolomics and high-throughput metabolic phenotyping for local, national and international projects. Applications range from the characterization of plant derived extracts to systems biology:

1- Quantitative metabolic profiling of plant organs or tissues by 1H-NMR [1, 2, 3, 4],
2- Plant metabolomics by LC-HRMS,
3- Robotised high-throughput measurements of metabolite concentrations and enzyme activities and kinetics [5],
4- Storage of metadata and raw data and biostatistical analysis. A web-based application, “MeRy-B” (for Metabolomics Repository of Bordeaux) is being developed in collaboration with the Bordeaux Bioinformatics Centre (http://www.cbib.u-bordeaux2.fr/MERYB/home/home.php) [6],
5- Identification of metabolic markers for biotic or abiotic environmental changes [7] or agricultural practices [8],
6- Characterization of plant extracts having bioactive properties (JL. Poëssel INRA Avignon and D. Thiery INRA Bordeaux),
7- Characterization of mutants [9] or transformants [10,11] for candidate genes for grain or fruit quality,
8- Screening of genetic resources or offsprings for fruit composition (A. Schaffer, Bet Dagan, Israel and META-PHOR consortium http://www.meta-phor.eu; ISAFRUIT consortium http://www.isafruit.org) or resistance to water stress (F. Tardieu, INRA Montpellier, FP7 DROPS project),
9- Integrative modelling of tomato fruit metabolism (ERASysBio FRIM project),
10- Integration of metabolomics data with other ‘omics data for the study of fleshy fruit development and metabolism [10,12].

In this poster, we will provide an overview of the major features of some of these metabolomics studies and tools developed at Bordeaux.

References:
6 Ferry-Dumazet et al. (2011) BMC Plant Biology in press
10 Garcia et al. (2009) C. R. Biologies 332:1007-21