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Case study 

� In dogs, the effect of robenacoxib (NSAID) on  
osteoarthritis is assessed using several scores 
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Posture

Lameness at walk

Lameness at trot

Willingness to raise contralateral limb

Pain at palpation

Sum of investigator scores: 0-16

� Compute the sum of scoressum of scores and analyse it as a 
continuouscontinuous variable 

What is done in practice 
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� It ignores the actual metric of each score and 
assumes that all categories are equidistant
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Why is this approach not appropriate? 
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� The distance between 0 and 1 is not the same as the 
distance between 2 and 3



� It ignores the actual metric of each score and 
assumes that all categories are equidistant
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� The distance between 1 an 2 is not the same as the 
distance between 1 and 2

� “Weighted” sum of scores have been proposed but not ideal



What should be done

� Analyse the data as ordered categorical data using 
appropriate models (logit, probit…)

� Many publications on ordinal data analysis 

� Applications to assess drug effect
pain relief, nicotine craving scores, sedation, diarrhea, neutropenia…

� Estimation/modelling issues

AAPS 2004, JPKPD 2001, 2 articles in JPKPD 2004, JPKPD 2008…

� But published models restricted to the analysis 
of only one one score !
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Drug A Drug B

� They only estimate marginal distributions

Limits of univariate analyses 

Sum
= 15

Sum
= 15

Sum
= 70

Sum
= 70

Drugs A and B have the same marginal distributions but 
different benefit-risk ratios !
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� Univariate analyses assume scores are independent 
while in many cases, they should be correlated

Limits of univariate analyses 
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Multivariate analysis: background

� Very few approaches exist to analyse jointly several 
ordinal scores

� In 2007, Todem et al. proposed a probit mixed  
effects model for longitudinal bivariate data
Statist. Med. 26:1034

age, mental illness, 
initial severity, time

Safety 

Application: 
Fluvoxamine data

Efficacy 

Covariates
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Objectives 

� Extend this previous model (Todem et al.) 

� To analyse more than two scores       
(model estimation issue)  

� To apply to population PK/PD data  
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� Identify similarities between scores

� Are some scores redundant?  



Model based on latent variable approach 
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� The K scores Y1,Y2 …YK are obtained by 

categorisation of K latent variables Y1
*,Y2

*…YK
*

fk : (non)linear function for response k = 1…K
xkij : covariates for subject i, response k and time tkij

βk : fixed effects for response k
ηki : random effects for inter-individual variability

εkij : random effects for intra-individual variability

kijkikijkkkij xfY εηβ ++= ),(*

Model based on latent variable approach 
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� The correlations between the scores across time are 
modeled as correlations between latent variables Y*

'kijkij εε ⊥

Modelling correlations between scores 

- η : overall correlation between scores within subjects

- ε : correlation within subjects at a given occasion
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� Likelihood function
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Parameter estimation

No closed form (nonlinear mixed effects model)

Need to compute the Need to compute the 
multivariate normal cdf multivariate normal cdf ΦΦΦΦΦΦΦΦKK

14



� No current software can be used

� Own program written in C++

� Approximation of the multivariate normal cdf ΦΦΦΦK

� Gauss-Legendre quadratures (8 nodes)

� Stochastic EM algorithm (SAEM-like)

� Efficient for ordinal data analysis
(Kuhn & Lavielle, CSDA 2005 ; Savic et al. AAPS 2011)

� Metropolis-Hastings algorithm 

� Gauss-Newton/gradient method for optimisation

Parameter estimation
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Method evaluation with simulation studies

� Bivariate analysis
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Method evaluation with simulation studies

200 subjects, 4 obs./subject, i.e. one per dose: 2.5, 5, 10, 20 mg

3 scores Y1, Y2 and Y3 (3 categories each)

4...1,3...1* ==++×= jkDoseSlopeY kijkijkkij εη
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� Trivariate analysis



Method evaluation with simulation studies

Model estimation

Multivariate analysis Univariate analyses

Stochastic EM Stochastic EM

NONMEM 6 (Laplace)
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Results:

Bivariate analysis 
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Bivariate analysis : parameter estimates  

Departure from true values
(true value = 100%) + SE

Same marginal distributionSame marginal distribution
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Bivariate analysis : parameter estimates  

Same marginal distributionSame marginal distribution

correlationscorrelations

Departure from true values
(true value = 100%) + SE
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Univariate analyses
assuming independence

95% CI for model predictions
median

observations

Bivariate analysis : VPC 
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Bivariate analysis

� Joint probability
P(Y1 ≤ 2 ; Y2 ≤ 1, 2 or 3)



Results:

Trivariate analysis 



0

20

40

60

80

100

120

140

160

a1
1

a1
2

a2
1

a2
2

a3
1

a3
2

Slop
e 

(Y
1)

Slop
e 

(Y
2)

Slop
e 

(Y
3)

om
eg

a 
1

om
eg

a 
2

om
eg

a 
3

Multivariate (Stoch. EM) 
Univariate (Stoch. EM) 
Univariate (NONMEM 6)

24

Estimation of marginal distribution  

Departure from true values
(true value = 100%) + SE
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Estimation of correlations  

ηηηηηηηη (IIV)(IIV) εεεεεεεε (IOV)(IOV)

� The multivariate analysis allows to catch:

� the high correlations between scores 1 and 2
� the poor correlation of score 3 with the others



Trivariate analysis: VPC

� Joint distribution

P(Y1 =3 ; Y2 =3)
95% CI for model predictions
median

observations

Trivariate analysis
Univariate analyses

assuming independence



Trivariate analysis: VPC

� Joint distribution

P(Y1 =3 ; Y2 =1)
95% CI for model predictions
median

observations

Trivariate analysis
Univariate analyses

assuming independence



Objectives 

� Generalise this previous model (Todem et al.)

� To apply to population PK/PD data  

� To analyse more than two scores in practice 
(model estimation issue)
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� Identify similarities between scores

� Are some scores redundant?  



� To identify scores that document a same physio-
pathological process and possible redundancies

Ex: trivariate analysis

Principal Component Analysis (PCA)

Y1*
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Y2*

Y3



Conclusion

- Assess marginal 
distributions only

- Can lead to some bias and 
wrong conclusions

Cons

- Rapid

- Easy to understand and 
interpret

Pros

Univariate analyses Multivariate analysis

- Computation time              
(bivar. = 3h; trivar. = 18h) 

- Homemade program

Cons

- Avoid bias and wrong 
conclusions in clinical trials 

- Identification of redundancies 
between scores (PCA)

Pros
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