

How to analyse multiple ordinal scores in a clinical trial? Multivariate vs. univariate analysis

Céline M. Laffont, Didier Concordet

▶ To cite this version:

Céline M. Laffont, Didier Concordet. How to analyse multiple ordinal scores in a clinical trial? Multivariate vs. univariate analysis. 2. Biostatistics Conference of the Central European Network, Sep 2011, Zurich, Switzerland. hal-02750398

HAL Id: hal-02750398 https://hal.inrae.fr/hal-02750398

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

How to analyse multiple ordinal scores in a clinical trial? Multivariate vs univariate analysis

C. Laffont & D. Concordet

INRA, UMR 1331, Toxalim, F-31027 Toulouse, France. Université de Toulouse, INPT, ENVT, UPS, EIP, F-31076 Toulouse, France.

Project funded by Novartis Pharma AG, Switzerland

Case study

In dogs, the effect of robenacoxib (NSAID) on osteoarthritis is assessed using several scores

Posture (at stand)	Lameness at walk	Lameness at trot	Pain at palpation	Willingness to raise contralateral limb
Normal	None	None	No pain	No resistance
Slightly	Mild	Mild	Mild	Mild resistance
abnormal	Obvious	Obvious	Moderate	Moderate resistance
Markedly abnormal	Marked	Marked	Severe	Strong resistance
Severely abnormal				Reluses

What is done in practice

Compute the sum of scores and analyse it as a continuous variable

Posture

Lameness at walk

Lameness at trot

Willingness to raise contralateral limb

Pain at palpation

Sum of investigator scores: 0-16

Why is this approach not appropriate?

It ignores the actual metric of each score and assumes that all categories are equidistant

Posture

Normal	0
Slightly abnormal	1
Markedly abnormal	2
Severely abnormal	3

The distance between 0 and 1 is not the same as the distance between 2 and 3

Why is this approach not appropriate?

It ignores the actual metric of each score and assumes that all categories are equidistant

Posture		Lameness at trot	
Normal	0	None	0
Slightly abnormal	1	Mild	1
Markedly abnormal	2	Obvious	2
Severely abnormal	3	Marked	3

- The distance between 1 an 2 is not the same as the distance between 1 and 2
- "Weighted" sum of scores have been proposed but not ideal

What should be done

- Analyse the data as ordered categorical data using appropriate models (logit, probit...)
- Many publications on ordinal data analysis
 - Applications to assess drug effect pain relief, nicotine craving scores, sedation, diarrhea, neutropenia...
 - Estimation/modelling issues
 AAPS 2004, JPKPD 2001, 2 articles in JPKPD 2004, JPKPD 2008...
- But published models restricted to the analysis of only one score !

Limits of univariate analyses

They only estimate marginal distributions

Drugs A and B have the same marginal distributions but different benefit-risk ratios !

Limits of univariate analyses

 Univariate analyses assume scores are independent while in many cases, they should be correlated

Posture (at stand)	Lameness at walk	Lameness at trot	Pain at palpation	Willingness to raise contralateral limb
Normal	None	None	No pain	No resistance
Slightly	Mild	Mild	Mild	Mild resistance
abnormal	Obvious	Obvious	Moderate	Moderate resistance
Markedly abnormal	Marked	Marked	Severe	Strong resistance
Severely abnormal				Keiuses

Multivariate analysis: background

- Very few approaches exist to analyse jointly several ordinal scores
- In 2007, Todem et al. proposed a probit mixed effects model for longitudinal bivariate data

Statist. Med. 26:1034

Objectives

> Extend this previous model (Todem et al.)

- To analyse more than two scores (model estimation issue)
- To apply to population PK/PD data
- Identify similarities between scores
 - Are some scores redundant?

Model based on latent variable approach

Lameness

Model based on latent variable approach

• The *K* scores $Y_1, Y_2 \dots Y_K$ are obtained by categorisation of *K* latent variables $Y_1^*, Y_2^* \dots Y_K^*$

$$Y_{kij}^{*} = f_k(\beta_k, x_{kij}) + \eta_{ki} + \varepsilon_{kij}$$

 f_k :(non)linear function for response k = 1...K x_{kij} :covariates for subject i, response k and time t_{kij} β_k :fixed effects for response k η_{ki} :random effects for inter-individual variability \mathcal{E}_{kij} :random effects for intra-individual variability

Modelling correlations between scores

• The correlations between the scores across time are modeled as correlations between latent variables Y^*

$$\begin{pmatrix} \eta_{1i} \\ \dots \\ \eta_{Ki} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \Omega \end{pmatrix} \qquad \begin{pmatrix} \varepsilon_{1ij} \\ \dots \\ \varepsilon_{Kij} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \Gamma \end{pmatrix} \qquad \eta_{ki} \perp \varepsilon_{kij} \\ \varepsilon_{kij} \perp \varepsilon_{kij'}$$

- η : overall correlation between scores within subjects
- \mathcal{E} : correlation within subjects at a given occasion

Parameter estimation

Likelihood function

No closed form (nonlinear mixed effects model)

Parameter estimation

- No current software can be used
 - Own program written in C++
- Approximation of the multivariate normal cdf Φ_{K}
 - Gauss-Legendre quadratures (8 nodes)
- Stochastic EM algorithm (SAEM-like)
 - Efficient for ordinal data analysis

(Kuhn & Lavielle, CSDA 2005 ; Savic et al. AAPS 2011)

- Metropolis-Hastings algorithm
- Gauss-Newton/gradient method for optimisation

Method evaluation with simulation studies

Bivariate analysis

Method evaluation with simulation studies

Trivariate analysis

3 scores Y_1 , Y_2 and Y_3 (3 categories each)
$Y_{kij}^{*} = Slope_k \times Dose_j + \eta_{ki} + \varepsilon_{kij}$ $k = 13$, $j = 14$
$Corr(\eta) = \begin{pmatrix} 1 & & \\ 0.90 & 1 & \\ 0 & -0.10 & 1 \end{pmatrix} \qquad Corr(\varepsilon) = \begin{pmatrix} 1 & & \\ 0.85 & 1 & \\ 0 & -0.10 & 1 \end{pmatrix}$
200 subjects, 4 obs./subject, i.e. one per dose: 2.5, 5, 10, 20 mg

Method evaluation with simulation studies

Results: Bivariate analysis

Bivariate analysis : parameter estimates

Departure from true values (true value = 100%) + SE Multivariate (Stoch. EM)
 Univariate (Stoch. EM)
 Univariate (NONMEM 6)

Same marginal distribution

Bivariate analysis : parameter estimates

Departure from true values (true value = 100%) + SE Multivariate (Stoch. EM)
 Univariate (Stoch. EM)
 Univariate (NONMEM 6)

Same marginal distribution

Bivariate analysis : VPC

• Joint probability $P(Y_1 \le 2; Y_2 \le 1, 2 \text{ or } 3)$

- observations
- 95% CI for model predictions

median

Bivariate analysis

Univariate analyses assuming independence

Results: Trivariate analysis

Estimation of marginal distribution

Departure from true values (true value = 100%) + SE

Multivariate (Stoch. EM)
 Univariate (Stoch. EM)
 Univariate (NONMEM 6)

Estimation of correlations

- The multivariate analysis allows to catch:
 - the high correlations between scores 1 and 2
 - > the poor correlation of score 3 with the others

Trivariate analysis: VPC

- Joint distribution
 - $P(Y_1 = 3; Y_2 = 3)$

- observations
- 95% CI for model predictions

Univariate analyses

— median

Trivariate analysis: VPC

- Joint distribution
 - $P(Y_1 = 3; Y_2 = 1)$

- observations
- 95% CI for model predictions

— median

Objectives

> Generalise this previous model (Todem et al.)

- To apply to population PK/PD data
- To analyse more than two scores in practice (model estimation issue)

Identify similarities between scores

Are some scores redundant?

Principal Component Analysis (PCA)

To identify scores that document a same physiopathological process and possible redundancies

Ex: trivariate analysis

Conclusion

Univariate analyses	Multivariate analysis		
Pros	Pros		
 Rapid Easy to understand and interpret 	 Avoid bias and wrong conclusions in clinical trials Identification of redundancies between scores (PCA) 		
Cons	Cons		
 Assess marginal distributions only 	 Computation time (bivar. = 3h; trivar. = 18h) 		
 Can lead to some bias and wrong conclusions 	- Homemade program		