Effects of temperature, drought and elevated CO2on N2O fluxes in an upland grassland ecosystem: interactions with plant and microbial community structure. Amélie Cantarel, Juliette Bloor, F Poly, Jean-François J.-F. Soussana #### ▶ To cite this version: Amélie Cantarel, Juliette Bloor, F Poly, Jean-François J.-F. Soussana. Effects of temperature, drought and elevated CO2on N2O fluxes in an upland grassland ecosystem: interactions with plant and microbial community structure. NitroEurope 5th General Assembly and Open Science Conference, Office Fédéral de l'Agriculture. CHE., Feb 2010, Solothurn, Switzerland. hal-02751028 #### HAL Id: hal-02751028 https://hal.inrae.fr/hal-02751028 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Effects of temperature, drought and elevated CO₂ on N₂O fluxes in an upland grassland ecosystem: interactions with plant and microbial community structure *Cantarel A., *Bloor J.M.G., *Poly F. & *Soussana J.F. *Grassland Ecosystem Research Group, INRA Clermont-Theix, France; #LEM, CNRS-Université Lyon 1, France - To determine the direct and indirect effects of climate change drivers on N₂O fluxes - To assess whether climate change modifies the influence of abiotic and biotic factors on N₂O fluxes #### **Experimental design** A2 scenario predicted for Massif-Central in 2070 (IPCC) - Ecosystem: Acid grassland, light sheep grazing, no fertilizers - 5 replicated experimental units per climate treatment - N₂O measurements using closed static chambers and a photoacoustic gas analyzer (INNOVA) ### Variation in N₂O fluxes #### Effect of season on N₂O fluxes (pooled across treatments) - N₂O fluxes showed significant seasonal variation : - □ In 2007 and 2008, N₂O fluxes were higher both in spring compared to winter and in summer compared to spring - □ In 2008 N₂O fluxes were lower in autumn compared with summer #### N₂O fluxes and climate change treatments - Climate change treatments did not have a significant effect on annual N₂O fluxes in 2007 or in 2008 - No significant climate treatments effects were detected on seasonal N₂O fluxes. #### Abiotic factors and N₂O fluxes ■ Significamentedifferences firmences it indentiffer of the solution s #### Abiotic factors and N₂O fluxes ■ Significantetreatifieren défeirences nitualembet of Nexes lux events by Frest 26-60,12651,1050%,1000%,1001 = ns) More N₂O emission events in control treatment More N₂O emission and uptake events in warmed treatment #### Abiotic factors and N₂O fluxes - Positive effect of soil temperature (Spearman R: 0.643) and rainfall (Spearman R: 0.643) on N₂O fluxes - Negative correlation between WFPS and N₂O fluxes (R: -0.250) - Climatic treatments seem to modify relations between N₂O fluxes and abiotic factors. - Multiple regression analysis: $$Ln(N_2O) = a + b*In(Soil temperature) + c*In(WFPS) + d*In(Rainfall)$$ | Treatments | R² | Soil temperature | WFPS | Rainfall | |------------|---------|------------------|------|----------| | С | 18.65** | ** | ns | ns | | Т | 45.55** | ns | ** | *** | | TD | 37.77** | * | * | * | | TDCO2 | 30.30** | *** | * | ns | #### Biotic factors and N₂O fluxes - Coupled plant and flux measurements in April 2007/08 - Mean N₂O fluxes calculated for the month prior to biomass harvest (cut at 5cm) - Measures of biomass, community structure and species traits | | N ₂ O fluxes
in April 2007 | | N ₂ O fluxes
in April 2008 | | |----------------------------------|--|--------|--|-------| | | p-value | R | p-value | R | | Biomass | *** | 0.599 | ns | - | | Abundance of Festuca arundinacea | * | 0.500 | ns | - | | Leaf Nitrogen Content (LNC) | * | -0.481 | ** | 0.606 | Interannual variation in the importance of vegetation on N₂O fluxes may be linked to plant community dynamics - - Coupled microbial and flux measurements in 2009 - Targeted measurements in conditions favorable for N₂O emissions (high temperature and soil moisture) - □ Soil sampling following flux measurements - □ 4 replications in time - Analysis of microbial activity (collaboration with LEM, Lyon) - **Nitrification** - Denitrification #### Biotic factors and N₂O fluxes - Significant climate effects on N₂O fluxes mirrored by patterns in nitrification and denitrification - Temperature effects on microbial activity may be related to microbial population size, community structure or upregulation in enzymatic activity... No significant effects on size of denitrifying bacterial populations (NirK gene) or on nitrifying bacterial populations (AOB gene) Changes in microbial community? (work in progress) - N₂O fluxes showed limited responses to climate change drivers in our study system. - ☐ Greater responses might be expected in more productive grasslands. - N₂O fluxes were correlated with soil temperature, WFPS and rainfall - □ Climate treatments appear to modify the relationship between N₂O fluxes and abiotic factors - Relative contribution of different biotic factors in N₂O flux variations remains to be determined. 5th NitroEUrope GA 2010