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La conférence JOBIM est née il y a 10 ans & Montpellier, ot elle revient cette année. C’est un lieu de
rencontre ouvert & toutes les personnes travaillant aux frontiéres de la biologie, de I'informatique, des
mathématiques et de la physique, afin de favoriser les échanges scientifiques et d’encourager ’expression
des jeunes chercheurs. Les grands thémes sont liés a la génomique, la bioinformatique structurale, la
biologie des systémes et ’analyse des données d’expression, I’évolution et la phylogénie, les bases de
données et de connaissances, l'algorithmique et la modélisation, en particulier issue des probabilités
et des statistiques. Mais la discipline se renouvelle et voit de nouveaux champs s’ouvrir, par exemple
en analyse d’images, en génétique des populations ou du coté de I’écoinformatique. Elle bénéficie de
données toujours plus abondantes et diverses, notamment de séquences grace a 'amélioration spec-
taculaire des techniques de séquencgage. Ces données & grande échelle permettent de répondre & de
nouvelles questions, liées a ’épigénétique par exemple, mais elles imposent aussi de revoir les méthodes
et les techniques.

Nous avons regu cette année 66 soumissions, 16 ont été retenues pour des présentations longues et
26 pour des présentations courtes, auxquelles s’ajoutent les conférences invitées de Raphaél GUEROIS,
Jean-Christophe OLIVO-MARIN, Luis QUINTANA-MURCI, Sven RAHMANN, Jorg STELLING et Pierre
TABERLET. Ces actes contiennent les articles associés a ’ensemble de ces présentations, ainsi que la
liste des quelques 130 posters qui seront affichés et discutés lors de la conférence.

C’est bien stir avec une certaine émotion que nous avons refait vivre JOBIM & Montpellier cette
année. Nous souhaitons remercier I’ensemble des membres du comité d’organisation et du comité de
programme, en particulier Alban MANCHERON qui a géré toute la procédure de soumission des articles
et la mise en forme de ces actes, ainsi que les six conférenciers invités qui malgré des emplois du temps
chargés ont accepté de présenter leur travaux pendant ces journées. Nous souhaitons une longue vie a
JOBIM et le meilleur succés a ceux qui reprendront le flambeau dans les années & venir.

Gilles CARAUX, Olivier GASCUEL, Vincent LEFORT et Marie-France SAGOT
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Lundi 6 septembre 2010

Biodiversité et Bioinformatique :
Journée organisée par Nicolas GALTIER et Arnaud ESTOUP.
Site web : http://www.jobim2010.fr/?q=fr/node/24
Contact : Nicolas.Galtier@Quniv-montp2.fr

Débuter une carriére en bioinformatique :
Journée organisée par 1’Association RSG-France — JeBiF.
Site web : http://www.jebif.fr/
Contact : iscb.rsg.france@gmail.com

MOQA (Méta-données et Ontologies pour la Qualité des Annotations) :
Journée organisée par Isabelle MOUGENOT.
Site web : http://www.jobim2010.fr/7q=fr/node/38
Contact : isabelle.mougenot@lirmm.fr

Modgraphit (Modéles graphiques probabilistes pour l'intégration de données hétérogenes et la décou-
verte de modéles causaux en biologie) :
Journée organisée par Florence D’ALCHE-BUC, Simon DE GIVRY, Louis WEHENKEL, Philippe
LERAY, Gérard RAMSTEIN et Christine SINOQUET.
Site web : http://www.lina.univ-nantes.fr/conf/modgraph2010/
Contact : modgraph@univ-nantes.fr

Vendredi 10 septembre 2010

Annotations des génomes et génomique comparée :
Journée organisée par Karyn MEGY et Stéphanie SIDIBE-BOKS.
Site web : http://www.jobim2010.fr/?q=fr/node/42
Contact : kmegy@ebi.ac.uk

Modélisation dynamique et simulation des réseaux biologiques :
Journée organisée par Grégory BATT, Jérémie BOURDON, Claudine CHAOUIYA, Hidde DE JONG,
Damien EVEILLARD, Adrien RICHARD, Delphine ROPERS, Olivier ROUX, Anne SIEGEL et Denis
THIEFFRY.
Site web : http://www.jobim2010.fr/?q=fr/node/36
Contact : satellite_modelisation@sympa.univ-nantes.fr
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Conférence invitée

Guilhem FAURE, Albane GAUBERT, Frangoise OCHSENBEIN et Raphaél GUEROIS

CEA, iBiTecS / CNRsS
91191 Gif sur Yvette, France
raphael.gueroisQcea.fr

Dynamic Assembly of Proteins:
characterization, prediction and design

Cell processes are tightly regulated by intricate network of protein interactions. Protein interaction maps
obtained for different model organisms are now providing a wealth of data to further disentangle the molecular
logic associated with proteins dynamic assemblies. In particular, competitions and synergies existing between
interacting partners need to be further uncovered through targeted perturbations at complex interfaces. Ab-
rogating or perturbing specifically the edges of an interaction map remains a difficult challenge which can be
bolstered through the structural description of a protein complex interface. How predictive approaches in the
field of structural bioinformatics may help unravel the physical reality underlying protein interaction networks?

We are exploring how the physico-chemical properties of interfaces and the constraints arising from partners
coevolution can be combined to better model the structures of protein complexes. Sequence alignments and
evolutionary constraints can nowadays be successfully used to predict the 3D structure of a monomeric protein
even when sequences have dramatically diverged [1-5]. How far evolutionary constraints may also be used
to predict the way proteins assemble ? Coupling together computational and experimental approaches, we
developed and assessed several methodologies which use sequence and structural information to better predict
protein interactions [6-8]. We have particular interest in assembly chaperones, a class of proteins which regulates
macromolecular assemblies and play important roles in cell stress responses. The possibility to predict how
proteins do assemble, also opens perspectives for the design of compounds able to challenge native interactions
achieved by these chaperones in the cellular context.

References
[1] J. Soding. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21, pp. 951-960, 2005.

[2] B. Le Tallec, M. B. Barrault, R. Courbeyrette, R. Guérois, M. C. Marsolier-Kergoat and A. Peyroche. 20S
proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell,
27, pp. 660-674, 2007.

[3] Y. Wang, R. I. Sadreyev and N. V. Grishin. PROCAIN: protein profile comparison with assisting information.
Nucleic Acids Res, 37, pp. 3522-3530, 2009.

[4] A. Lopes, G. Faure, M. A. Petit and R. Guérois. Detection of novel recombinases in bacteriophage genomes
unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res, in revision, 2009.

[5] B. Le Tallec, M. B. Barrault, R. Guérois, T. Carre and A. Peyroche. Hsm3/S5b participates in the assembly
pathway of the 19S regulatory particle of the proteasome. Mol Cell, 33, pp. 389-399, 2009.

[6] H. Madaoui and R. Guérois. Coevolution at protein complex interfaces can be detected by the comple-
mentarity trace with important impact for predictive docking. Proc Natl Acad Sci USA, 105, pp. 7708-7713,
2008.

[7] Y. Kadota, B. Amigues, L. Ducassou, H. Madaoui, F. Ochsenbein, R. Guérois and K. Shirasu. Structural
and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep, 9,
pp. 1209-1215, 2008.

[8] L. Malivert, V. Ropars, M. Nunez, P. Devret, S. Miron, G. Faure, R. Guérois, J. P. Mornon, P. Revy, J. B.
Charbonnier et al.. Delineation of the XRCC4 interacting region in the globular head domain of cernunnos/XLF.
J. Biol Chem, 2010.
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Jean-Christophe OLIVO-MARIN

Institut Pasteur Paris,
Unité d’Analyse d’Images Quantitative, CNRS URA 2582
25, rue du docteur ROUX, 75724 Paris CEDEX 15, France
jeolivo@pasteur.fr

Cells, Images and Numbers:
a numerical view at biological imaging

An increasing number of biological projects aim at elucidating the links between cellular function and phe-
notype through imaging and modelling the spatiotemporal characteristics of cellular dynamics. This talk will
present innovative methods and algorithms for the processing and quantification of 3D + ¢ dynamic imaging
sequences in biological microscopy and their use in biological imaging. Thanks to these tools, it is possible in
a large number of experiments to automate the extraction of quantitative data from images and to facilitate
the understanding of the biological information contained therein. We will present and discuss some recent
developments of robust and automated tools and software for flexible and robust quantitative analysis and
assessment of microscopy data. We will demonstrate algorithms for multi-particle tracking and active contours
models for cell shape and motility analysis and will illustrate their application in a number of cell biology and
neurosciences projects.

References

[1] M.-T. Melki, H. Saidi, A. Dufour, J.-C. Olivo-Marin and M.-L. Gougeon. Escape of HIv-1-Infected Dendritic
Cells from TRAIL-Mediated NK Cell Cytotoxicity. A pivotal Role of HMGB1. PLoS Pathogens, 6, 4, e1000862,
2010.

[2] S. Berlemont and J.-C. Olivo-Marin. Combining Local Filtering and Multiscale Analysis for Edge, Ridge
and Curvilinear Objects Detection, IEEE Trans. Image Processing, 19:1, pp. 74-84, 2010.

[3] N. Chenouard, A. Dufour and J.-C. Olivo-Marin. Tracking algorithms chase down pathogens, Biotechnology
Journal, 4:6, pp. 838-845, 2009.

[4] K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo, D.-T. Browman, N. Chenouard, F. de
Chaumont, A. Martino, J. Enninga, J.-C. Olivo-Marin, D. Mannel and C. Zurzolo. Prions hijack tunneling
nanotubes for intercellular spread. Nature Cell Biology, 11:3, pp. 328-336, 2009.

[5] B. Zhang, J. Zerubia and J.-C. Olivo-Marin. Gaussian approximations of fluorescence microscope point-
spread function models. Applied Optics, 46:10, pp. 1819-1829, 2007.

[6] N. Arhel, A. Genovesio, K.-A. Kim, S. Miko, E. Perret, J.-C. Olivo-Marin, S. Shorte and P. Charneau.
Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods, 3:10,
pp. 817-824, 2006.

[7] G. Cabal, A. Genovesio, S. Rodriguez-Navarro, C. Zimmer, O. Gadal, A. Lesne, H. Buc, F. Feuerbach-
Fournier, J.-C. Olivo-Marin, E.-C. Hurt and U. Nehrbass. SAGA interacting factors confine sub-diffusion of
transcribed genes to the nuclear envelope.Nature, 441, pp. 770-773, 2006.

[8] A. Genovesio, T. Liedl, V. Emiliani, W. Parak, M. Coppey-Moisan and J.-C. Olivo-Marin. Multiple particle
tracking in 3D + ¢ microscopy: method and application to the tracking of endocytozed Quantum Dots. IEEE
Trans. Image Processing, 15:5, pp. 1062-1070, 2006.
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Luis QUINTANA-MURCI

Institut Pasteur Paris,
CNRS URA3012
25, rue du docteur ROUX, 75724 Paris CEDEX 15, Paris, France
quintana@pasteur.fr

Human Genome Diversity:
from demography to natural selection

Different environmental, demographic and selective forces, together with cultural and social characteristics
of human lifestyle, shape the patterns of variability of the human genome at the population level. A detailed
description of the relative weight and influence of these processes, which may vary among individuals and pop-
ulations, will provide important insights into human evolutionary history, which might, in turn, also facilitate
identification of complex disease genes. Our research activities cover two highly inter-related areas: the study
of genetic diversity at noncoding regions of the genome, from which we can infer historical and demographic
parameters characterizing human populations, and the study of diversity in genomic regions involved in immune
response or host-pathogen interactions, with which we can unmask the footprints of natural selection exerted
by pathogens on the host genome. I will review our most recent data on these different aspects, by focusing on
specific examples of demography, lifestyle and natural selection. These include: (i) the influence of modes of
subsistence and lifestyle — the transition from hunter-gathering to farming — on the demographic and adaptive
history of human populations, by focusing on the case of Pygmy hunter-gatherers and neighbouring farmers
from Central Africa. (ii) The study of how natural selection has targeted human miRNAs as a model system
for investigating the influence of natural selection on gene regulation. Indeed, more than 30% of human genes
are thought to be regulated by miRNAs, and their role in diverse physiological processes, including develop-
ment, growth, differentiation and metabolism is increasingly recognized. (iii) The value of the evolutionary
and population genetics approach in the context of host-pathogen interactions. Detecting and identifying the
extent and type of natural selection acting on genes involved in immunity-related processes provide insights into
immunological host defense mechanisms and highlight pathways playing an important role in pathogen resis-
tance. Altogether these studies, based on a multi-locus approach and considering the different forces shaping
the patterns of human genome variability, shed light onto the complex demographic and adaptive history of our
species.
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Sven RAHMANN

TU Dortmund
Bioinformatics for High-Throughput Technologies
Computer Science 11
TU Dortmund
44221 Dortmund, Germany
Sven.Rahmann@uni-dortmund.de

Algorithmic Challenges from New Sequencing Technologies

New high-throughput sequencing technologies are able (and will be even more so in the future) to produce
sequence data at a higher rate than present methods can analyze it. At the same time, applications are quite
diverse: de novo sequencing and re-sequencing of genomes, SNP discovery, determination of methlylation state,
classical gene expression analysis by mRNA (or tag) sequencing, short RNA expression analysis, ChIP-seq, just
to name a few.

In my talk, I will present analyses of different datasets from different sequencing technologies that we con-
ducted in collaboration with two groups from the University Hospital Essen: microRNA expression in favorable
and unfavorable neuroblastoma subtypes [1] (with the Pediatric Oncology Department), and methylation state
of CpG islands in human blood and sperm cells 2] (with the Human Genetics Department). In particular, I
will highlight the challenges we faced beyond the standard read mapping procedure.

Next, I will discuss the implications of the new sequencing technologies for phylogenetic analyses and argue
that novel ideas for explorative analysis of multiple sequence alignments are needed. I will present one idea
developed in collaboration with the Bioinformatics group at the University of Wiirzburg [3].

Finally, I will present my vision about probabilistic models to efficiently describe large pan-genomes (that
will result from 1000-genome projects, for example), and my opinion on the required research to develop such
models (beyond sheer computing power).

References

[1] J. H. Schulte, T. Marschall, M. Martin, P. Rosenstiel, P. Mestdagh, S. Schlierf, T. Thor, J. Vandesompele,
A. Eggert, S. Schreiber, S. Rahmann and A. Schramm. Deep sequencing reveals differential expression of
microRNAs in favorable versus unfavorable neuroblastoma. Nucl. Acids Res., 2010.

[2] M. Zeschnigk, M. Martin, G. Betzl, A. Kalbe, C. Sirsch, K. Buiting, S. Gross, E. Fritzilas, B. Frey, S.
Rahmann and B. Horsthemke. Massive parallel bisulfite sequencing of CG-rich DNA fragments reveals that
methylation of many X-chromosomal CpG islands in female blood DNA is incomplete. Human Molecular Ge-
netics, 18:8, pp. 1439-1448, 2009.

[3] R. Schwarz, P. N. Seibel, S. Rahmann, C. Schén, M. Hiinerberg, C. Miiller-Reible, T. Dandekar, R. Karchin,
J. Schultz and T. Miiller. Detecting species-site dependencies in large multiple sequence alignments. Nucl.
Acids Res., 7:18, pp. 5959-5968, 2009.
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Jorg STELLING

Swiss Federal Institute of Technology Ziirich,
Department of Biosystems Science and Engineering
1058 8.00 Mattenstrasse 26, 4058 Basel, Switzerland

joerg.stelling@bsse.ethz.ch

Computational Engineering of Synthetic Gene Circuits

Ultimately, synthetic biology aims at establishing novel, useful biological functions by suitably combining
well-characterized parts. Especially when complex circuits — in terms of the number of components and interac-
tions involved, or with respect to the dynamic behavior — are to be designed, computational engineering methods
have to be an integral part of the approach. Here, we will focus on engineering concepts to achieve scalability
and robustness (relative insensitivity to external or internal perturbations ) of designed circuits. Both aspects
are important for the field because the biology-based parts employed are not (yet) well-characterized, the circuits
have to operate in a noisy cellular environment, and they cannot be completely isolated from the cellular con-
text. Specific examples that illustrate the challenges of and possible strategies for rational circuit design include
devices for time-delayed gene expression, tunable synthetic oscillators, and physiological set-point controllers in
mammalian cells. These cases demonstrate that both novel mathematical modeling and systems analysis meth-
ods are needed to enable efficient computational design of synthetic circuits.
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Eric COISSAC et Pierre TABERLET

Laboratoire d’Ecologie Alpine, CNRS UMR 5553
Université Joseph FOURIER, BP 53, 38041 Grenoble CEDEX 9, France
pierre.taberlet@Qujf-grenoble.fr

Biodiversity and DNA Barcoding

DNA barcoding — taxon identification using a standardized DNA — is mainly developed through an international
initiative (Consortium for the Barcode of Life, CBoL, http://barcoding.si.edu). DNA barcoding sensu stricto
corresponds to the identification of one specimen to the species level using a single standardized DNA fragment.
This definition fits with the CBoL view. DNA barcoding sensu lato corresponds to the identification of a
set of organisms present in an environmental sample to any taxonomical level using any DNA fragment (DNA
metabarcoding). Our scientific objective is to use the metabarcoding approach to analyze biodiversity using
environmental samples (water, soil, etc.). The experimental protocol consists (i) to sample in the field, (ii)
to extract DNA, (iii) to amplify DNA using universal primers, (iv) to sequence the PCR product using next
generation sequencers (454, Solexa), and (v) to assign the sequences to the relevant taxa. We currently focus on
plants and animals. Such an approach represents real challenges at the bioinformatic level, both before carrying
out the experiments, and after obtaining the output files of the sequencer. How to design optimal primers? How
to test in silico these primers for specificity and accuracy? How to design an efficient tagging system for being
able to properly assign a sequence read to a sample in a sequencing experiments where hundred of samples
were mixed together? How to assign sequences to a taxon, with or without reference sequences? How to deal
with amplification/sequencing errors? We will present the different bioinformatic tools especially developed for
analyzing environmental samples using the DNA barcoding concept (http://www.grenoble.prabi.fr/trac.
0BITools). Then, we will show some results concerning the identification of plants and animals from soil
samples, or from feces for diet analysis.
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Présentation longue

The carbon assimilation network in Escherichia coli is densely
connected and largely sign-determined by directions of metabolic
fluxes

Valentina BALDAZZ1'4, Delphine ROPERS!, Yves MARKOWICZ'2, Daniel KAHN'3, Johannes
GEISELMANN'? and Hidde DE JONG!

1 INRIA Grenoble - Rhone-Alpes, 655 avenue de 1’Europe, Montbonnot, 38334 Saint Ismier Cedex, France
{Delphine.Ropers,Hidde.de-Jong}Q@inria.fr
2 Laboratoire Adaptation et Pathogénie des Microorganismes, UMR 5163 CNRS, Université Joseph Fourier, Batiment
Jean Roget, Faculté de Médecine-Pharmacie, Domaine de la Merci, 38700 La Tronche, France
{yves.markowicz,hans.geiselmann}@ujf—grenoble.fr
3 Laboratoire de Biométrie et Biologie Evolutive, UMR 5558 CNRS, Université Lyon 1, INRA, 43 bd du 11 novembre
1918, 69622 Villeurbanne, France
kahn@biomserv.univ-1lyonl. fr
4 INRA, Unité Plantes et SystAmes de culture Horticoles, Domaine St Paul, Agroparc, 84941 Avignon Cedex 9, France
valentina.baldazzi@avignon.inra. fr

Abstract Gene regulatory networks consist of direct interactions, but also include indirect inter-
actions mediated by metabolites and signaling molecules. We describe how these indirect inter-
actions can be derived from a model of the underlying biochemical reaction network, using weak
time-scale assumptions in combination with sensitivity criteria from metabolic control analysis.
We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our
results show that the derived gene regulatory network is densely connected, contrary to what is
usually assumed. Moreover, we show that the signs of the indirect interactions are largely fixed by
the direction of metabolic fluxes, independently of specific parameter values and rate laws, and
that a change in flux direction may invert the sign of indirect interactions. This leads to a feedback
structure that is at the same time robust to changes in the kinetic properties of enzymes and that
has the flexibility to accommodate radical changes in the environment.

Keywords System biology, gene regulatory network, metabolism, E.coli.

The adaptation of bacteria to changes in their en-
vironment involves adjustments in the expression of
genes coding for enzymes, regulators, membrane
transporters, etc. [1,2,3]. These adjustments are con-
trolled by gene regulatory networks ensuring the coor-
dinated expression of clusters of functionally related
genes. The interactions in the network may be direct,
as in the case of a gene coding for a transcription fac-
tor regulating the expression of another gene. Most
of the time, however, regulatory interactions are indi-
rect, e.g. when a gene encodes an enzyme producing a
transcriptional effector [4].

A gene regulatory network can thus not be reduced
to its transcriptional regulatory interactions: by ignor-
ing indirect interactions mediated by metabolic and
signaling pathways we may miss crucial feedback
loops in the system. The network controlling carbon
uptake in the bacterium Escherichia coli is a good ex-
ample because it integrates metabolism, signal trans-
duction, and gene expression. At the level of gene ex-

Sl

pression, the network includes intricate feedback loops
that arise from indirect interactions between the sub-
systems. Global regulators like Crp control expression
of enzymes in carbon metabolism [5,6], while inter-
mediates of the latter pathways control the expression
of global regulators. For instance, the phosphorylation
of EIIA activates adenylate cyclase (Cya) to produce
cAMP which is required for the activation of Crp [7,8].

The aim of this paper is to develop a method for
the systematic derivation of direct and indirect interac-
tions in a gene regulatory network from the underlying
biochemical reaction network. Due to the complexity
of the intermediate metabolic and signaling networks,
determining indirect interactions is difficult in general.
We show that model reduction based on weak assump-
tions on time-scale hierarchies in the system [9,10,11],
together with sensitivity criteria from metabolic con-
trol analysis [10,12], are able to uncover such inter-
actions. Our approach starts from a model of the bio-
chemical reaction system in the form of a system of or-
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dinary differential equations. We reformulate this sys-
tem into coupled fast and slow subsystems, by distin-
guishing between reactions that are fast and slow in the
physiological range of interest, and by redefining fast
and slow variables accordingly. This is rather straight-
forward to achieve for the types of systems considered
here, as enzymatic and complex formation reactions
are typically fast on the time-scale of protein synthesis
and degradation. Assuming that the fast subsystem is
at quasi-steady state, the indirect interactions between
genes are now defined by the Jacobian matrix of the
slow system. The advantage of this approach is that
it does not require fully specified kinetic models with
known rate laws for reaction rates and numerical val-
ues for the parameters: the dependencies of the reac-
tion rates on metabolite and enzyme concentrations are
usually sufficient once the metabolic flux directions
are fixed.

We apply our method to a model of the upper
part of the carbon assimilation network in E. coli,
consisting of the glycolysis and gluconeogenesis
pathways and their genetic and metabolic regulation.
The analysis of the derived gene regulatory network
leads to three new insights. First, contrary to what is
often assumed, the network is densely connected due
to numerous feedback loops resulting from indirect
interactions. This additional complexity is operative
on the time-scale of gene expression and represents
an important issue for the correct interpretation of
data from genome-wide transcriptome studies. For
instance, our method correctly predicts that a pykF
deletion leads to increased expression of fruR and de-
creased expression of cya during glycolysis [13]. The
second and most remarkable conclusion of our study
of the E. coli network is that for given growth condi-
tions, the signs of the indirect interactions are largely
independent of the exact form of kinetic rate laws
and precise parameter values. Therefore the feedback
structure is robust to changes in kinetic properties
of enzymes and other biochemical reactions species.
However a radical changes in the environment, e.g.,
the exhaustion of glucose, may invert the signs of
fluxes, and thus of indirect interactions, resulting in
a dynamic rewiring of the regulatory network. Such
an overall modification of the control architecture
in response to environmental perturbations may be
beneficial to the cell, as it increases its adaptive
flexibility.

More details on this work can be found in a recent
publication in PloS Computational Biology [14].

—12—
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1 Introduction

The ANR/Génoplante Tiling Array Genome (TAG)
project aims to design, validate and exploit a unique
chip covering the Arabidopsis thaliana genome. The
applications of this chip concern various types of ex-
periments such as ChIP-chip to study DNA methyla-
tion and histone modifications or transcriptome exper-
iments to detect and analyze coding and non-coding
transcripts. For each type of data, we have developed
an adapted statistical method and a visualization tool
of the results in the FLAGdb++ environment.

2 Tiling-array features

The nuclear, plastidial and mitochondrial Arabidop-
sis chromosomes have been segmented in 160 bp-
long regions in which oligonucleotides have been de-
signed by the NimbleGen Company. Oligonucleotides
(i.e. probes) have sizes ranged from 50 to 75 mers
and are selected in order to have a near constant Tm
(around 76°C). Beyond the chromosomal position, the
hybridization quality is the priority criteria for the de-
sign. The whole Arabidopsis genome is finally rep-
resented by 1.4 million of probes, 717 246 covering
each strand. The repeat sequences of the Arabidopsis
genome (mainly recently duplicated genes or transpos-
able elements) results in the presence of 4.5% of not
specific probes for which cross-hybridization is proba-
ble. The resulting array is composed of 3 hybridization
rooms in which the 717 246 probes have been synthe-
sized in situ by a photolithographic process.

Skl

3 Statistical Methods

The methods developed were first used to analyze
data from Arabidopsis thaliana but are not organism-
dependent. R packages are available.

3.1 ChIPmix [1]: Analysis of ChiP-chip data

In a two-color ChIP-chip experiment, two samples
are compared: DNA fragments crosslinked to a protein
of interest (IP), and genomic DNA (Input). The IP sig-
nal depends not only on the status (normal/enriched)
of the probe, but also on the INPUT signal. This de-
pendence is not taken into account by working with
the usual ratio IP/INPUT. For this reason we directly
consider the two intensities log-IP and log-INPUT, de-
noted (x;,Y;) for the probe i, respectively. The (un-
known) status of the probe is characterized through a
label Z; which equals 1 if the probe is enriched and 0
if it is normal (not enriched). We assume the Input-IP
relationship to be linear whatever the population, but
with different slope and intercept. More precisely, we
have:

Yi:ag+bgmi—i—/\/(0,02) si Z; =0,
Y; = a1 + bia; + N(0,0°%)si Z; = 1.

We control the probability for a probe to be wrongly
assigned to the enriched class. This control is similar
to the one used in the hypothesis test theory. We ap-
plied this method on several ChIP-chip data to study
the impact of histone modifications on the regulation
of gene expression.
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3.2 Bidimensionnal Gaussian Mixture:
Analysis of transcriptome data

The NimbleGen tiling array is also used to compare
two transcript samples without a priori on the tran-
script regions. We expect to distinguish four different
groups (cf Fig. 1): a group of non-hybridized probes,
a group where gene expression is identical in the two
conditions, and two groups in which gene expression
differs between the two conditions. We propose to
model these data with a two-dimensional Gaussian
mixture with four components with constraints of the
variance matrix [2] to take biological knowledge into
account. The model originality is to consider both the
dependency between neighboring probes with a HMM
model and also the known probe annotation. We know
that a probe behaves differently if it covers an exon, an
intron or an intergenic region. First application con-
cerns a comparison between the leaf and the seed.

identical

seed

Fig. 1. Schematic representation of the 4 groups of probes

4 Visualization and exploitation of
tiling-array data

Visualization of data is central in genomics. It is the
first step in hypothesis inferences from versatile tools
delivering exhaustive information on genome tran-
scription. Visualization of several types of information
suggests links between genome characteristics and ex-
pression. Some unexpected predictions may, after ex-
perimental validation, provide new knowledge[3].

4.1 FLAGdb++

FLAGdb++ (http://urgv.evry.inra.frt/FLAGdb++) is
an integrative database dedicated to the structural
and functional genomics of plants [4]. Up to now,
FLAGdb++ is mainly focused on the sequenced
genomes of Arabidopsis thaliana, Oryza sativa, Vitis
vinifera and Populus trichocarpa. It helps biologists to
study the function of plant genes in considering them
in a wide context : a multigene family, a topological
environment, and/or a functional network. FLAGdb++

—14—

is composed of a relational database and an associ-
ated user-friendly interface (in Java). Different tools
have been developed with a conceptual effort for the
graphical display and the hierarchical organization of
the different genomic data to browse and explore them
and decipher functional relationships between them.

4.2 A new tiling-array module

A Java module has been developed and added to
FLAGdb++ to display the genome-wide data pro-
duced by tiling chips. The visualization concerns the
probe features (sequences, Tm, uniqueness in genome,
cross-hybridization risk with paralogous genes), their
position relative to the structural annotation and, the
statistical hybridization results. Since data quantity
is huge, a Derby database for the client side is used
to provide a flowing display of results on large ge-
nomic regions. Through a project management tool,
the users have the possibility to import private results
to analyse them in the full data background proposed
by FLAGdb++. The interfaces help the genome explo-
ration and reveal unexpected transcriptional activities
in highlighting new RNA genes, regulatory antisens
transcripts and alternative splicing events. Their fine
characterization at the genome scale is currently run-
ning.
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While microarray data are rapidly accumulating
in public repositories, novel methods are needed to
mine and visualise OMICS data. As genes are part of
complex regulatory networks, typical data mining
software focus on capturing clusters of co-expressed
genes from microarray data. The Transcrip-
tomeBrowser [1] (TBrowser ) project, aims at easing
access to public microarray experiments. Its spe-
cificities rely on (i) the systematic annotation of
automatically extracted expression signatures and (ii)
the development of a powerful search engine to mine
relevant informations. TBrowser software is ex-
tremely useful (i) to quickly re-analyse any experi-
ment stored in the database (ii) to search for biolo-
gical contexts in which a set of genes are co-ex-
pressed or in which any biological function is highly
represented (ii) and to compare expression signatures
obtained through different experiments.

Starting with a set of 1,400 experiment in the first
release [1], we have conducted a new analysis on
3,000 experiments derived from 105 microarray plat-
forms (51 species). Unsupervised classification using
the "Density Based Filtering and Markov CLuster-
ing" algorithm (DBF-MCL) [1] led to the extraction
of 30,000 expression signatures. We further per-
formed a systematic functional annotation of the res-
ulting expression signatures using a large compendi-
um of terms derived from gene annotation databases
(eg; WikiPathway, REACTOME, HMDB, Gene-
SigDB,...) and meta-databases (DAVID knowledge-
Base). Importantly, the new release of TBrowser also
included numerous informations related to cis-regu-
latory motifs that may be involved in transcriptional
(e.g; ECRBase, CisRED, TFBSConserved, Lymph-
TF-DB, OREGANNO) and post-transcriptional (e.g;
TargetScan, Pictar) control of gene expression (cur-
rently 88,953 gene to motifs relationships). Altogeth-
er we have have currently stored 541,516 keywords
and 40,659,707 gene to term relationship. Interest-
ingly, our strategy of systematic annotation of tran-
scriptomic data identified numerous putative regulat-

Sl

ory events, whose relevance is strengthened by bio-
logical process enrichment analysis. For example,
expression signatures enriched in E2F targets are
also enriched for GO term "Cell cycle", enrichment
for MEF2A targets are found in signatures enriched
for "muscle contraction" term, RFX1 targets enrich-
ment is related to "ciliary or flagellar motility", while
IRF1 targets are observed in signature related to
"immune response". All these informations can be
accessed through the Java application. Annotation
terms from various databases can be combined to fo-
cus on the most relevant expression signatures. For
example, genes related to unfolded protein Response
(UPR) can be found by searching for expression sig-
natures enriched for predicted XBP1 targets and for
genes related to "endoplasmic reticulum unfolded
protein response" (GO term). Although some obvi-
ous transcription factor networks (e.g., co-occurence
of E2F and Myc/Max target enrichments) clearly ap-
pear in the database, the flexibility of TBrowser al-
low to further look for alternative combinations.

When constructing of a biological network (that can
be ultimately use for dynamic modelling) the first
step is the definition of the system boundaries. This
means that one has to define the genes that are part
of the system together with their interactions. This
information are most generally derived from scientif-
ic literature or obtained through re-analysis of high-
throughput genomic data. As we have conducted a
systematic analysis over thousand of experiments we
have also captured some stricking expression signa-
tures that underscore numerous biological processes.
In order to translate any expression signature into a
map highlighting putative physical and regulatory
interactions, we have developed a new plugin for
TBrowser, called InteractomeBrowser. Inter-
actomeBrowser is based on the Prefuse Java library
and uses a set of high level terms of the Cellular
Component ontology (GO slim) to map gene
products onto a schematic view of cell compart-
ments. Predicted regulatory interactions derived from
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expression signature annotations can be represented
together with putative physical interactions (obtained
from Intact and HPRD) and enzyme-Substrate Rela-
tionships (KEA database). As all tools and informa-
tion are interconnected into an extensible and unified
data mining suite, an expression signature can be
easily translated into a model highlighting putative
molecular events occurring in a given biological con-
text. Results obtained using the InteractomeBrowser
plugin can be further export to Cytoscape or GINsim
[2,3] for further analysis or to generate dynamical
models. Tbrowser and its plugins arguably constitute
a very efficient way to mine public microarray repos-
itories for biologically meaningful information.

Acknowledgements

This work is supported by EU FP7 (APO-SYS
project) and ANR (SYSCOM CALAMAR project).

References

[1T1F. Lopez, J. Textoris , A. Bergon, G. Didier, E. Remy,
S. Granjeaud, J. Imbert, C. Nguyen, D. Puthier. Transcrip-
tomeBrowser: a powerful and flexible toolbox to explore
productively the transcriptional landscape of the Gene Ex-
pression Omnibus database. PLoS One, 3(12), 2008.

[2] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T.
Wang, D. Ramage , N. Amin, B. Schwikowski, T. Ideker.
Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Res.,
13(11), 2003

[3] A. Naldi, D. Berenguier, A. Fauré, A.; Lopez, F.,
Thieffry, D. & Chaouiya, C. Logical modelling of regulat-
ory networks with GINsim 2.3. Biosystems, 97, 134-139,
2009.

—16—



Présentation longue

Integrating omics data by using a gene neighboring based distance

Philippe BORDRON', Damien EVEILLARD! and Irena RUSU!

Computational Biology group (ComBi), LINA, Université de Nantes, CNRS UMR 6241, 2 rue de la Houssinicre,
44300 Nantes, France
philippe.bordron@univ-nantes. fr

Abstract As living systems are abstracted by information of different nature, in particular ge-
nomic and metabolic, their integration and interpretation into a unique framework remains chal-
lenging. We propose such a dedicated framework that integrate information that is not superpos-
able in an obvious way. It gives rise the opportunity to investigate the impact of a given biological
property like herein the genomic distance based on gene neighboring, in either a genomic or a
metabolic context. In particular, we show that (1) in metabolic networks, the reaction chains (or
paths) which join two given reactions diverge far less than in general networks, thus acting like
a unique supertrack rather than like several different ways to join the two given reactions; and
(2) these supertracks often represent the projection (in a sense explained in the paper) of operons
on the metabolic network. Consequently, integrating metabolic and genomic knowledge using our
method allows to find associations between genes, enzymes and metabolic paths involved together

in the bacterial system behavior.

Keywords systems biology, genome, gene neighboring, metabolic network, operons.

1 Introduction

A living system is abstracted by information of dif-
ferent nature. Their integration is an unavoidable,
though only incipient, approach to identify modules
which are consistent with all data sources and thus
with the system. Unfortunately, information of dif-
ferent natures is not superposable in an obvious way,
and specific approaches are usually developed for spe-
cific types of information. However, as the need to
combine heterogeneous information and to analyze it
as a whole is constantly increasing and diversifying,
generic methods to gather informations together and
to represent them in a suitable way for exploration be-
come necessary.

In the prokaryote system, the metabolic network
and the genome organization are well studied aspects.
The way to structure and analyze them is the key con-
cept of adjacency [1] or, more generaly, the concept of
connectivity. This concept is easily handleable in net-
works, enables to associate successive adjacency in-
formation, and deals with potential missing informa-
tion (edges or arcs) from the network. The integra-
tion of different types of information should therefore
be based on a formalization of these concepts, as first
suggested in [2]. Moreover, whereas graph theory of-
fers both the degree of abstraction and an important
part of the tools needed by such an approach, not every

Sl

graph-theoretical defined notion of a neighborhood is
biologically relevant [3]. It is thus important to define
appropriate ways to deal with proximity across hetero-
geneous data, depending on the nature of the informa-
tion at hand. We then aim at :

(1) integrating  neighborhood/non-neighborhood
information about genes (issued from se-
quence/structure  analysis) into  metabolic
networks (via the enzymes, products of genes
that catalyze the reactions),

(2) extending the local, neighborhood-based analy-
sis to a larger scale, connectivity-based analysis,
that is made possible by the use of networks,

(3) proposing a generic handling of the proximity
information between genes via a notion of dis-
tance.

As a concrete application, our main goal is study-
ing the concomitant (relative) proximity of metabolic
genes (a) according to the aforementioned distance,
and (b) in the metabolic networks (via the enzymes,
products of genes), with the aim of finding correla-
tions between genes, enzymes and metabolic path-
ways, which would explain the role and the place of
each of them in the light of the bacterial system be-
havior. The originality of our approach stands (i) in
the use of a distance instead of a binary neighbor/non-
neighbor relation, (ii) in its genericity due to the poten-
tial use of any distance (including one that combines
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information from several sources) and (iii) in the pos-
sibility to explore alternative paths (defined below us-
ing the distance). For these reasons, our approach gen-
eralizes previous works aiming at integrating, for in-
stance, genomic and metabolic data [2,4], or genomic,
coexpression and metabolic data [5,6,7,8]

Note that, in contrast of general methods that inte-
grate heterogeneous information, our approach is in-
dependent of the distance, but the interpretation of
the results is not. To perform a complete explanation
of our framework, we therefore choose to illustrate it
on a particular distance between genes, the genomic
distance defined as the number of intermediate genes
along the genome between two given genes, plus 1.
This choice relies on the commonly accepted obser-
vation that the gene order in bacterial genomes is far
from random [9,10].

This paper thus proposes an approach that integrates
metabolic and bacterial genome information using Es-
cherichia coli as a concrete benchmark (Sec. 2). The
resulting integrated model shows the existence within
the metabolic network of precisely defined substruc-
tures called supertracks, which are the projections on
the metabolic network of many operons (Sec 3). These
structures are discussed in the context of previous
works (Sec. 4) and the Conclusion (Sec. 5) follows.

2 Material and Methods

2.1 Data

Escherichia coli (K12 MG1655, [11]) is one of the
most investigated bacterial species, and quickly ap-
peared as an accurate benchmark for our approach.
At the time of the study, a set of 4 242 genes
composes its circular monochromosomic genome
(NCBI/GenBank). Its corresponding metabolism is
composed of a set of 2 971 biochemical compounds
involved in 1 131 reactions catalyzed by 647 en-
zymes (KEGG PATHWAYS, [12]). Among them,
558 are encoded by identified genes, as indicated by
NCBI/GenBank. Each reaction is reconstructed from
its association with compounds in each E. coli path-
ways map. In this manner, metabolic network is
cleaned in term of hub metabolites [13] (i.e. each
selected metabolite participates in less than 25 reac-
tions). For obvious technical reasons, only the reac-
tions catalyzed by these enzymes are concerned.

We complete our study by performing random
shuffling experiments independently on the genome
(by randomly modifying the gene order) and on the
metabolic network (according to [14], by randomly
shuffling the endpoints of the arcs in a compound-free
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Fig.1. Integration of genomic and metabolic information
into G;p;. (a) A bacterial monochromosomic genome is a
linear or circular sequence of genes (fat arrows). (b) Its cor-
responding metabolic network (in SGBN standard): com-
pounds (circles) are substrates and/or products of reactions
(squares), that are catalyzed by enzymes (rounded boxes)
produced by genes (fat arrows). (¢) The resulting integrated
network G;,,;, where each arc is weighted by the genomic
distance between the two genes in its endpoints.

representation of the metabolic network called repre-
sentation graph). Note that such an approach might
decrease the number of arcs in the network, and thus
some vertex degrees.

2.2 Integrating genomic distance and

metabolic network

A bacterial genome is represented as a linear or cir-
cular sequence of genes (see Fig. 1(a)). The genomic
distance between two different given genes on a lin-
ear genome is the number of intermediate genes be-
tween the two genes along the genome, plus 1. A gene
has a null distance between it to itself. In a circular
genome, the distance consists of the minimum one ob-
tained from the right-hand and left-hand traversal.

The relationship between a genome and its cor-
responding metabolic network takes place with the
“gene produces enzyme(s)” rule, as illustrated in Fig.
1(b). Combination of this rule and knowledge at dis-
posal of E. coli conduces to define an integrated ge-
nomic metabolic network, denoted G;,,; (see Fig. 1(c)
for illustration). The network G;,; is a directed graph,
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whose vertices are all the pairs (gene g, reaction 7)
such that the gene g produces an enzyme (identified
herein by its EC number) that catalyzes the reaction
r. An arc goes from vertex (g1,71) to vertex (g2,72)
whenever a product of r; is a substrate of ro. Its weight
w is defined as the genomic distance between g; and
g2. In a general manner, the weight of a subnetwork
of G,y is the total weight of its arcs, and its neighbor-
ing coefficient w is the ratio between its total weight
and the number of its distinct reactions (found in its
vertices). Intuitively, the neighboring coefficient mea-
sures the average genomic distance between two genes
involved in successive reactions from the metabolic
network. A small w expresses a real gene proximity
along the genome. Note herein that two successive re-
actions catalyzed by the same gene, produce a weight
of 0, which implies that w might be less than 1.

The resulting G;,; of E. coli is composed of 2 343
vertices and 13 288 arcs, which correspond to 1 049
metabolic reactions (92.75% of the E. coli reactions)
and 779 genes (18.36% of the bacterial genome).
Shuffling the genome conserves the structure of G,;.
On the contrary, shuffling the metabolic network
yields a network G;,,; with the same number of vertices
but only 11 820 arcs on average (over the 10 performed
experiments).

2.3 Integrated pathways

A (directed) path from G;,; with a small value for
w represents a reaction chain from the metabolic net-
work whose genes encoding for the reactions of inter-
est are close to each other along the genome. Finding
these paths reverts therefore a particular interest from
a functional viewpoint, since the involved genes are
concerned by the hypothesis that the gene neighboring
could imply a metabolic feature.

Given any pair of reactions involved in the vertices
of Gint, that we identify as the source reaction and the
destination reaction, we are thus interested in the (di-
rected) paths in G, that start with a vertex containing
the source reaction and end with a vertex containing
the destination reaction. The path in G;,; which has
the smallest w, i.e. neighboring coefficient, is called
the [-Integrated Pathway (or I-IP) of the two reac-
tions. When projected in the bacterial metabolic net-
work, this path represents the way to join two given
reactions while preserving the minimum genomic dis-
tance along the genome. Fig. 2(a) shows an example
of 1-IP. Similarly, for a fixed positive integer k, the
subnetwork of G;,,; obtained as the union of the &k dis-
tinct paths with smallest W joining two given reactions
is called the k-Integrated Pathway (or k-IP) of the two
reactions. When projected in the metabolic context,

ackA 1 ((rta 4 fodl 0 fadl 1 (fady
R00315 R00230 R03858 R03991 ROAT3T
(@)

L fads
R04737

(b)

Fig-2. An example of (a) a 1-IP (w = 9.2) and (b) a 10-
IP (w = 19.8) for a given pair of reactions (R00315 to
R04737) in E. coli. It is easy to notice here that paths in
the 10-IP are mainly variants of the 1-IP that share many
common vertices and arcs.

this subnetwork corresponds to a collection of reac-
tion chains assimilated to one or several (for k > 1)
alternative ways to join two given reactions. Fig. 2(b)
shows an example of 10-IP. We group all k-IPs (for a
given k) from G;,;, over all possible pairs of source
and destination reactions, into the set k-ZP.

However, exactly computing the k£ paths with the
smallest neighboring coefficients, given k (at least 1)
and two reactions, is a hard computational problem
(never mentioned in the literature; see [ | 5] for the clos-
est related problem, whose difficulty is confirmed).
We therefore approximately compute the set k-Z7P,
given k, using a heuristic that we obtained by slightly
modifying Yen’s algorithm [ 16] to compute the k& min-
imum weighted circuit-free paths in a weighted di-
rected graph. This is an incremental version of the
well-known Dijkstra’s algorithm [17], and has running
time of O(kn(m+n x logn)), where n is the number
of vertices and m is the number of arcs in the network.

2.4 Interest of integrated pathways

As introduced before, the k-IP of two reactions,
given k, represents a pool of reaction chains in the
metabolic network, whose weights measure the rel-
ative proximity of the genes involved (via their en-
zymes) in each chain. In our approach, the k-IPs are
computed for all pairs of source and destination reac-
tions, so as to allow a wide analysis of the reaction
chains in presence of the associated genomic informa-
tion. Thus, the set of all IPs (even limited to a fixed k)
is not meant to identify, as a whole, some precise col-
lection of biologically meaningful entities, but to en-
able us to focus on a particular subset of interesting IPs
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according to a given (genomic or metabolic) context.
The context uses here is about operons. An operon
is the set of genes that belong to a basic transcrip-
tion unit. By nature, its genes are contiguous along
a given bacterial genome and share a common biolog-
ical function [18]. From RegulonDB [19], we selected
the operons of E. coli that are composed of at least two
genes (so that the proximity notion has some sense)
and participate in G;,;. The resulting benchmark rep-
resent 16.2% of the operons in E. coli.

We extract then the set of operonic reaction chains
(or ORCs). An ORC is a collection of reaction chains
from the metabolic network with common initial and
final reactions, and whose reactions exactly match the
genes of an operon : each gene of the operon produces
an enzyme catalyzing at least one reaction in the ORC,
and each reaction in that ORC is catalyzed by at least
one enzyme produced by a gene in the operon. For
short, we say that the ORC exactly matches the operon,
and we intuitively extend this definition from ORCs to
IPs.

We are also interested in the set of multi-Operonic
Reaction Chains (or mORCs), an extension of ORC,
where a collection of reaction chains from the
metabolic network with common initial and final re-
actions, and whose reactions exactly match the genes
of two or more operons. For short, we say that the
mORC exactly matches the collection of operons and
extend this definition from mORC:s to IPs.

These matching study allows us to quantify the ob-
servations according to which genes in operons tend
to produce enzymes for consecutive reactions, to study
operons in the context of a directed metabolic network
(thus identifying the most interesting operons in the
sets obtained by preceding studies by [4,2,20] which
use undirected metabolic networks), to check the col-
inearity hypothesis recently investigated by [9].

3 Resulis

3.1 A description of integrated pathways

The application of our approach on E. coli produces
439 382 IPs for each k. As a concrete application,
Fig. 2 shows the 1-IP and the 10-IP for the reactions
R00315 and R04737. The information about the set
k-IP, for k = 1 and k& = 10, is summarized in
Tab. 1, together with the corresponding information
when the genome is shuffled (notation k:—IPg), re-
spectively when the metabolism is shuffled (notation
k-I'P ). When less than 10 paths exist to join two
given vertices, then the 10-IP contains only the exist-
ing paths.

—20—

Tab. 1. Description of the sets of integrated pathways: in
the integrated network of E. coli (first row), its variant ob-
tained by randomly shuffling the genome (second row; aver-
age over 10 experiments), and its variant obtained by shuf-
fling the metabolic network (third row; average over 10 ex-
periments). Columns # k-IPs, # genes, # reactions respec-
tively contain the total number of k-IPs in the set k-ZP, the
average number of genes involved in a k-IP, and the average
number of reactions involved in a k-IP. In small characters
is shown the variance of each parameter.
’Data Set \ kH# k-IPs\ # genes\# reactions‘

1 11.8 445 13.9 456
k-IP 10 439382 13.8 47| 17.6 £6.2
1 11.6 +46| 13.8 +5.6
k-IPg 10 439382 13.6 48| 18.4 +6.3
1 7.3 +2.2 7.6 +2.3
k-IP R 110/1991%40)16.6 2as| 14.8 25

Column # k-IPs shows that, whereas the number of
vertices is the same in the three types of integrated
networks, there is a 50% increase of the number of
pairs connected by a path in G;,,; when the metabolic
network is shuffled (see k-ZP Vs k-ZP); which
is justified by the different number and size of strong
connected components in the two integrated networks.
Moreover, columns # genes and # reactions show that
in the integrated network of E. coli, the 1-IP is gener-
ally much longer than in the integrated networks with
shuffled metabolic network (11.8 genes against 7.3),
but the other paths in the 10-IP generally add much
less vertices to the 1-IP. In other words, the 10 paths
with smallest neighboring coefficient in G;,,; for E. coli
share a lot of vertices and arcs (see Fig. 2), whereas
in the case of shuffled networks those paths are much
more different. As a consequence, the 10 paths in G;;,;
for E. coli have almost the same length, which explains
- together with the fact that only few pairs of vertices
are joined by more than 10 paths - why the length of
the IPs obtained for E. coli and for the examples re-
sulted by genome shuffling are almost the same.

Projecting now this information (obtained, we em-
phazise it, in the integrated network G,:) on the
metabolic network, we stand that the alternative paths
between two given reactions in a metabolic network
are mainly closely related variants of a unique path,
thus resulting in a structure that we call a super-
track. This property is obviously a particularity of
the metabolic network, as shown by the results on the
shuffled metabolism experiments.

3.2 Operonic insights

For each k from 1 to 10, we compared each operon
with the set of genes involved in each k-IP and we
computed both the mutual coverage rate according
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Fig. 3. Operonic interest of k-ZP for distinct & in E. Coli.
The o-line represents the rate of operons that are covered
by at least one k-IP (coverage rate of the operon by a k-
IP equals 1). The o-line (the A-line and the x-line re-
spectively) resumes the rate of operons that induce ORCs
(mORC:s with at most 2 and at most 3 operons respectively).

to Jaccard’s measure and the coverage rate of the
operon by the k-IP. We associated with each operon
its best matching k-IP according to Jaccard’s measure,
and its best matching k-IP according to the coverage
rate. Conversely, we associated with each k-IP its best
matching operon according to Jaccard’s measure.

Relatively many operons correspond to (m)ORCs

With a Jaccard’s measure equal to 1, we found that
24.4% of the operons (namely, 33 over 135 operons)
match exactly one 1-IP each (i.e. this 1-IP is an ORC,
see the o-plot in Fig. 3 for £ = 1), meaning that each
such operon produces, using all its genes, all the en-
zymes needed to catalyze the corresponding reaction
chain. With a coverage rate equal to 1, we found also
that 49.63% of the operons are completely covered by
at least one 1-IP (o-plot in Fig. 3, with &k = 1). These
rates drop to 12.59 % and rise to 64.44 % respectively
when £ = 10. As k becomes larger, the k-IPs be-
come larger, and thus tend to have associated sets of
genes that strictly contain operons (o-line in Fig. 3
shows increasing values) rather than exactly matching
an operon (¢-line in Fig. 3 shows decreasing values).
It is worth noticing here that 8.15% of the operons (11
of them) exactly match a k-IP for all values of k£ from
1 to 10, mainly due to the fact that in this case no al-
ternative path exists to the 1-IP, and thus the 10-IP is
identical to the 1-IP.

We then repeated the comparison based on the Jac-
card’s measure for couples (and respectively triples)
of operons and, again, k-IPs. With a Jaccard’s mea-
sure equal to 1, we found that 14 couples (2 triples,
respectively) of operons match exactly one k-IP each,
for various k£ > 1 (i.e. the projection of this k-IP into
the metabolic network is an mORC). In Fig. 3, the A-
line and the x-line show the corresponding increase in

T T
Operonic confidence rate
— — — Operons exact match rate| |

Fig. 4. Rate of 1-IPs that exactly match one operon (thus
corresponding to ORCs), with respect to the neighboring
coefficient w in E. coli. Plain line shows the evolution of
this rate when w is upper bounded by a given value (marked
on the X-axis). Complementary, the dashed line represents
the rate of operons exactly matching a 1-IP with w upper
bounded by a given value.

Tab. 2. Summary of Jaccard’s measure between k-IPs (k =
1 and k£ = 10) with relatively small w and the operons from
E. coli.

Rate of operons exactly matched by k-IPs
DataSet| Kl < 10w <50, w<200.0
TP 1(123.71% | 24.44% 24.44%
10| 8.15% |12.59% 12.59%
1l 0% 0% 2.22%
FIPg |1 0% 0% 0.74%
1| 1.48% | 1.48% 1.48%
MIPRo| 0% | 0% 0%

the rate of operons, when mORCs (with at most two
and at most three operons respectively) are considered
additionnaly to ORCs. No result was found for four
operons or more.

Relatively many 1-IPs with small w correspond to
operons and ORCs

Complementary to the research of operons that ex-
actly match reaction chains is the research of reaction
chains that exactly match operons. In this purpose, we
focus on the set 1-Z°P, as it presents the highest num-
ber of exactly mached operons (according to Fig. 3).
Fig. 4 details the evolution of the rate of 1-IPs that
exactly match operons (or operonic confidence rate)
when w is upper bounded by the value on the X-axis
(plain line). Additionnally, the rate of operons that ex-
actly match a 1-IP is drawn (dashed line). The oper-
onic confidence rate increases between the bounds 0
and 0.5, showing two important facts: first, that 1-
IPs that match operons (in other words, ORCs) tend
to have pairs of successive reactions that are catalyzed
by enzymes produced by the same gene (than con-
tributing O to the weight of the 1-IP); second, that the
gene order along the genome and according to the 1-IP
tends to be the same (thus usually contributing 1 to the
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weight of the 1-IP, while in the contrary case the con-
tribution would be much more important). Above 0.5,
an increase of w leads to an initially slow decrease of
the operonic confidence rate. The confidence rate ex-
ceeds 50% of operon recognition for a bound between
0.4 and 1. The operon with highest w has w = 1.75.

Very few ORCs appear in random networks

Tab. 2 shows the comparison between the rate of
operons exactly matching a k-IP (k = 1 and k£ = 10)
in E. coli and in the shuffled data. Clearly, a random
gene order (row k:-IP@v) significantly changes the ge-
nomic distances between the genes belonging to the
same operon of E. coli, leading to a very important
increase of w for the 1-IPs which exactly match the
operon. These 1-IPs (and the corresponding ORCs)
still exist (the metabolic network didn’t change), but
one cannot identify them. A random metabolic net-
work (row k-I'P i) significantly changes the paths
with respect to the network of E. coli, and the result
is a very small number of operons exactly matching a
1-IP only by chance.

4 Discussion

Comparing our results with operons points out the
existence, and often the biological significance, of the
supertracks within a metabolic network (Sec. 3.1).
They are the projections into the metabolic network of
the k-IPs found in the integrated network G;,; (an ex-
ample of k-IP was shown in Fig. 2). They also revealed
to be projections into the metabolic network of about
25% of the operons (thus being qualified as (m)ORCs,
see Sec. 3.2 and Fig. 3).

Previous works [21,2,20] assume that the intra-
operonic gene order relies on the role of encoded en-
zymes in the bacterial metabolism. Although they con-
sider undirected metabolic networks and thus accept
neighboring relationships between reactions that are
not allowed in our approach, these studies show the
great need for evidences to support that assumption.
[9] first proposes a systematic study, by considering
pairs of (not necessarily successive) genes within the
same operon and asking whether their operonic order
reflects the functional order of the encoded enzymes,
as recorded by their participation to a common bio-
chemical pathway. Such pairs are so-called colinear,
and they fulfill constraints involving the order of genes
and reactions only, and not the immediate succession
of the genes along the genome or of the reactions along
some reaction chain. The study shows that approxi-
mately 60% of the gene pairs in E. coli are colinear.
Turning back to our approach - whose constraints in-
volve both the order and the succession of genes and
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reactions - supertracks are topologically (and not bio-
chemically) defined, however, they do match or in-
clude operons. First, this fact shows the tendency of
operonic genes to participate together to the same pro-
cess in the metabolic network, for 24.4% of operons
encode precisely the set of enzymes that are neces-
sary to catalyze a reaction chain, whereas 49.6% of
them encode the sets of enzymes strictly included in
that necessary to catalyze a reaction chain. Second,
this combined genomic and metabolic proximity does
not necessarily imply colinearity since the gene or-
der within the genome may be entirely reversed (no
colinear pair) or merged (some, not all, pairs are co-
linear) with respect to the order of reactions along
the reaction chain. Indeed operons kbl.tdh, cyn.TSX,
csiD.lhgO.gabDTP, otsBA, dgoRKADT are reversed,
whereas the operon fadl/J is found both in right and re-
versed order, and operons rhaBAD, glgCAP, araBAD,
rfbBDACX have their gene set merged along the re-
action chain. However, some operons show a strong
(topological) colinearity, since all their genes appear
exactly in the same order in the genome and, via their
encoded enzymes, along the reaction chain, even when
the reaction chain is much longer than the operon. For
instance, the fadBA operon contains 2 genes that en-
code enzymes catalyzing a six reaction chain (fadB
and fadA respectively encode for the first two reac-
tions and the last four reactions). Some other short
operons (2 genes) contribute to catalyse short reaction
chains (2 genes) thus being colinear pairs (as consid-
ered in [9]), but with the notable property of being
made of successive genes corresponding to successive
reactions (which is not required by a colinear pair and
emphasizes again the interest of our approach).

For instance, our approach provides a novel em-
phasis of the couples or triples of operons defining
(m)ORCs, that we identified using k-IPs. Some of
them are already known in a regulatory context, for
instance fadBA, fadlJ that share the dual common re-
pressor ArcA, fadR [22]. Among them, the couple cys-
DNC, cysJIH has been already identified as an iiber-
operon [23]. Other operons have already been as-
sociated with a unique metabolism of interest, like
atoDAEB and fadlJ that participate in the fatty acid
degradation [24]. ORCs emphasize as well operons
that share homologous genes (ascFB, bglGFB), which
gives an insight about a reaction chain that is encoded
in distinct locations on the genome, showing an ab-
straction of robustness as proposed by [25].

5 Conclusion

This paper proposes a general framework that inte-
grates gene proximity information from one or several
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data sources into a metabolic network. This integra-
tion is obtained using a generic notion of distance be-
tween genes, that is projected on the metabolic net-
work via the encoded enzymes. The resulting inte-
grated network, called G;,, is analyzed by computing
the k-shortest paths (k > 1), or k-IPs, between two
given reactions involved in this network, where the
optimization uses the generic distance between genes.
The collection k-ZP of paths obtained for a given k
over all pairs of reactions is then filtered according to
an appropriate criteria to extract further information
about a given genomic or metabolic context.

Our method allowed us to observe that in metabolic
networks, the reaction chains that join two given reac-
tions diverge far less than in general networks. Even
when 10 such reaction chains exist between two given
reactions, which is not the rule, these chains share a
lot of intermediate vertices, making them acting like
a unique supertrack rather than like 10 different ways
to join the two given reactions. Interesting supertracks
from the metabolic network were discovered by map-
ping the k-IPs computed in the integrated network
onto biologically relevant entities, like operons. We
therefore obtained operon-like supertracks (that we
called (m)ORC:s), each of which map either an operon,
or a small group of operons. Supertracks appear there-
fore as a precisely defined structure to group reactions
chains in the metabolic network that are closely related
both by their constitutive elements and by their func-
tional features.

Further applications of our approach should test
other biological knowledge like KEGG modules, in-
volve alternative distances between genes, and these
are the main lines of our future work.

References

[1] M.Y. Galperin and E.V. Koonin. Who’s your neigh-
bour? new computational approaches for functional
genomics. Nat. Biotechnol, (18):609-613, 2000.

[2] Frédéric Boyer, Anne Morgat, Laurent Labarre, Joél
Pothier, and Alain Viari. Syntons, metabolons and
interactons: an exact graph-theoretical approach for
exploring neighbourhood between genomic and func-
tional data. Bioinformatics, 21(23):4209-15, Dec

2005.

R.A. Notebaart, B. Teusnik, R. J. Siezen, and B. Papp.
Co-regulation of metabolic genes is better explained
by flux coupling than by network distance. PLoS
Computational Biology, (4(1)):e26, 2008.

H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa.
A heuristic graph comparison algorithm and its appli-
cation to detect functionally related enzyme clusters.
Nucleic Acids Res., (28):4021-4028, 2000.

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

E.J.B. Williams and D. J. Bowles. Coexpression
of neighboring genes in the genome of arabidopsis
thaliana. Genome Res., (14):1060-1067, 2004.

Jan Thmels, Sven Bergmann, and Naama Barkai.
Defining transcription modules using large-scale gene
expression data. Bioinformatics, 20(13):1993-2003,
2004.

J. Thmels, R. Levy, and N. Barkai. Principles of tran-
scriptional control in the metabolic network of sac-
charomyces cerevisiae. Nat. Biotechnol., (22(1)):86—
92, 2004.

H. Wei, S. Persson, T. Mehta, V. Srinivasasainagen-
dra, L. Chen, G.P. Page, C. Somerville, and A. Lo-
raine. Transcriptional coordination of the metabolic
network in arabidopsis thaliana. Plant Physiology,
(18):762-774, 2006.

Kéroly Koviacs, Laurence D Hurst, and Bal-zs Papp.
Stochasticity in protein levels drives colinearity of
gene order in metabolic operons of escherichia coli.
Plos Biol, 7(5):e1000115, May 2009.

Eduardo P C Rocha. The organization of the bacterial
genome. Annu Rev Genet, 42:211-33, Jan 2008.

F R Blattner, G Plunkett, C A Bloch, N T Perna,
V Burland, M Riley, J Collado-Vides, J D Glasner,
C K Rode, G F Mayhew, J Gregor, N W Davis,
H A Kirkpatrick, M A Goeden, D J Rose, B Mau,
and Y Shao. The complete genome sequence of es-
cherichia coli k-12. Science, 277(5331):1453-62, Sep
1997.

Minoru Kanehisa, Susumu Goto, Shuichi Kawashima,
and Akihiro Nakaya. The kegg databases at
genomenet. Nucleic Acids Res, 30(1):42—-6, Jan 2002.

Didier Croes, Fabian Couche, Shoshana J] Wodak, and
Jacques van Helden. Metabolic pathfinding: inferring
relevant pathways in biochemical networks. Nucleic
Acids Res, 33(Web Server issue): W326-30, Jul 2005.

Sergei Maslov and Kim Sneppen. Specificity and
stability in topology of protein networks. Science,
296(5569):910-3, May 2002.

C. E. Yang, L. R. Foulds, and J. L. Scott. A
pseudo-polynomial algorithm for detecting minimum
weighted length paths in a network. European Journal
of Operational Research, 57(1):123 — 131, 1992.

Jin Y Yen. Finding the k shortest loopless paths in a
network. Management Sci., 17:712-716, 1970.

E. W Dijkstra. A note on two problems in connexion
with graphs. Numer. Math., 1:269-271, 1959.

F Jacob, D Perrin, C Sanchez, and J Monod. L’ opéron
. groupe de génes a expression coordonnée par un
opérateur. C R Hebd Seances Acad Sci, 250:1727-9,
Feb 1960.

Heladia Salgado, Socorro Gama-Castro, Martin
Peralta-Gil, Edgar Diaz-Peredo, Fabiola Sanchez-
Solano, Alberto Santos-Zavaleta, Irma Martinez-
Flores, Verdnica Jiménez-Jacinto, César Bonavides-
Martinez, Juan Segura-Salazar, Agustino Martinez-
Antonio, and Julio Collado-Vides. Regulondb (ver-

—23—



P. BORDRON, D. EVEILLARD et I. Rusu

Présentation longue

[20]

(21]

[22]

(23]

[24]

[25]

24—

sion 5.0): Escherichia coli K-12 transcriptional reg-
ulatory network, operon organization, and growth
conditions.  Nucleic Acids Research, 34(Database
issue):D394-7, Jan 2006.

Yu Zheng, Joseph D. Szustakowski, Lance Fortnow,
Richard J. Roberts, and Simon Kasif. Computa-
tional identification of operons in microbial genomes.
Genome Research, (12):1221-1230, 2002.

H Ogata, Susumu Goto, K Sato, W Fujibuchi,
H Bono, and M Kanehisa. Kegg: Kyoto encyclopedia
of genes and genomes. Nucleic Acids Res, 27(1):29—
34, Jan 1999.

Ingrid M Keseler, César Bonavides-Martinez, Julio
Collado-Vides, Socorro Gama-Castro, Robert P Gun-
salus, D Aaron Johnson, Markus Krummenacker,
Laura M Nolan, Suzanne Paley, Ian T Paulsen,
Martin Peralta-Gil, Alberto Santos-Zavaleta, Alexan-
der Glennon Shearer, and Peter D Karp. Ecocyc:
a comprehensive view of escherichia coli biology.
Nucleic Acids Res, 37(Database issue):D464-70, Jan
20009.

Dongsheng Che, Guojun Li, Fenglou Mao, Hongwei
Wu, and Ying Xu. Detecting iiber-operons in prokary-
otic genomes. Nucleic Acids Research, 34(8):2418—
27, Jan 2006.

L S Jenkins and W D Nunn. Genetic and molec-
ular characterization of the genes involved in short-
chain fatty acid degradation in escherichia coli: the
ato system. Journal of Bacteriology, 169(1):42-52,
Jan 1987.

Hiroaki Kitano. Biological robustness. Nat Rev Genet,
5(11):826-37, Nov 2004.



Présentation longue

Weighted-Lasso for Structured Network Inference
from Time Course Data

Camille CHARBONNIER!, Julien CHIQUET! and Christophe AMBROISE!

STATISTIQUE ET GENOME, UMR 8071 CNRS, 523, place des Terrasses de 1’Agora, 91000 Evry France

{Camille.charbonnier,

julien.chiquet, christophe.ambroise}@genopole.cnrs.fr

Keywords Biological networks, Transcriptome, Vector auto-regressive model, Weigthed-Lasso

1 Introduction

This model builds upon two popular tools to in-
fer gene regulatory networks from transcriptomic data,
namely Gaussian Graphical Models (GGMs) and ¢;
regularization. GGMs describe the graph of condi-
tional dependencies between genes while ¢; regular-
ization deals with both high-dimensional setting and
selection of the relevant interactions.

We provided in [1] a method that looks for an in-
ternal structure of the network in order to drive and
improve the selection of edges. Indeed, gene regula-
tory networks are known not only to be sparse, but
also organized, so as genes belong to different classes
of connectivity. It thus seems intuitive to search for
regulations preferentially between genes where a prior
structure suggests they should be.

In a recent paper [2], we extended this approach to
VARI modeling in order to be able to handle time-
course data, understood as one single campaign of re-
peated measurements over time. We intend here to
present this work taking into account recent improve-
ments, as included in the R package STMoNe [4] as
from version 1.0-0.

2 Modeling structured networks

Our method belongs to the wide class of weighted-
LASsSO algorithms, designed to reduce false positive
discoveries compared to the classical LASSO.

Let us denote by (X; = {X}, ..., XF})sen the RP-
valued stochastic process that represents the discrete-
time evolution of the p gene expression levels, written
as arow vector. Herein, X} is assumed to be generated
by a first-order vector auto-regressive (VAR1) model

X =X 1A+ b+ ey, tGN*,

where the noise ¢ is Gaussian with zero mean and co-
variance Y. With adequate assumptions on X, X is
a first order Markov process and each entry A;; is di-
rectly linked to the partial correlation coefficient be-
tween X} and X;_,. Practically, nonzero entries of A
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code for the adjacency matrix of a directed graph de-
scribing the conditional dependencies between genes.

Matrix A is inferred by maximizing the /¢;-
penalized log-likelihood. The main purpose of [2] is
to show the interest of taking into account informa-
tion about the topology of the network. The directed-
ness of the model enables us to distinguigh regulator
genes from regulatees and thereby provide the network
with an asymmetric structure Z, either inferred or de-
signed upon biological feedbacks. A structure-based
weight-matrix PZ can then be used to inflate the over-
all penalty level X on less probable edges, that is to say
edges leaving from regulatees, or deflate it on more
probable edges, leaving from regulators.

To sum up, we solve the following penalized log-
likelihood maximization problem:

-~

A = argmax £(A; X) = A- IPZ % Ally,,

where £ denotes the log-likelihood, A tunes the over-
all sparsity of the network, PZ is the weight matrix
adapted to the internal structure Z of the network, and
operator x represents term-by-term product.

3 Inference

The inference algorithm runs in three steps:

1. Inference of a family of networks deprived of
structure (PZ = 1) for a well chosen set of \ val-
ues. We select one of those according to an infor-
mation criterion (e.g. AIC, IEIC) in order to define
an initial adjacency matrix A™,

2. Inference of the structure Z on ANt with help of
the R package mixer.

3. Inference of a new family of networks, this time
using information about the structure through the
weight matrix PZ.

As compared with the inference method developed
in [2] the last two steps have been refined in the R

implementation thanks to the use of the R package
mixer. This improvement answers the question of
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the choice of weights, which can now be derived from
the connectivity matrix inferred by mixer: the higher
the connectivity probability between two classes, the
smaller the penalization for edges between genes of
these two classes.

4 Application to E. coli SOS Network

We focus on a sub-network from E. Coli S.O.S.
DNA repair network analyzed by [7]. Data provide
information on the main 8 genes of the S.0O.S. network
across 50 time points. This dataset has already been in-
vestigated under the light of Bayesian networks by [0]
and is well documented. According to the regularly
updated EcoCyc database, lexA is the only regulator
in this sub-network, regulating all genes including it-
self. We therefore know which network to expect.
We compare in Fig. 1 the performances in terms of
Precision and Recall rates of the LASSO, the Adap-
tive LASSO [9], a Bayesian Network based method
called GIDBN [5], a recursive elastic-net method
called Renet [8], a weighted-LASSO KnownCl which
knows lexA to be the only hub in the network and fi-
nally a weighted-LASSO InferCl with inference of the
hub structure Z. LASSO and KnowCl networks are
presented in Fig. 2.

%;QEDQ;

Fig. 1. Precision (black) and Recall (grey) values for dif-
ferent methods on the second experiment of E. coli SOS
network data from [7].

umuDC

recA recA

ruvA

uvrA
&
uvrY

(b) Known Hub Clustering

uvry”

(a) LASSO

Fig.2. Graphs inferred with (a) classical LASSO and
weighted LASSO with (b) known clustering on the second
experiment of E. coli SOS network data from [7]. True dis-
coveries are drawn in full lines, False discoveries in dashed
lines. Penalty level was chosen according to BIC criterion.
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5 Discussion

We propose a weighted-LASSO algorithm designed
to tackle time varying gene expression data for which
models assuming i.i.d. data become irrelevant. The
proposed approach taking into account an underlying
structure outperforms similar methods. Even when
regulators and regulatees cannot a priori been distin-
guished through analysis of the literature, inference
of the classification improves the performances of the
LASSO in terms of both recall and precision. It there-
fore seems good to advice that, whenever available,
knowledge about potential transcription factors should
be taken into account and that basic knowledge on the
topology of biological networks should not be omitted
in the modeling process.

Finally, we would like to emphasize the fact that this
method is now adapted to the multitask setting (time-
course adaptation of [3]) in the new version of the R
package SIMoNe. It will therefore be able to handle
dataset pooling time-course observations from differ-
ent measurement campaigns.
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1 Introduction

During evolution, mutations do not occur at the
same rate on the two DNA strands. In prokaryotes,
they can occur at different rates on the leading and
lagging replicating strands and on the transcribed
and non-transcribed strands due to asymmetries
intrinsic to the replication and transcription
processes. In bacterial genomes, unequal intra-strand
frequencies of complementary nucleotides have been
associated with replication, the leading strand
presenting an excess of G over C and/or of T over A
[1]. These compositional asymmetries (GC and TA
skews defined as Sgc=(G-C)/(G+C), Sta=(T-
A)/T+A) and S= SgctSta) have been associated with
different nucleotide substitution rates in the leading
and lagging strands [1]. This implies that, on the
same strand, complementary substitution rates differ
from each other and that these asymmetries switch
direction when crossing a replication origin,
producing a sharp upward jump of the S profile. In
human, studies have shown that replication time is a
main determinant of mutation rates [2] but no
mutational strand asymmetry has been associated
with replication [3]. Here, we demonstrate for the
first time the existence of mutational strand
asymmetries associated with replication.

2 Results and Discussion

Recent studies have revealed a number (1564) of
upward jumps of the S profile (S-jump) that were
suggested to coincide with replication initiation
zones active in germline cells [4, 5]. We propose that
replication induces mutational strand asymmetries
that have generated these S-jumps during successive
germline divisions. To test this hypothesis, we took
advantage of recently determined replication timing
profiles of several human cell lines including
embryonic stem cells [2, 6, 7]. These profiles present
peaks pointing to early replication origins active in
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the corresponding cell type. Using a multi-scale
methodology, we detected the peaks (¢z-peaks) in
each replication timing profile (M&M). The
distributions of the distance d separating each 7-peak
from the closest S-jump showed that for each cell
type, numerous peaks are significantly (P < 0.001)
associated with S-jumps. 863 S-jumps are associated
(d<100kbp) with a t-peak of at least one cell type.
We hypothesize that the initiation zones associated
with these #-peaks are active not only in the
corresponding cell type but also in germline cells.
We examined the substitution pattern on each side of
the S-jumps associated with these peaks (M&M). In
intergenic regions most complementary substitution
rates differ significantly from each other. This
pattern is inverted when shifting from one side of the
S-jump to the other. This provides evidence of
opposed mutational asymmetries in intergenic
regions on both sides of these initiation zones. We
examined whether these substitution rates have
generated the S-jumps. We computed the skew at
equilibrium, S*, that would be produced after long
evolutionary times. The S* profile presents upward
jumps similar to the observed jumps showing that
the skew results from the observed substitution rates.
However, the mean stationary value is significantly
larger than the mean current values strongly
suggesting that equilibrium has not been attained.

What mechanism has generated these mutational
strand asymmetries? Recent studies showed that
most human DNA is transcribed [8]; in particular
several types of non-coding Pol II transcripts have
been detected in intergenic regions [8]. The
intergenic skew could thus result from such Pol II
transcription. Following this hypothesis, we show
that, in addition to the protein coding transcripts,
each side of the upward jumps should be also
transcribed in a major mode (R+) divergent from the
peaks and a minor mode (R-) converging toward the
peaks. However, we demonstrate that the
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superimposition  of  mutational = asymmetries
associated with these R+ and R- transcripts is not
compatible with the observed patterns of substitution
rates. In particular, when analyzing the C—T and
G—A transition rates, we observe no difference
between these rates in R+ introns. This implies that
transcription cannot generate any significant
difference between these rates, in any region and
whatever the corresponding transcription levels.
However, these rates are significantly different from
each other in R- introns as well as in intergenic
regions. This allows us to reject the possibility that
the substitution rates observed around the upward
jumps result from Pol II transcription only.

Another hypothesis is that in intergenic regions,
the observed mutational asymmetries result from
replication. On both sides of the corresponding
initiation zones, the replication forks are mainly
oriented divergently from the S-jump centre. Along
this hypothesis, this would generate different
complementary substitutions rates and would
produce exactly the skew observed in intergenic
regions. In introns, this skew superimposes to the
skew associated with transcription [9]. In full
agreement with this hypothesis, we observe,
downstream of the upward jumps, an increase of S in
introns transcribed divergently from the peak centre,
i.e. in the same direction as the replication fork
progression. In introns transcribed in the opposed
direction,  this  replication-associated skew
superimposes to the negative skew associated with
transcription. As expected, we observe opposed S
values in the corresponding regions upstream of the
upward jumps finally establishing that all data are in
agreement with this hypothesis.

In conclusion, we demonstrate for the first time
the existence of replication-associated mutational
asymmetries and show that replication is a major
driving force that shapes human genome
composition.

3 Materials and methods

The replication timing data of Hela cell [2] as well
as other cell lines [6, 7] were processed and S50
values were computed as described in [2]. The
replication initiation zones (z-peak) were detected in
each replication timing profile using a continuous
wavelet transform. The S-jumps detected within the
skew profile were retrieved from [4]. The distance d
between each S-jump and the closest #-peak was
computed for each timing profile. 1000 random
simulations were performed to evaluate the
significance of the distribution of d and the
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corresponding P-values. Substitutions were tabulated
in the human lineage since its divergence with
chimpanzee using the macaque and orangutan as
outgroups as described in [2]. The method used to
compute the nucleotide composition at equilibrium is
based on the model of sequence evolution with
neighbor-dependent mutations introduced by Arndt
etal [10].
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Abstract Expression QTL studies have been carried out using either transcript or protein
abundance to monitor gene expression. However, different biological processes underlie those
traits since protein levels are affected by post-transcriptional regulation. In this work, we
dissected gene expression traits from which we isolated the post-transcriptional component. We
modeled post-transcriptional variation as the residuals after regressing on RNA levels. We
integrated published data obtained from a yeast population phenotyped at the transcriptomic
and proteomic levels of 137 genes. Mapping this inferred post-transcriptional contribution
revealed 36 loci that post-transcriptionaly affected 64 proteins. We identified regulatory
hotspots that control many genes, and a candidate master regulator of amino-acid metabolism
genes. Our work presents an example of how to disentangle related (yet different) complex traits

in order to reveal their genetic basis.

Keywords: QTL, post-transcription, gene expression, yeast.

1 Introduction

Gene expression is a continuous trait that displays
a complex genetic inheritance that involves multiple
loci. The technique of expression quantitative trait
loci (expression QTL) has helped understanding the
genetic basis of these variations. It is a variant of
QTL which considers gene expression in a
population of genetically diverse individuals as a
quantitative trait. Expression QTL studies using
either transcript or protein abundance to monitor
gene expression have been carried out [1,2].
However, different biological processes control those
complex traits: at a steady state, the transcript
abundance is mainly dependent on transcription and
RNA degradation, whereas protein level is also
under the control of post-transcriptional processes,
e.g. translation or protein degradation. In this work,
we dissected gene expression traits from which we
isolated the post-transcriptional component in order
to better understand its specific regulation. A QTL
analysis of this inferred trait was then carried out to
unravel the genetic basis of post-transcriptional
regulation of gene expression.

2 Results

The group of Leonid Kruglyak has generated a
genetically  diverse  Saccharomyces  cerevisiae
population derived form a cross between a wild
isolate (RM11-1a, hereafter RM) and a laboratory
strain (BY4716, hereafter BY). This cross has been
used to explore the genetic regulation of either
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transcript [1] or protein [2] variation. The original
publication of the proteomics QTL data just assessed
protein concentration as a quantitative trait.
However, such analysis ignores the fact that protein
concentration variation may just reflect variation of
mRNA levels. Hence, it is a priory unknown if the
trait reflects variation of transcript levels or post-
transcriptional regulation. We sought to separate
transcriptional and post-transcriptional regulation.

After combining these two data sets we obtained
phenotype data (both transcriptomic and proteomic
data) for 137 genes, and genotype data for 1106
informative markers in 93 segregant strains. For each
gene, we regressed the proteomic measurements
against the transcriptomic ones and considered the
residuals as the post-transcriptional contribution to
gene expression. We determined linkage between
residuals in the segregants and the genetic markers
using a novel mapping method developed in the
group (manuscript in preparation). This gives rise to
what we call post-transcriptional QTL or ptQTL. It
allowed us to map 36 loci that contribute to the post-
transcriptional regulation of 64 genes (Figure 1).

2.1 Detection of post-transcriptional
regulatory hotspots

In the previous expression QTL studies it has been
shown that loci that affect gene expression are not
evenly distributed throughout the genome and that
few hotspot loci can regulate the expression of
numerous genes. We detected 2 post-transcriptional
regulatory  hotspots  (p<0.005, as described
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previously; Brem et al., 2002). One locus is located
on chromosome III and mapped to LEU2, a gene
essential for leucine biosynthesis that had been
artificially deleted in the RM parental strain. The
other hotspot located on chromosome XIII is also
involved in the control of protein levels [3], but the
true causative genes had not been identified yet.

A
A

<\
\>

A

Fig. 1. Protein-protein interaction network of the target
genes used in the post transcriptional QTL analysis.
Square gray nodes represent a gene/protein. Triangle
black nodes correspond to post transcriptional QTL loci.
Solid lines represent protein-protein interactions; dashed
lines represent QTL linkage.

2.2 A missense polymorphism in BUL2
could underlie the QTL hotspot

Genes affected by the hotspot on chromosome
XIITI are enriched for genes involved in amino acid
(AA) metabolism (p<0.005). This hotspot contains
the candidate gene BUL2 which encodes an
adaptator component of the RspSp ubiquitin ligase
complex that regulates the expression, localization,
and activity of the high capacity general amino acid
permease (Gaplp). Gaplp has been shown to be
active at the plasma membrane when internal amino
acid levels are low. When internal amino acid
concentrations  are  sufficient,  Gaplp is
polyubiquinated by the Rsp5p-Bullp-Bul2p complex
and sorted to the vacuole [3]. The amino acid
sequence of Bul2p in BY and RM differs by 2
substitutions, one of which affects a highly
conserved residue. We hypothesize that Bul2p
function could be altered in BY bul2 strains leading
to a modified regulation of Gaplp and subsequently
a change in amino acid uptake capacity.
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2.3 Epistatic interaction between post-
transcriptional QTL hotspots

Our results showed that 11 out of 18 genes
controlled by the hotspot on chromosome XIII were
also linked to the hotspot at the LEU2 locus.
Therefore, we analyzed the residuals of the genes
linked to both hotspots and identified strong epistatic
interactions between the LEU2 and BUL?2 loci. The
post-transcriptional regulation of all of the 11 genes
linked to the two loci was modulated only in the
strains carrying both the deletion of LEU2 (i.e. the
RM allele) and the BY BUL? allele. Those findings
suggests that the post-transcriptional regulation of
those genes is the consequence of a modification of
amino acid metabolism triggered by both i) leucine
limitation due to the LEU2 deletion, and ii) a
modified amino acid uptake capacity due to the
altered regulation of Gaplp by BY-Bul2p.

3 Conclusion and perspectives

In this work we demonstrated that the post-
transcriptional contribution to gene expression is a
quantitative trait affected by multiple natural genetic
variations. In order to confirm our predictions we are
currently conducting allele switching experiments.
We are engineering BY-bul2 RM and RM-bul2 BY
strains, in which we will asses the phenotypes of the
target genes linked to the BUL2 hotspot through
proteomic measurements, and the trafficking of
tagged-Gaplp by fluorescence microscopy. This is
the first QTL study systematically separating
transcriptional and post-transcriptional regulation as
distinct traits and our work presents a general
framework for disentangling related (yet different)
complex traits in order to reveal their genetic basis.
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Introduction

Three years ago, the whole-genome shotgun se-
quencing of Vitis vinifera opened the way to genom-
ics approaches in grapevine. Indeed, in the frame-
work of a French-Italian consortium, the 487 Mb of a
highly homozygous genotype (PN40024) have been
sequenced and assembled in a first 8x draft [1]. This
work has been improved to release a high quality
12x genome assembly this year. As members of the
IGGP consortium, we have provided a curated Vitis
gene set essential for the learning of the gene predic-
tion tools. The Genoscope carried out the structural
annotation of the genome using the GAZE software
as combiner. Based on previous relevant results ob-
tained with the EuGéne gene finder tool [2] on other
plant genomes, we have decided to use it in order to
complete the GAZE annotation and provide a robust
and complete gene inventory to the Vitis community.
We used the FLAGdb™ database [3] for the integra-
tion of the Vitis 12x genome and the different struc-
tural annotations and functional data.

Results

Among the large panel of gene prediction tools, Eu-
Géne presents the advantage to perform both the
roles of ab initio gene finder and combiner by the in-
tegration of several sources of evidence such as spli-
cing sites, protein similarities or cognate transcripts.
Furthermore, the weighting of the different evid-
ences that are exploited to predict gene structures is
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set up through algorithms which explore the para-
meter space and select the best combination accord-
ing to a reference gene set. Based on previous prac-
tices (see http://eugene.toulouse.inra.fr/), we used
EuGeéne to perform the structural annotation of the
12x grapevine genome. Using a curated set of 600
complete PN40024 genes (genomic regions with
cognate full-length cDNAs) and more than 4500 ex-
perimentally proved splicing sites, we carried out the
training of SpliceMachine for the prediction of the
splicing sites and EuGéne for the detection of coding
regions (Interpolated Markov Model). These data
were combined by EuGeéne to BLASTX and Gen-
omeThreader results taking into account similarities
and spliced alignments of more than 400 000 ESTs
and cDNAs. Genomic sequences have been masked
for repeat elements before gene annotation. Training
and annotation tasks have been run on the MIGALE
computer platform (MIG unit, Jouy-en-Josas) and fi-
nal results have been integrated into the FLAGdb"™
database to complete the Genoscope annotation ob-
tained with GAZE. The evaluation of EuGene results
gives sensibility and specificity of 80% and 79% re-
spectively (at the gene scale). Along the 19 Vitis
chromosomes, GAZE predicts 26347 genes whereas
EuGéne predicts 44414 genes. Although this huge
difference led us to assume that EuGéne over-pre-
dicts false positive short genes, we decided to keep
all the predicted structures without post-filtering. Ac-
tually, out of the 12350 EuGéne genes which do not
overlap GAZE predictions, 80% of them are suppor-
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ted by transcripts and/or similarities on at least half
of their size. Furthermore, a similar situation previ-
ously obtained in Arabidopsis thaliana provides us
proofs of the EuGéne benefits since the meta-analys-
is of more than 500 transcriptomes from different or-
gans has experimentally validated 70% of small cod-
ing genes that were only detected by EuGeéne [4].

At the functional level, the standard annotation
based on the inference of function by homology has
been enriched by the prediction of targeting peptides/
signals and membrane domains with a pipeline com-
bining ChloroP, WolfPSORT, Predotar and TM-
hmm. All the genes have been classified in 2970
families and their phylogenetic profiles have been
defined by comparisons against sequence libraries
built from 11 phyla.

Vitis Senome 12X

Fig. 1. Annotation and integration around the vitis
genome.

Altogether, these predicted and experimental data
have been integrated into FLAGdb™. This database,
dedicated to plant genomes, is composed of a rela-
tional database and an associated user-friendly Java
interface [3]. Different tools have been developed
with a conceptual effort for the graphical display and
the hierarchical organization of the different genomic
data in order to browse and explore them and de-
cipher functional relationships between them. We
also have written a new Java module allowing the
users to access and expertise the predicted links
between orthologous genes in the four different plant
genomes hosted in FLAGdb™. This tool jointly dis-
plays Reciprocal Blast Hit results, intron-exon struc-
tures, promoter regions and global protein align-
ments. Put together, these data permit to reinforce (or
invalidate) the orthology relationships, helping there-
fore the knowledge transfer between Vitis and other
plant model species. As a structuring portal for data
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mining in Vitis, FLAGdb"™ provides numerous cross-
references and links to other databases and tools such
as GenBank, URGI and Genoscope genome
browsers, PFAM and soon, SNIplay which is dedic-
ated to the sequence diversity in Vitaceae and should
be public in the next months.

This level of integration in FLAGdb™ has been
very useful for the fine characterization of families
related to wine characteristics, which have a higher
gene copy number (more than twice larger) than in
other sequenced plants. Among them, the Stilbene
Synthases drive the biosynthesis of resveratrol which
has been correlated with the health benefits associ-
ated with moderate consumption of red wine (the
‘French paradox’) and the Terpene Synthases
product a high diversity of terpenoids, whereof the
relative abundance is correlated with the aromatic
traits of wine. Based on GAZE and EuGéne annota-
tion, transcript sequences, phylogenies and well
known protein features, the 220 members of these
families have been detected, annotated and classi-
fied. The study of their evolution through comparat-
ive genomics approaches and the biochemical char-
acterization of their products are under progress.

Acknowledgements

The authors are grateful to Jérome Gouzy, Thomas
Schiex, Philippe Grevet, Aurélie Canaguier, Clé-
mence Bruyére, Joerg Bohlmann and Philippe
Hugueney for their support and helpful advices.

References

[1] Jaillon O, Aury JM, Noel B, Policriti A, Clepet C,
Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C,
Vezzi A, et al. (2007) The grapevine genome sequence
suggests ancestral hexaploidization in major angiosperm
phyla. Nature, 449(7161):463-7.

[2] Schiex T, Moisan A and Rouzé P (2001) EuGene: An
Eucaryotic Gene Finder that combines several sources of
evidence. Computational Biology, Eds. O Gascuel and
MF Sagot, LNCS 2066, pp. 111-125.

[3] Samson F, Brunaud V, Duchéne S, De Oliveira Y,
Caboche M, Lecharny A and Aubourg S (2004) FLAGdb*
*: a database for the functional analysis of the Arabidopsis
genome. Nucleic Acids Research, 32: D347-D350. [http:/
urgv.evry.inra.fi/FLAGAD]

[4] Aubourg S, Martin-Magniette ML, Brunaud V, Tacon-
nat L, Bitton F, Balzergue S, Jullien PE, Ingouff M, Thar-
eau V, Schiex T, Lecharny A and Renou JP (2007) Ana-
lysis of CATMA transcriptome data identifies hundreds of
novel functional genes and improves gene models in the
Arabidopsis genome. BMC Genomics, 8:401.



Présentation longue

An efficient algorithm for gene/species trees parsimonious
reconciliation with losses, duplications, and transfers

Jean-Philippe DYON!, Celine S ORNAVACCA?, Gergely J. 30LLOSE, Vincent Ranwezand Vincent
Berry!

1 LIRMM, CNRS - Univ. Montpellier 2, France.
2 Center for Bioinformatics (ZBIT), Tuebingen Univ., Gernyan
3 LBBE, CNRS - Univ. Lyon 1, France.
4 ISEM, CNRS - Univ. Montpellier 2, France.

Abstract (Motivation) Tree reconciliation is an approach that exipkthe discrepancies between
two evolutionary trees by a number of events such as specgtiduplications, transfers and
losses. It has important applications in ecology, biogepiy and genomics, for instance to
decipher relationships between homologous sequencessul{®eWe provide a fast and exact
reconciliation algorithm according to a parsimony criteri that considers duplication, transfer
and loss events. We also present experimental resultsitheticst insights on the conditions under
which parsimony is able to accurately infer evolutionargmarios involving such events. Over
all, parsimony performs well under realistic cases, as aslfor relatively high duplication and

transfer rates. As expected, transfers are in general lessirately recovered than duplications.
Availability: www. | i rmm fr/ phyl ari ane/

Keywords reconciliation, gene and species trees, transfers, dijolits, losses, parsimony.

Un algorithme de parcimonie efficace pourlar  éconciliation d’arbres de
genes/esp eces avec pertes, duplications et transferts

Résum é (Motivation) La reconciliation d’arbres est une approche qui permet d'exypdir les diferences
entre deux arbreévolutifs par le biais c@venements comme lesgpations, duplications, transferts et pertes
de ¢enes. Cette approche est applguenécologie, en biogographie et en gomique, par exemple pour
étudier les relations entreégjuences homologues&sultats) Nous proposons un algorithme @eanciliation
efficace et exact, béassur un criere de parcimonie et prenaatla fois en compte les duplications, les trans-
ferts et les pertes dedges. Des@sultats exprimentaux montrent que la parcimonie fonctionne bien abass
conditions ealistes, mais aussi dans le cas de taux de duplication atadsfert relativemenélewes. Sans
surprise, les transferts sont l@senements les plus difficil@sinferer correctement.

Mots-clefs réconciliation, arbres de génes et d’espéces, trasstirplications, pertes, parcimonie.

1 Introduction tions et de pertes de matériel génétique. Cert
auteurs pensent que les transferts chez les pro

e . . : otes (et a proximité de l'ancétre commun) son
L'histoire évolutive des organismes vivants est

, , , R importants qu’'unréseau de la vieest plus appro
généralement représentée paarre d'esgcesdont P d P PP

: i e grlg gu’une simple arborescencg,q. Des étude:
les nceuds internes représentent des événements de . . o
P L . , complémentaires semblent toutefois indiquer que
spéciations §,21]. L'histoire évolutive d'un ensem-

, L , . transferts n’obliterent pas complétement le sic
ble de séquences homologues dérivées d’'une séquenc

. R 1@VBiutit de speciation et qu'un arbre de la vie
ancestrale commundafnille de gne$ est elle aussi P d P

représentée par un arbre. on parle alors ciore encore étre discerné malgré le bruit qu’ils enc
P P ' P drent [,13,21]. Méme si ce débat n'est pas ¢

de genes Contrairement a un arbre d’especes, un . , ,
X i v core clos, il a d'ores et déja engendré des pro

arbre de genes résulte non seulement d’événement . . : . B
.considérables. Par exemple, il est bien ét

de spéciations, mais aussi de transferts, de duplica-
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gue la détection de transferts par approche phHigiles a respecter. En effet, comme les transt
logénétique est plus fiable que par comparaisons sgdepassent horizontalement entre deux especes '
séquencesl3,16,26]. L'approche phylogénétique laau méme moment, ils imposent des contraintes
plus populaire est leéconciliation d’arbreset se base porelles entre deux nceuds de(ou I'un n'est pas
sur une comparaison détaillee d'un arbre de germwétre de l'autre) qui S'ajoutent aux contraintes
avec un arbre d'espéces référent. Ce dernier n'est paes (un noeud est nécessairement plus ancier
toujours connu mais peut étre estimé de maniere s#s descendants). Ainsi, toute réconciliation a
isfaisante par des analyses phylogénomiques sur plesieurs transferts peut contenir des contraintes
séquences moléculaires de nombreux genes ou plexlles, entre les nceuds de mutuellement incom
caractéristiques de génomes complét.| patibles (cf. Figl).

Les méthodes de réconciliation permettent Plusieurs approches ont été proposées pour sur
d'expliquer les differences possibles entre un aer la difficulté liee aux contraintes temporelles. |
bre de geénes et un arbre d'espéces suite a @esmiere solution]0,17] est de définir a 'avance (p:
événements de transfert, de duplication et de pedes moyens externes a la méthode de réconcilia
Une réconciliation d’arbres plonge I'arbre de généss paires de branches deentre lesquelles les trar
dans l'arbre d'espéces, représenté par un enséents sont autorisés. De nouvelles branches hori
bles de tubes, et associe chaque nceud internetalies sont ajoutées pour connecter de telles paire
l'arbre de génes a un événement évolutif particulibranches et le graphe obtenu Sleest appelégraphe
(i.e. spéciation, duplication, transfert ou perte)][  d’especesS. La réconciliation plonge I'arbre de gen

Les approches pour réconcilier un arbre de géngsion plus dansS mais dansS et une réconciliatio
G et un arbre d’espéces se basent sur des modélda plus parcimonieuse se calcule en tendpgS|® -
combinatoires §,19,11,12,9] ou probabilistes 1,25]. |G|). Cependant, calculer un graphe d’espéeces
Ces derniers integrent plusieurs parametres et offrdoisant une réconciliation la plus parcimonieuse
une meilleure représentation de I'eévolution génomique probleme NP-completl[]. Une approche plu
gue les modéles combinatoires, mais sont beaucgupmetteuse est de considérer une variante réalis
plus exigeants en mémoire et temps de calcul. C'@sobleme MPR ou les nceuds de I'arbre d’especes
pourquoi seuls les modéles combinatoires sont utilatés. Ces dates peuvent étre calculées par une
ables pour des études phylogénomiques de plusidoge moléculaire relaxée appliquée sur des arbre
milliers de familles de gene&(]. Cependant, les nou-génes et des séquences moléculaires. Pour le prol
velles technologies permettent d’obtenir les sequenclesréconciliation, des dates relatives sont suffise
de génomes complets (c.?]] en peu de temps et ce®t la présence de données provenant de fossiles
modeles sont en voie de devenir trop lents. pas requisel5].  Cette piste a été proposée pi

Nous proposons un modeéle combinatoire @es études de coévolution 73,18 et est désormai
reconciliation qui considére les évenements #&eprise pour la réconciliation d’arbre de génes/a
spéciation, de duplication, de transfert et de pefl@speces{,24]. La datation des noeuds depermet
(respectivement notéS, D, T, et L), et un algo-
rithme d’une complexité meilleure que ceux actuelle-
ment proposés. Formellement, nous considérons
le probleme d’optimisation nhommeéRéconciliation
la Plus Parcimonieusgou MPR 1) : pour un ar-
bre d'especesS, un arbre de géne§& et des colts
associés aux évenements D, T, et L, trouver
une réconciliation de colt minimum (ou le colt est
la somme des colts des événements induits par le
plongement d&; danssS).

Des que I'on considéere les transferts, le probleme
MPR est NP-complet, méme dans le cas ou I'on doit
reconcilier un seul arbre de genes binaire avec Un@jg. 1. Deux scénarios de réconciliation entre l'arbre
bre d’espéces binairel},24]. Ceci est directementgenes’ (traits pleins) et I'arbre d’espécés(tubes), ou le
lie au fait que les transferts induisent des contraintgsnboleo représente une perte. (En haut) Un scénario
chronologiques entre les noeuds Slequi sont dif- porellement consistant. (En bas) Un scénario tempol

ment inconsistant : le transfert du donneur au temyg
1 Cet acronyme est lié a lintitulé anglophone du prokgem (F€SP.t4) au receveur au temps (resp.ts) implique queu
“Most Parsimonious Reconciliation”. précede (resp. succede)
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d’'assigner un intervalle de temps a chaque brancheelle introduite pard,14,24] et permet de résoudre
Il est alors possible d’assurer la consistance individMiPR enO(|S’|-|G|). Nous explorons ensuite la que
elle de chaque transfert en vérifiant que la branctien fondamentale suivantd.a parcimonie est-elle u
ditedonneuset celle ditereceveusent des intervalles critére pertinent pour identifier leéritable sénario
de temps dont l'intersection est non-vide (le transfé&volutif d’'une famille de gnes?
est dit temporellement et localement consistant). La
variante du Rrobl‘eme MPR respectant cette contrai@te Méthodes
locale peut &tre résolue ef(max(|S| - |G|)?) par
programmation dynamiqueLf]. Cependant, si deuxs 1 pefinitions et notations basiques
transferts sont consistants de facon locale mais pas
de facon conjointe (cf. Fidl), alors la réconciliation ~ Soit 7" un arbre ou les ensembles de nceuds ¢
n’est pas globablement consistante. De telles incongiganches sont respectivement not&d’) et £(7") et
tances peuvent étre corrigées a posteriori en modifiaatlement ses feuilles sont étiquetee@l’), L(7') et
certains événements[17,18], mais I'optimalité de la £(71") dénotent respectivement sa racine, I'enser
réconciliation obtenue n’est plus garantie et 'approclde ses feuilles et 'ensemble des étiquettes de
proposée n’est qu’'une heuristique pour le MPR.  feuilles. Nous allons adopter la convention que
Une solution pour calculer une réconciliation glogacine est en haut de I'arbre et ses feuilles en bas.
alement consistante est de subdiviser la période couUne branche d&’ est dénoté¢u,v) € E(T), ouu
verte parS en temps élémentaires, d’associer chacu@gt le pere de. Pour un nceud de T, T, dénote le
de ses branches a un de ces temps et de permettréqus-arbre dé’ enraciné em, u,, est son pereu,, u)
transfert seulement entre un donneur et un recevegt la branche parent deet 7(,,, ) dénote le sous
d’'un méme temps élementaire. Cette approche pernagre del” enraciné avec la brancfie,, ). Un nceuc
dans le cas d’arbres binaires, d’obtenir des algorithnmieterne « de 7" a un ou deux fils, notés respecti
exacts pour résoudre le probléme MPR, comme cetignt{u;} ou {uy,uz}. Il estimportant de souligne
proposeés parlf] et [9]. Le premier a une complexitequ’un arbreT” est non-ordonné et les deux fils et
théorique erD(|S|* - |G|*) tandis que le second estiz d’'un nceud interne: de 7' sont interchangeable
enO(|S[* - k* - |G|), ol k est le nombre de nceudéutrement dit,u; peut &tre arbitrairement sélection
résultants de la subdivision ¢&(%). Ces complexites, comme l'unique fils de: qui respecte une contrair
bien que polynomiales, restent élevées et impliqueletnnée. Pour deux nceudstw’ deT’, v’ est dit unde-
des temps calcul importants. scendantresp. strict) de: siu est sur 'unique chemi
Certains des algorithmes décrits ci-dess@streu’ etr(T) (resp. et # u').
s'appuient sur un modele combinatoire de Un nceud interne; de 7' est ditartificiel lorsqu'il
reconciliation issu de travaux se focalisant s@run seul fils. Lacontractiond’'un nceud artificie
les duplications et pour lesquels chaque nceud:designifie que ce nceud est enlevé de l'arbre et qu
estcoupk avec un seul nceud d& Toutefois, un tel deux branches adjacentes sont jointes. Un aiir
couplage est insuffisant pour les transferts car il @8t dit unesubdivisiond'un arbreT" si la contractior
peut explicitement indiquer & la fois le donneur et l&cursive de tous les noeuds artificielsidelonneT.
receveur d’un transfert immédiatement suivi d’'une Un arbre d'esggces S est un arbre binaire tel qu
perte. Cette difficulté a conduit certains auteurs & eleaque élément dé(S) représente une espece e:
considérer qu’une restriction du probléeme MPR qtinte et étiquette exactement une feuilleiél y a
néglige le colit des pertes4,14,24]. une bijection entrd.(S) et £(S)). Un arbre de gnes
Etant donnés un arbre de génés et un arbre G estun arbre binaire. Dorénavant, nous considé
d’espécess daté, nous présentons un algorithme polyin arbre d'especesS et un arbre de genes tel que
nomial de réconciliation basé sur un modele cod{G) C L(S) etL : L(G) — L(S) dénote la fonc
binatoire oul les quatre types d’événements évolutif@n qui couple chaque feuille d& a I'unique feuille
(DTLS) sont considérés. Contrairement aux ap-desS avec laméme étiquette. Aussi, le terme arc ré
proches existantes, notre algorithme gérent correddine branche dé et le terme branche est potr
ment la combinaison d’événemerits+ L. Notre Dans le reste de larticle, nous supposons
modele s’appuie sur une subdivisishde S similaire de linformation temporelle est donnée pour I'arl
S - o d’espécesS (c’est-a-dire qu’'une période de temps
Sae"i’grcisr aveurs, fjoister;‘i‘;dll:‘;a\t;g:‘ssiog‘g‘ég%“t'zg“Tgs")@'ar&ssoci’ee a chaque événement de spéciation) e
21;;8 d(?nt la correction reste a montrer. * larbre S est_ultrar,n.etrlque. ,
3 L'algorithme considére un coit de spéciation nul, maisst ~ UNe fonction d'étiquetage temporel patiest notéee
facile de I'adapter pour un codt non nul. fs : V(S) — R et est telle que pour chaque feu
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xz € L(S), 0s(z) = 0, et pour chaque paire de nceuds

r(G) r(G°)
z,x’ € V(S), quez’ soit un descendant strict de
impliquefs(2’) < Os(x). Cet étiquetage temporel est w u w
interprété de la facon suivante : chaque feuillede v o
correspond a une espéce contemporaine qui existe Au D P S p

temps présent = 0 et chaque nceud interne corre’
spond a une espece ancestrale qui a donné naissarllzé .
etd, appartenant resp. aux especes contemporainés

deux lignees au temps pagse 0. C et D (cf. Fig.1). (b) Un arbre de génes complgt, olio
DEFINITION 2.1. Soit un arbrel” et un sous-ensemblgepresente des genes feuilles perdus.

de feuilllesK C L(T'). L'arbre homéomorphiquée

5 (a) Un arbre de gengs avec quatre feuilles, b, c,

T qui connectds est noé T'| i et est le plus petit sous- y 34— — =5

arbre induit deT" tel queL(T'|x) = K. y 9 y/»<
Nous introduisons ci-dessous le concept d'un - " "

scénario d’évolution d’'un géene débutantras) et ! :/é: < N\

évoluant dansS par des événemeni3TLS. Untel 4 B C p% A B C D

scénario génére uarbre de gnes complehoté G°, Fig.3. (a) Larbre d’especes et (b) sa subdivisios’. Les
ol I'ensemble de feuilles est formé de génes contefgeuds artificiels d&” sont en gris et dénotés, 2” etz”,
porains mais aussi de génes perdus durant le scen@is'(z) = 0/ (z') = 0 (") €t (y) = 05 ().
(cf. Fig. 1 et2). Formellement(G°) = L¢(G°) U
L1.(G°), ou Lc(G?) et Ly (G?) sont disjoints et corre- e probleme d'optimisation considéré est norr
spondent respectivement aux génes contempor@nsNIPR et est défini ci-dessous.
et perdus(). Entrées. Un arbre d'espéces avec une fonctiol
DEFINITION 2.2. Soit un arbre de gnes obse& G d'étiquetage temporefs : V(S) — R, un arbre
et un arbre d’espcesS, avec sa fonction étiquetage de génes observ&, la fonction d’association ent
temporelfs. UnscénarioDTLS pour G le long deS  feuilles £ : L(G) — L(S) et les trois colts, = et
est noé (G°, M, 6¢,), ol G° est I'arbre de @nes com- )\ des événemeni8TL.
plet, M : V(G°) — V/(S) couple chaque nceudde Résultats.Un scénaridTLS consistan{G®, M, 62,)
G aunnceud d§ etdg, : V(G°) — [0,05(r(S))] as- pourG le long deS qui minimiseCodt(G°, M, 62,).
socie chaque noeudde G° a uneétiquette temporelle
de 5. LesewenementDTLS correspondants et as-, 5y mod éle de réconciliation efficace
socis aux noeuds € V(G°) sont finis ci-dessous.

Pour obtenir un modéle efficace, I'arbre d’'espé
1. SiM(u) =z, M(uy) = x1 et M (uz) = o, alors est subdivisé pour obtenir une discrétisation du te

u est unévenemens. (cf. Fig. 3) et permettre de calculer une réconciliat
2. SiM(u) = M(uy) et M(u) = M(uz), alorsu est la plus parcimonieuse (de maniere similaire3@ ]).

un évenemeni. DEFINITION 2.3. Pour un arbre (binaire) d'espces
3. Siu est une feuille d&° qui n’est pas dangs, S et une fonction dtiquetageds : V(S) — R, soit

alors v est unévenemeni. S’ la subdivision deS suivante : pour chaque nce

4. SiM(u1) = M(u) =2, M(uz) =y ety nestni = € V(S)\ L(S) et chaque branchg,,y) € E(S)
un anétre, ni un descendant de alors u est un tel quefs(y,) > Os(x) > Os(y), un nceud artifi
ewenement, (z,, ) et (y,,y) correspondant re- ciel est ingré sur la branchgy,, y) au temps(z).
spectivement aux branches donneuse et receveligesubdivision nous permet defthir une fonctior

d’etiquetage temporel pou’ en se basant seuleme
Un s&nario DTLS est dit consistantsi et seule- sur sa topologie : pour chaque € V(S’), 0%, (x) est
ment si les contraintes suivantes sont respest le nombre de branches quégarentz d'une de se

Premirement, l'arbre de @nes hor@omorphique feuilles descendantes (toute$éa méme distance).

G| (ce) €StG. Deuxemement, pour uavenement  L'étiquetage temporel d’'une branchie,, z) de S’

T tel que dcrit ci-dessus (c'est-dire en (4)) est notedy,(z,,z) = 6g(x). Pour un temps,

[0s(x),0s(2p)]N[0s(y),05(yp)] # 0. Troisiemement, E,(S") = {(zp,z) € E(S') : 0% /(xp,x) = t} dénote

pour chaque arqu,,u) € E(G°), 0%(u,) > 0%(u). I'ensemble des branches §€localisées au temgs

Le cdit dun tel sénario est nd Notre modele de réconciliation défini ci-dess:

Cout(G°, M,0g) = dé + tr + I\, ou d, t, etl se base sur six événements et groupes d’'évenel
denotent respectivement le nombré&énementsd, DTLS, incluant un événement dit “null” et not&
T etl, etd, T et A sont leurs cats respectifs. (cf. Fig. 4).
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DEFINITION 2.4. Une réconciliation entre G et S
est noée o et associe chaque artu,,u) € E(G)

a une €quence ordorée de branches de la subdivi-
sion S’ et noée o(u,,u). Dans cette &quence de
¢ élements,a;(uy,, u) dénote lei-iemeélement pour
1 < ¢ < (. Chaque branchey;(u,, ), denote ci-
dessous(z), ), respecte une et seulement une des (a) Spéciationg) (b) Dup. @)
contraintes suivantes (cf. Fig).

Premerement, consifons que (z,,z) est la S
derniere brancheoy(u,,u) de la £quence. Si est R
une feuille deG, alors z est I'unique feuille des’ ! Iul: :“21 ! Dl
ayant la némeétiquette que. (c'esta-dire quer = T oo Thoo
L(u)) (Contrainte de couplage contemporain). Sinon, (c) Transfert ) (d) Null (@)
un des cas ci-dessous esérilié.

1 I :L‘//)I I

- {al(uﬂul)val(u7u2)} = {(mﬂx1)7($7x2)} v : : [: :
(evenemens). | Hu:
— aq(u, u1) etoy (u, uy) sont tous les deuggalesa TR I
(zp, ) (evenemenD). xS SN xi E :c’i E

~ {oa(u, u), on(u, u2)} = {(ap, 2), (275, 2')}, Ol (e) Spéciation + Pert&[L)  (f) Tr. + Perte [[L)

(2'p, 2') estune branche de’ differente dez;, 2) Fig 4. Les six evenemenBTLS de la Déf.2.4, ou un
et locali®e au temp8y, (z,,2)  (évenement). arc (u,,u) (ligne pleine) de I'arbre de génes complgt
est plongé dans une branche,, z) (tube pointillé; zone
Si (zp,z) n'est pas la derrére brancheoy(u,,u) blanche) de la sequencgu,, u).
de la £quence, un des cas suivants éstfie.

— 2 est un noeud artificiel d&’ avec un seul fils géne ol au moins une des copies s’éteint; un trar
x1, etla prochaine branche;  (u,, v) est(z,z;) OU la lignée de gene transférée s'éteint.

(evenemenp). Les six cas de notre modele permettent de
— z nest pas un nceud artificiel et;,(u,,u) € gresser soit dans les tranches de tempsSteoit
{(x,21), (z,22)} (évenemensL). dans les arcs dé& : dans toute réconciliation la ph

— aip1(up,u) = (2),2') est diferente dg(z,,z) et parcimonieuse, un événement @& peut étre suiv
localisee au temp8, (z,, x)  (evenementL). seulement par un des cing autres événements. /

le modele offre tous les ingrédients pour un al

Une réconciliationn entreG et S’ (cf. Fig. 2 et 3) rithme de programmation dynamique pour calcule
est représentée a la Fig. 1, ou le chemimw, b) dans gcenario consistant en temps et le plus parcimoni
S" est[(y,2"), (v, x), (x, B)]. Notons que l'arbre dece en temps polynomial seldd’| et|G|. Le modele

genes étendG (cf. Fig. 2) est induit de. permet de résoudre le probléeme MPR de facon effi
Nous montrons que le modele (Def. 2.4) permgt exacte.

d'inferer des scénarios optimaux et consistants en
temps (Def. 2.2). Premierement, chaque événem
T se fait entre branches d'une méme tranche
temps. Ensuite, chaque perte est couplée avec soBasé sur notre modele de réconciliation, nous
une spéciation§[L) soit un transfertTIL). Considérer posons dans cette section un algorithme polynomi
une perte seule générerait des réconciliations quitemps et en espace pour résoudre le probleme
seraient pas les plus parcimonieuses : pour un arfme Algo. 1 et Thm.2.5).

G° généré par le modele courant, une seule feuilleConsidérons un artu,,«) € E(G), une branch
perduel € Li(G°) pourrait tre remplacée par uriz,,z) € E(S’) etun temps = 0%, (zp, z).
sous-arbre sans espece contemporaine, avec au moiftons paiCott(u, ) le colt minimal parmi toute
deux feuilles perdues et donc moins parcimonieurs réconciliations entré& ,, ) et la foret de sous
Donc, toute combinaison d'évenemer@&LS d'un arbres deS’ enracinés en une branche localisée
scénario peut étre généré par le modele, exceptétéampst, tel que(x,, z) est la premiére branche dans
combinaisons qui ne sont pas parcimonieuses : wéguence associé¢d,, u). Cout(r(G),r(S’)) corre-
spéciation d’'un gene ou les deux fils n’ont aucun swpond au colt minimal d’'une réconciliation entrest
vivant parmi les feuillles de5’; une duplication d’'un S’. L'algorithme de programmation dynamique (v

%Z’I Un algorithme efficace pour MPR
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le pseudo-code) remplit la matricout : V(G) x culer le meilleur receveur d'un transfert a été trou
V(S") — N avec deux boucles imbriquées : une qdi facon indépendante dansl].

visite tous les arcs dé’ selon un parcours de basTHEOREM 2.5. L'Algorithme 1 résout le prol#me
en-haut et une qui visite toutes les étiquettes teMPR en temps et en espa®é€|S’| - |G).

porelles deS’ en débutant au temps présent= 0

et en remontant progressivement le temps. Pour I'&f¢c pagitats exp érimentaux

(up, u) et le tempst actuellement visités (respective-

ment aux lignes 3 et 4), deux boucles conséecutives supoyr un grand nombre d'arbres de génes sim

toutes les branches,, z) € E;(S") calculent le colt noys avons évalué les performances de notre app
minimal de couplef(v,, u) avec(zy, z) selon les six en comparant les scénarios proposés par notre
evénements, I, T, &, SL et TL (Fig. 4). Pour une rithme avec les vrais scénarios évolutifs des art
branche(z,, z) € E(S'), la premiere boucle (ligneschaque paire arbre de génes/vrai scénario est ol
5 a18) calcule le colt minimal pour les cing premiefsar un modéle probabiliste d’évolution qui inclue ¢

evénements, la deuxieme boucle (lignes 19 a 22) c@lplications, des transferts et des pertes.
cule ce colt pouflL et Cout(u,z) est le colt mini-

mum des six événements. . . , R
3.1 Simulation des arbres d’esp eces

Algorithm 1 CalculeCout(r(G),r(S")). Nous avons utilisé un processus de naissanc

1: Construire la subdivisions’ de S de la fagon decrite a la de mort (birth and death) pour générer aléatoirer
Définition 2.3 ! &

2: LamatriceCout : V(G) x V(S’) — N estinitialisée ci-dessous: si 10 arbres d'especes contenant chagun 100_
ue L(G),z € L(S") et L(u) = =z, alorsCout(u, z) — 0. Sinon, (Programme PhyloGen2}] avec un ratio de nais

Cotit(u, z) « oo. sance/mort fixé a 1.25). Ces arbres ont ensuite été

3: pour tout (up,u) € E(G) selon un parcours de bas-en-htaite iof ; i ; 2

A pOUHTOULLE (D, 1, . s 80 (r(S")} faire malisés afin qu’ils aient tous la méme hautéur

5: pour tout (zp,x) € E¢(S’) faire

6: siu € L(G), z € L(5') etL(u) = x alors 3.2 Simulation des sc énarios DTL

7 Sauter les lignes$ a 22 et se rendre a la prochaine

itération de la boucle & la ligne {Case de bage A partir d'une seule copie d'un géne présem

8: Cotity «— oo, pourg € {S,D, T, &, SL} . , !

9 siw a deux enfantalors Ia' ra}c[ne d'un a}rbre_s* au tempst_ = h,,nous avon:
10: siz a deux enfantslors généré des scénarid3TIL en faisant évoluer cet
11 Couts — min{Cout(ur,z1) + Cout(uz,22),  copje selon un processus de Poisson caractéris

Cout s +Cout 5 . N . .
outlus, v2) +Coutluz, M)}y i harametres : le taux de duplicatiop) e taux de

12: Cottp «— Cott(uy,x) + Cotut(uz, z) + § ,

13: (psy) — Meilleur Receveur((u, 1), (wp,z))  ransfert ¢;) etle taux de pertqg): Dan,s le cas d'ul
14 (2p, 2) — Meilleur Receveur((u, u2), (zp, z)) transfert, le donneur est choisi uniformément parm
15: Coity — min{ Cott(u1,z) + Coit(uz, 2), génes existants au moment du transfert. On ob

. Cott(ur,y) + Cout(uz,z) } +7  ginsi, pour chaque simulation, un arbre de gé&fest
si z aun seul enfaralors Coutg — Cout(u, v1) une réconciliation simuléey incluant les événemen

16: si z a deux enfantalors e o

17: Cottsy, — min{Cott(u, 1), Cotut(u,z2)} + A DTLS” al Ol’lgln.e (,jEG o . }

18: Cott(u, ) — min{Codt, : g € {S,D, T, &,SL}} Csliros et Miklos ont recemment publié une ét
19: pour tout (zp, ) € Ex(S") faire portant potgmment sur 'ampleur relative des t
20: (¢'p,a') — Meilleur Receveur((up, ), (xp, x)) de duplication, de transfert et de perte chez
21: Coditry, — Cotut(u,z') + 7+ A Z Ari ; ) : 0

5o Coit(u, 2) — min{ Coit(u, z), Coiita. } archébactéries/]. lls estiment qu'environ 23% de

événements sont des duplications, 1% sont de:
quisitions, et 76% sont des pertes. lls obser
également un taux approximatif de perte de 1.5 |
Le cas de la Fig. 4c est considéré aux lignes arbre d’hauteur unitaire.
13 a 15, ou le colt d'un événemeft débutant En nous appuyant sur ces résultats, nous avon
sur la branchez,, z) est calculé pour I'arqu,,w). varier de maniere réaliste les tallxT et L, et créé
Si (u,uy) (resp. (u,uz)) est la lignée de génedeux jeux de données. Le premier jeu de donr
transferée, une procédure nommdéeilleurReceveur nommeéds;, est décrit comme suit : le taux de perte
calcule la branchegy,,y) (resp. (z,,%)) qui min- est0.7, la hauteur des arbres d’espéckpést 1 et le:
imise Cost(u1,y) (resp.Cost(us, z)) parmi toutes les tauxrs etr, varient dans l'intervallé0.01, 0.35] avec
branches de&’ localisées au tempiset differente de un pas de).034 (soit 11 valeurs). Nous avons do
(xp,x). La méme procédure est utilisée a la ligne 2ibtenull x 11 ensembles de parameétres cohér
pour le casT'L. Une optimisation similaire pour cal-avec une évolution le long d’'une échelle tempor

23: retourner Coat(r(G),r(S"))
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importante correspondant, par exemple, au phyldimité pour toutes les combinaisons de taux mais ¢
des bactéries ou a celui des archébactéries. Enaefgmente sensiblement avec la hauteur de l'a
fet, le taux de perte choisi est réaliste (seldi) pt Ceci est probablement dii aux événements cach
nous ne faisons pas de suppositions sur le taux relatif qui sont encore présents dads.
de transfert et de perte, la seule contrainte étant qu&lous nous sommes ensuite penchés sur les ¢
rs + r- < r). Pour chacun des 10 arbres d’espécestiehs dans lesquelles la parcimonie retrouve corre
des 121 ensembles de parametres, nous avons gémenét la position des événemeri&l. qui ont en-
5 arbres de genes pour un total de 6 050. gendréG. Rappelons gu’une réconciliatianpour un
Le deuxieme jeu de données, nomm&, fixe le arbre de gene§ définit les évenemeniBTIL associé:
rapportry/(rx + rs + r-) & 0.7 [4]. L'objectif ici aux nceuds et branches internestdlePuisque la po
est d’étudier la pertinence d'une approche de parsition des duplications et des transferts indique ur
monie pour difféerentes échelles temporelles (phguement celle des pertes, nous nous sommes foc
logénies profondes ou récentes) en variant la hautelwgur les événemenis et T.
de S comme suit :h = 0.2,0.4,0.8 et1.6. Letauxde Soit Dg(«) le sous-ensemble de pail
transfertr, varie dans l'intervallg0, 0.3] avec un pas (u, (z,,z)) € V(G) \ L(G) x E(S) tel que u
de0.03 (soit 11 valeurs) et en imposant= 0.3 —r.. est une duplication localisee sufz,,z) selon
Pour chacune de ces 44 combinaisons de parametres Soit Tgs(a) le sous-ensemble de triple
et les 10 arbres d'espéces, 20 arbres de genes on{@ig u), (v, z), (vp,y)) € FE(G) x E(9)* tel

générés pour un total de 8 800. que (up, u) est transferé etx,, z) (resp. (yp,y)) est
le donneur (resp. receveur). Pour une réconciliatic
3.3 Analyses et r ésultats plus parcimonieusep, la précision avec laquelle el

retrouve les événementd et T de la réconciliatior
Pour chaque jeu de données, nous avons utilisé
comme colt d’'un événemeTL I'inverse du taux
moyen de ce type d’événement au long du proce
sus de simulation (par exemplé,est fixé a1,/0.18
pourdsi). Pour chaque couple d’arbréset .S, nous
avons calculé une réconciliation parmi les plus parci-oss-
monieuses, nommés,, grace a I'Algorithmed. N _
Il faut noter qu’une réconciliation réelley con- (@) (b)

tient souvent des événements qui n'ont laissé AUCYRE 5. Le surcodt relatif dev,, en terme de colit de par
trace, il est donc impossible a une approche de par@bnie par rapport & une réconciliation parmi les plusip:
monie de les retrouver. Par exemple, les duplicatiomenieuses, en faisant varier les taux de duplication est
immédiatement suivies par une ou plusieurs pertesfel et la hauteur de l'arbre, i.e., (& et (b) ds». Les
évenementdL consécutifs. Afin de comparer, avec valeurg élev_ées montrentles cas ou il est inadéqutliséun
le vrai scénario évolutifvz, nous avons élimine de'@ Parcimonie.

celui-ci ces événements dits fantdbmes et défini une
nouvelle réconciliation notée’;.

Nous avons d’abord étudié les conditions dansg
lesquelles la parcimonie peut correctement estimer les
évenement®TL en comparant les colts dg eta’, : e
qguand ils different de fagcon importante, la parcimonie
n’est plus une approche souhaitable. Le surco(t relatif
de o/, par rapport a une réconciliation la plus parci- 3
monieuse est défini ainsi : £e

0

(2]

oooooo

O0o00o

over cost
over cost

coooo
S VXN

=)

6
5
4
3
2
1

Cout(a/y) — Cott(ap)
Cout(ap)

Surcout(aly, ap) =

(d)

Il faut noter qugC’out(a;%) = CO“t,(O‘P) r-l’.lm-pllque Fig.6. Etude des conditions dans lesquelles la parcim
pasap = o, puisque plusieurs réconciliations plugstrouve précisement les événemdiEL. Ratios de fau:
parcimonieuses peuvent exister. La Figmontre negatifs (a-b) et faux positifs (c-d) pour les événenieen
'ampleur du surcolt selon les taux et et la hau- faisant variers, r, et la hauteur de I'arbre, pouds; (a-c)

teur de l'arbre. On remarque que le surcodit reste teédss (b-d).
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Abstract If perturbing two genes together has a stronger effect than expected they are said to
genetically interact. Recently experimental methods have enabled mapping of positive and
negative interactions on a global scale. Negative interactions indicate buffering between genes
and positive interactions suggest that the genes are part of the same process. In such networks,
some genes interact in a monochromatic manner: interactions between them are mostly positive
or negative. It has been proposed that monochromatic gene groups are functionally related and
enriched in protein complexes and pathways. Nevertheless system boundaries and relationships
are still difficult to define. We evaluate the current model and study the monochromatic nature of
biological processes using the most comprehensive quantitative genetic interactions available in
the budding yeast Saccharomyces cerevisiae. This new data set includes measurements for 5.4
million pairs of genes and provides quantitative genetic interaction profiles for ~75% of all
genes in S. cerevisiae.

We assess the monochromatic nature of a process as defined in Gene Ontology using a score
based on the relative ratio of positive to negative interactions and compute z-scores using a
random network model. We also score the monochromatic nature of inter-process connections
using a statistical test. We show that 10% of the biological processes are monochromatic and
identify 1% of the connections between processes as monochromatic. We then study different
features that may explain the monochromaticity and show that protein complexes have a strong
contribution. In fact, 63% of the interactions are attributed to complexes whereas we expect only
49%

This work is the first systematic study of the monochromatic nature of biological processes and
connections between them. It reveals the importance of protein complexes in the yeast genetic
landscape.

Keywords Genetic interaction network, biological process, protein complex, yeast.

1 Introduction

One of the major goals in biology currently is to
understand how molecules are organized within the
cell and how they interact with each other to perform
biological processes. This knowledge can further
help to unravel the mechanisms regulating biological
processes, why these mechanisms sometimes fail
leading to disease and which strategies can help with
disease understanding and treatment.

Genetic perturbations are often used in order to
better understand the function of a gene and its
associated products and to study the relationships
between genotype and phenotype [1]. In budding

yeast, a commonly used perturbation is gene deletion
and a commonly studied phenotype is cell growth.
However most yeast gene deletions (~80%) do not
affect cell growth in rich medium [1]. To study the
function of these genes, two main strategies have
been used: i) exploring the phenotypes in different
conditions such as the presence of a chemical or an
environmental stress [2]; ii) combining mutations in
more than one gene to investigate higher-order
perturbation effects [3]. This latter approach includes
genetic interactions where pairs of mutated genes are
tested. Genetic interactions have proven particularly
useful to predict gene function [4] and organize
biological processes [5] and are complementary to
other  functional association networks like
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protein-protein interactions.

Genetic interactions are observed when the
phenotype of a double mutant is unexpected given
the phenotypes of both single mutants [6].
Comparing the observed and expected phenotypes,
we can classify the genetic interactions into positive
and negative. If the phenotype is fitness, a positive
(resp. negative) interaction means that the fitness of
the double mutant is higher (resp. lower) than
expected.

Negative  interactions indicate  redundancy
between two genes, the extreme case occurring when
the simultaneous deletion of two non-essential genes
is lethal, called ‘synthetic lethality’. The biochemical
explanation for this is that the two genes participate
in complementary or parallel pathways or complexes
[7, 8]. As a result, two complementary pathways tend
to be connected by many negative interactions.
Genetic interactions have thus been used to
investigate the organization of the genes into
pathways [9].

Positive interactions suggest another type of
functional relationships between the genes. In the
case of a linear chain of reactions such as a signaling
cascade or a biosynthetic pathway, the deletion of
one gene or the other would affect the output of the
chain. As a result, deleting a second gene is likely
not to affect the output more, resulting in a less than
expected (‘positive’) interaction with the first gene. It
should be noted that, even if positive interactions
indicate that the phenotype of the double mutant is
better than expected, it often still results in a decrease
in the total phenotypic output. For example, in terms
of fitness, a double mutant growing less than the wild
type strain, but more than expected based on both
single mutant growth rates, would result in a positive
interaction. Since the phenotypic output of the
double mutant in this case is often between the wild
type and the expected output, phenotypic values of
each mutant are closer and differences are more
difficult to confidently detect. Consequently positive
interactions are in general more subtle and difficult
to detect than negative interactions [10].

Recently experimental methods have been
developed that can be used to measure both positive
and negative interactions in a quantitative manner on
a genome wide scale - Synthetic Genetic Array
(SGA) [5], Epistatic MiniArray (E-MAP) [11] or
diploid Synthetic Lethality Analysis by Microarray
(dSLAM) [12].

Initial analysis of these experimental data used
hierarchical clustering to group functionally related
genes [4, 11]. The resulting clusters were manually
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investigated in order to identify known pathways and
complexes and better understand the organization of
the early secretory pathway [11], chromatin
modifying complexes [13], the homologous
recombination pathway [14] and the 26S proteasome
[15].

This approach based on hierarchical clustering
was extended to consider the types of interactions
(positive/negative) between the different clusters.
Segre et al. investigated the monochromatic nature of
the connections defined as the ratio between positive
and negative interactions connecting different
clusters [16]. They developed the PRISM algorithm
that maximizes the monochromatic nature of the
connections (interactions between the clusters are
mostly positive or mostly negative) and showed that
the results revealed the modular organization of
biological systems [16]. This monochromatic pattern
also appears within biological processes and in
particular within protein complexes [17]. Thus,
monochromatic properties of genetic interaction
networks can help define modules in the cell and
define how they are connected, charting a
hierarchical and modular map of the biological
systems in the cell.

Multiple methods have been developed to identify
pairs of buffering, or complementary, pathways or
complexes. These methods are based on the parallel
pathway or complex model that involves two groups
of genes highly connected to each other by negative
interactions. Ma et al. investigated the compensatory
properties of biological processes using a
graph-based approach on the synthetic lethal network
and showed that many cellular functions have
genetically compensatory properties by identifying
numbers of pairs of buffering pathways [18]. Le
Meur et al. found that synthetic lethal interactions
can arise from subunits of an essential multi-protein
complex or between pairs of multi-protein complexes
[19]. Zhang et al. examined the structure of a
multi-color network where each color represents a
type of interactions (protein-protein interaction,
genetic  interaction, transcriptional regulation,
sequence homology, expression correlation). They
found many enriched multi-color network motifs
[20].

Another set of methods used protein-protein
interaction data to define modules and the
connections between them. Modules were defined as
clusters of proteins enriched in physical interactions,
genetic interactions occurring either within modules
(within-pathway model) or between modules
(between-pathway model) [17]. This approach was
extended by defining modules as a connected graph
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in the protein interaction network rather than
enriched with protein interactions [21] and
considering pairs of complementing modules [22].
Brady et al. introduced stable bipartite subgraphs as a
way to identify redundant pathways using synthetic
lethal interactions between non-essential genes [23].

On the one hand, negative interactions are thought
to occur between buffering pathways. Kelley et al.
found that synthetic lethal interactions were better
explanations for between-pathways than
within-pathways  [17]. Nevertheless, negative
interactions can also occur within pathways, as is the
case for some multi subunit complexes [8]. Moreover
complexes enriched in negative interactions tend to
contain essential genes [24]. On the other hand,
positive interactions were proposed to occur mainly
within pathways [13]. The main interpretation of this
result is that the deletion of any of the genes in the
pathway has an important effect on the pathway
activity, which hides the effect of any additional
deletion [21], as is the case for a linear cascade.

Most of these methods
interactions using only qualitative negative
interactions  (synthetic lethal interactions) or
considering positive and negative interactions as the

investigated genetic

same type of interactions without any distinction [24].

Some of them are based on unsupervised clustering
on the genetic interaction network in order to identify
modules [17, 21]. These modules, or systems, are
assumed to be complexes or pathways without a
clear distinction, but previously identified modules
are mainly protein complexes, each defined as a flat
list of genes. Some methods are focused on
complexes only and trained on reference sets of
protein complexes [24]. Thus, the generality of the
conclusions about the genetic interactions occurring
within and between biological processes is currently
not clear and system boundaries are still difficult to
define. Even though the monochromatic nature of
gene sets has been used to identify biological
systems, it is not clear to which extent the different
processes are monochromatic or not and to which
extent the connections between them are
monochromatic.

We propose to use current knowledge about
biological processes and to study the monochromatic
nature within and between processes using the most
comprehensive quantitative genetic interaction data
set currently available in the budding yeast that
includes measurements for 5.4 million pairs of genes
and provides quantitative genetic interaction profiles
for ~75% of all genes in S. cerevisiae [5].

2 Results and Discussion

2.1

To study the monochromatic nature of known
biological processes, we use the most recent data set
of quantitative genetic interactions, obtained using
SGA [5]. The known processes are defined by the
Gene Ontology (GO) Biological Process (BP) [25]
classification system. Each process is defined by a
standard name and a set of genes annotated to it. We
consider all processes in yeast where these genes are
connected by at least one observed SGA interaction
(~1000 processes).

Monochromatic Processes

We define the monochromatic score as the relative
ratio of positive to negative interactions occurring
within a given process (set of genes). To assess how
likely these scores are to occur by chance, we
generate random networks and compute z-scores. We
can then identify unexpected patterns by their high

z-scores. Highly positive z-scores characterize
monochromatic positive processes and highly
negative z-scores characterize ~monochromatic

negative processes (see Methods).

Not all genes are tested in the SGA data set, thus
processes are variably covered in terms of genetic
interactions. We assess the coverage of a process by
the number of genes present and connected in the
genetic interaction network (see Methods). For a
specific level of coverage, we compute the ratio of
monochromatic processes among all covered
processes. We find that this ratio ranges from 7 to
9% (Tab 1).

Coverage Covered  Monochromatic  Ratio (%)
0 1031 68 6.6
0.2 1019 68 6.7
0.4 833 66 7.9
0.6 566 50 8.8
0.8 99 9 9.0

Tab. 1. Monochromatic processes covered by SGA.

Choosing a reasonable coverage cut-off of 0.6, we
identify 50 monochromatic GO terms, including 5
positive and 45 negative (Tab 2). Positive
monochromatic processes are generally much
smaller (<= 40 genes) than the negative ones (~100
genes).

Monochromatic processes Sign
Microautophagy +
Replication fork processing +
Histone exchange +
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ER-nuclear signalling pathway -
Protein transport -
Cell cycle -
Reproduction -
Cell wall organization -

DNA repair -

Tab. 2. Examples of monochromatic processes.

Thus, just under 10% of SGA covered biological
processes are monochromatic.

2.2 Monochromatic Connections

We then investigated the monochromatic nature of

the connections between pairs of biological processes.

We consider the set of biological processes
previously defined with more than one observed
interaction and all possible pairs between these
processes. For a given pair of processes, we consider
the interactions occurring between two genes from
both processes. If some genes are part of both
processes, they are not considered. Each connection
is thus defined by a set of interactions.

The monochromatic nature of a set of interactions
is assessed by a statistical test (Fisher) comparing the
number of positive and negative interactions to the
background network (see Methods). The p-value is
used as a score to select the most monochromatic
connections.

The coverage of a connection is assessed by the
number of interactions tested among all possible
interactions between the two processes. Using
different cut-offs on the coverage, we find that
~0.27% of the covered connections are
monochromatic (Tab 3). With a cut-off at 0.6 we
identify 1386 monochromatic connections, including
613 positive (44%) and 773 negative connections
(56%).

Coverage Covered  Monochromatic  Ratio (%)
0 525727 1394 0.27
0.2 525710 1394 0.27
0.4 525380 1394 0.27
0.6 511671 1386 0.27
0.8 240680 609 0.25

Tab. 3. Monochromatic connections between processes
covered by SGA.

Thus, monochromatic connections between pairs
of biological processes are rare (~1%).
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2.3 Protein Complexes Explain Most
Monochromatic Processes

We noticed that the monochromatic processes
previously identified often contain protein complexes
or part of complexes. All monochromatic processes
but six contain at least one gene that is part of a
complex. Since complexes tend to be monochromatic
(Baryshnikova et al submitted), we evaluated their
contribution to the monochromatic patterns we have
observed. To address this, we removed the effect of
protein complexes and performed the same
monochromatic analysis. We removed the effect of
complexes in two ways: i) remove all genes that are
part of at least one complex; ii) remove the
interactions that occur between two genes from the
same complex, but leaving the genes in place (in the
former case all interactions involving these genes are
removed whereas in the latter case only interactions
between two genes of the same complex are
removed).

When we remove all the genes that are part of a
complex, most (82%) of the monochromatic
processes identified previously are no longer
monochromatic, suggesting that the genes in
complexes explain this monochromatic pattern.
When we remove the interactions occurring within
complexes, only some (28%) of the monochromatic
patterns are explained (Tab 3). These results hold for
various coverage cut-offs. This indicates that genes
which products are part of a protein complex play a
key role in the monochromatic patterns identified
previously.

We also consider three other features that may
contribute to monochromatic patterns: essential
genes, duplicate genes and low single mutant fitness
genes. Essential genes are known to have many
negative interactions [10], duplicate genes often
buffer each other and thus are typically connected by
a strong negative interaction [26] and genes which
have a strong effect on yeast fitness, as measured by
growth rate, when deleted (i.e. a low single mutant
fitness) usually show many negative interactions [10].
Thus, we removed each of these gene sets in turn and
evaluate the effect on our observed monochromatic
patterns. All these different features partly explain
the monochromatic patterns previously identified but
not as much as the genes in complex (Tab 4). In
addition, these features are highly overlapping with
the genes in complex. For example 60% of the
essential genes are in a complex. As a result, these
features seem to have a minor effect on the
monochromatic pattern, which is mainly due to their
correlation with the complex feature.
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Feature Genes in complex  Int complex  Essential genes ~ Duplicate int Low SMF genes
Processes explained (%) 28 84 54 18 24
Connections explained (%) 67 97 74 56 59

Tab. 4. Monochromatic processes and connections that are explained by removing features.

In summary, we find that proteins in complexes
are the most important contributor of monochromatic
patterns in a biological process. This suggests that
protein complexes play a major role in the
monochromatic nature of biological processes.

Protein Complexes Explain Most

Monochromatic Connections

In order to assess to which extent the features
presented above explain the monochromatic nature
of connections, we adopt the same strategy of
removing each feature in turn and analyzing the
resulting change in monochromatic nature of the
connections.

Again, genes encoding proteins which are part of a
complex explain most of the monochromatic
connections (98%) whereas the other features only
partly explain the monochromatic connections (60%).
These results hold for various coverage cut-offs.
Thus, protein complexes are the most important
contributor as was the case for the monochromatic
processes. Removing the same number of random
genes not in any complex does not have the same
effect on the monochromatic pattern. These results
suggest that genes in complex play a key role in the
monochromatic connections between biological
processes.

2.4 30% more of SGA Interactions than
Expected are Attributed to
Complexes

Following up on the important role of protein
complexes in genetically monochromatic processes,
we examined the result at the genetic interaction
level. If at least one of a pair of genes encodes a
protein that is part of a complex, that gene pair is
defined as being involved in a protein complex, and
otherwise is not. We study both types of gene pairs
for the set of all observed interactions in SGA. 49%
of all tested pairs of genes (2,801,630 pairs) involve
protein complexes and 189,996 interactions were
observed. Thus, it is expected that 49% (93,383)
interactions should involve a protein complex gene.
Surprisingly, we find that 63% (119,871) of the
observed SGA  genetic interactions involve
complexes, or 30% more than expected. This highly
significant bias (Fisher p<10-5) is present globally

and for both negative and positive interactions
considered individually.

To further examine the importance of protein
complexes on the topology of the genetic interaction
network, we quantified the dependence of the
network structure on the following attribute: whether
the gene (node) encodes a protein that is part of a
complex. We applied a recently published algorithm
to assess the importance of node features on network
structure [27]. This indicator, based on entropy, has a
value higher than 100 for the complex feature in the
SGA network. This high number indicates that the
‘protein complex’ node feature has a strong impact
on the topology of the network.

All together these results indicate that genes in
complexes are more likely to interact than genes not
in complex. This suggests that protein complexes
have a disproportionately important role not only in
the monochromatic landscape but also more
generally in the genetic interaction network in yeast.

Conclusions

In this work we study the monochromatic
landscape in yeast in a systematic manner using
known biological processes as described in GO and a
large network of genetic interactions. Approximately
10% of known biological processes, sufficiently
covered in terms of interactions, are monochromatic.
Only 1% of all pairs of processes interact in a
monochromatic manner.

3

Even though pathways are expected to be
monochromatic positive according to the current
model, we find many more negative than positive
processes. This may be due to the lower
experimental detection sensitivity of positive
interactions [10] or positive interactions may have a
complex mechanistic interpretation [28] requiring the
updating of our models.

Considering various features, we showed that
protein complexes are extremely important in the
monochromatic landscape and the number of
interactions is highly biased towards interactions
involving complexes. If we describe essential genes
as the first level of importance (each gene is
individually important), this work suggests that
protein complexes can be described as the second
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level of importance (pairs of genes are important).
We suspect that complexes are more sensitive
because they are big machineries and more difficult
to buffer, either because it is more difficult to
duplicate the functionality of an entire complex or
that complexes participate in more processes
compared to individual proteins.

We chose GO as the representation of current
known biological processes since it is the most
comprehensive resource. KEGG and SGD BioCyc
also make available non-GO pathway information,
but these are limited mostly to metabolic pathways
and don’t cover as many genes as GO, making a
general analysis difficult.

GO organizes processes in a hierarchical structure,
which clarifies the relationships between pathways
and sub-pathways. However, this makes processes
highly overlapping. The number of monochromatic
processes depends on this overlap. To assess the
effect of overlap, we applied our method on the
reduced ontology GO Slim, which contains fewer
and less overlapping terms compared to the full GO.
We identified 19 monochromatic processes among
36 covered processes. Interestingly, around half of
GO Slim processes are monochromatic.

Because of the extensive homology between yeast
and human biochemical pathways, such as the cell
cycle, it is likely that the yeast cell map will be
relevant for improving our understanding of how
common Human diseases result from many different
possible genotypes composed of many genes.
Furthermore the analysis methods we developed is
be applicable to other species for which genetic
interactions become progressively available such as
C. elegans [29]. D. melanogaster [30] or mammalian
cells [31].

4 Material and Methods

4.1

The genetic interaction data come from the most
recent and comprehensive study in yeast, obtained by
the Synthetic Genetic Array technique (SGA) [5].
This data set consists of ~200,000 pair-wise
interactions between ~4,400 genes, derived from
~1,700 full genome screens. Each interaction is
characterized by the epsilon score, a quantitative
genetic interaction measure. This score can be
positive or negative, indicating a positive or a
negative interaction. When different measurements
are available for a single gene (i.e. from several
screened alleles of essential genes), we merge all
interactions. The resulting network contains 166,401

Genetic Interaction Network
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pair-wise interactions among 4,415 genes.

4.2 Biological Processes

We downloaded the annotation of the yeast
genome provided by the Gene Ontology (GO) [25]
on September 7th, 2009. For the Biological Process
aspect of the ontology, all gene annotations to one
specific GO term are up-propagated to all parents of
that GO term. We don't consider the annotation
coming only from IEA evidence code. We only
consider GO terms with more than one observed
interaction between its genes and with less than 200
genes in the genetic interaction matrix, otherwise the
random networks are not different enough to assess
the statistical significance of the monochromatic
scores. We thus have a set of 1,031 processes in
yeast with genetic interactions in SGA.

4.3 Assessing the Coverage of a GO
term

For a given GO term, its genes can be present in
the genetic interaction network or not. If present,
they contribute to the monochromatic nature only if
they are connected within the GO term. We assess
the coverage of the GO term by the minimum value
of the two following ratios: (i) number of genes in
the GO term and in the genetic interaction network
over number of genes in the GO term; (ii) number of
connected genes in the GO term over number of
genes in the GO term and in the genetic interaction
network.

4.4 Assessing the Monochromatic

Nature of a GO term

We define the monochromatic score of a GO term
as the relative ratio of positive to negative
interactions observed between the genes in that GO
term (see equation 1).

E score(i)

el

EI score(i) |

i€l

(1 S =

where 1 is the set of interactions occurring
between two genes from the GO term t. This score
ranges from -1, meaning fully monochromatic
negative, to +1, meaning fully monochromatic
positive.

We then generate 350 random networks by
shuffling the labels of the nodes (the topology is thus
conserved). For each GO term, we compute a series
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of monochromatic scores obtained with the random
genetic interaction networks and use this distribution
of scores to compute a z-score (see equation 2).

@ z-2"£
(o}

where S is the monochromatic score to be
standardized, p is the mean of the random scores
and o the standard deviation of the random scores.

4.5 Assessing the Monochromatic
Nature of a Connection

A connection between two GO terms is formed by
all interactions between one gene belonging to one
GO term and another gene belonging to the other GO
term. Genes belonging to both GO terms are not
considered. We consider the number of positive and
negative interactions and test if this ratio follows the
background ratio of the whole network (Fisher test).
We then select the most significant connections with
p-value < 0.01.

4.6 Defining Protein Complexes

We use the cellular component aspect of the Gene
Ontology to define protein complexes in yeast. We
consider all the children of the GO term
macromolecular complex (GO:0032991). Each term
defines a protein complex formed by the genes
directly annotated to that term (not considering IEA
annotations).

4.7 Removing Features

We consider the five following features, removing
either genes or interactions: 1) Essential genes: genes
described as essential genes in the Saccharomyces
Genome Deletion Project [32]; 2) Low SMF genes:
genes with low single mutant fitness [5] (10%
lowest); 3) Complex genes: genes being part of at
least one complex (see the definition of the
complexes above); 4) Complex interactions:
interactions occurring between two genes being part
of at least one complex (see the definition of the
complexes above); 5) Intra paralog interactions:
interactions occurring between two duplicate genes.
The set of duplicate pairs is a combination of the
whole genome duplication (WGD) data set from
Byrne et al. [33] and smaller-scale duplicates (SSD)
[26]. SSD are defined based on sequence similarity
with an alignment that covers more than 50% of the
length of the longer protein and a BLAST e-value<
10-10.

4.8

To examine the role of protein complexes at the
interaction level, we study all possible gene pairs. A
given pair is involved in a complex if at least one of
the genes encodes a protein that is part of a complex.
In other words, we partition the genes into two
classes: CG, genes that encode a protein that is part
of at least one complex; NCG: genes that encode a
protein that is not part of any complex. And we
partition the interactions into two classes: CI,
interactions involving at least one gene of the class
CG; NCI, interactions occurring between two genes
of the class NCG.

Interaction Bias

Assuming that the complexes do not have an
effect on the structure of the genetic interaction
network, we expect the distribution of interaction
number among the classes to be the same as the
background distribution of all tested pairs. For each
interaction class (CI/NCI) we compute the ratio of
observed/expected number of interactions.
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Abstract The number of gene sequences that are available for comparative genomics approaches
is increasing extremely quickly. A current challenge is to be able to deal with this huge amount
of sequences in order to build families of homologous sequences in a reasonable time. We
present a novel method, SiLiX, that reconsiders single linkage clustering with a graph the-
oretical approach. A parallel version of the algorithms is also presented. As a demonstration
of the capability of our method, we clustered more than 3 millions sequences from about 2
billion BLAST hits in 7 minutes. The software package SiLiX is freely available at http:

//1bbe.univ-1lyonl.fr/silix.

Keywords Homologous sequences, single linkage clustering, graph theory, parallelism.

1 Introduction

Proteins can be naturally classified into families of
homologous sequences that derive from a common
ancestor. The comparison of homologous sequences
and the analysis of their phylogenetic relationships
provide very useful information regarding the struc-
ture, function and evolution of genes. Thanks to the
progress of sequencing projects, this comparative ap-
proach can now be applied at the whole genome scale
in many different taxa, and several databases have
been developed to provide a simple access to collec-
tions of multiple sequence alignments and phyloge-
netic trees [15,22,14]. The building of such phyloge-
nomic databases involves three steps that require im-
portant computing resources: 1) compare all proteins
between each other to detect sequence similarities, 2)
cluster homologous sequences into families (that we
will call the clustering step) and 3) compute multi-
ple sequence alignments and phylogenetic trees for
each family. With the recent progress of sequencing
technologies, there is an urgent need to prepare for
the deluge and hence to develop methods able to deal
with a huge quantity of sequences. In this paper, we
present a new algorithm for the clustering of homolo-
gous sequences, based on single transitive links (sin-
gle linkage). We develop a graph-theoretical model of
the dataset which is considered as a similarity net-
work where sequences are vertices and similarities are
edges [3]. To overcome memory limitations we de-
sign an online framework [13] in which we see the
edges one at a time to update the families dynami-
cally. This approach enables also an incremental pro-

Sl

cedure where sequences and similarities are added in
the dataset such that it would not be necessary to re-
build the families from scratch. Finally, we adopt a
divide-and-conquer strategy [0] to face the quantity of
data and design a parallel algorithm of which we anal-
yse the theoretical complexity.

This algorithm presents several advantages over
other clustering algorithms: it is extremely fast, it re-
quires only limited memory and it can be run on a
parallel architecture - which is essential for ensur-
ing its scalability to large datasets. We implemented
this method in a software (called SiLiX for Single
LiInkage Clustering of Sequences) and we evaluated its
computational performances and scalability on a very
large dataset of more than 3 million sequences from
the HOGENOM phylogenomic database [14]. S1LiX
outperforms other existing software both in terms of
speed and of memory requirement. We discuss the in-
terest of SiLiX for the clustering of homologous se-
quences in huge datasets, possibly in combination with
other clustering methods.

2 Methods

2.1 Algorithm framework

Filtering. The principle of the single-linkage cluster-
ing is that if sequence A is considered homologous to
sequence B, and B homologous to C, then A, B and
C are grouped in the same family, whatever the level
of similarity between A and C. The choice of the se-
quence similarity criteria that is used to infer homol-
ogy is therefore an essential parameter of the single-
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linkage clustering approach. Different criteria can be
used, separately or in combination (percentage of iden-
tity, alignment score or E-value, alignment coverage
i.e. percentage of the sequence length that is aligned).
The choice of these criteria depends on the goal of the
clustering (see below for a discussion of the criteria
used in the HOGENOM database). The first step of
the clustering process therefore consists in analyzing
pairwise sequence alignments resulting from the all-
against-all comparisons (typically a set of alignments
obtained with BLAST [2]) to exclude all pairs that do
not meet these sequence similarity criteria. This first
step (that we will refer to as the filtering step) can be
time consuming, but can be easily distributed (see be-
low).

Modelling. Here we consider the following second
step: given a list of pairs of similar sequences pre-
viously positively filtered, group the sequences into
families. We define an undirected graph G = (C, E)
with the set of vertices C' representing sequences and
the sets of edges E. representing similarities between
these sequences. We define n. = |C| and m, = |E.|.
Naturally, finding sequence families consists in com-
puting the connected components of G. In this paper,
we want to adress the case of large n. and m. and we
therefore develop a parsimonious approach in terms
of memory use. We want to examine the edges on-
line [13] and avoid storing them into a connectivity
matrix. Therefore the classical Depth-first search al-
gorithm [20] is not adapted.

To record the connected components of GG, we only
need to store the information of the partition of C
into non-overlapping sub-ensembles called disjoint-
sets and be able to update this information dynam-
ically. When an edge is examined, we need to exe-
cute two operations: find the name of the set contain-
ing each of the two vertices and union these sets by
merging their vertices. Initialy each vertex is a set by
itself. For this purpose we use the disjoint-sets data
structure [21,1] which is well suited when the graph
is discovered edge by edge. This structure allows effi-
cient implementation of the find and union operations
by representing each set as a rooted tree. Pratically, the
forest composed by all the trees is implemented as an
array parent of size n.. Each element ¢ of a tree has
a parent parent(i) such that parent(r) = r if r is
the root of the tree. Consequently the underlying prob-
lem consists in building and storing only a novel graph
G* = (C, E}), subgraph of G, such that G* is a span-
ning star forest: it is actually straightforward and prac-
tical to transform each rooted tree into a star tree such
that the parent information is a common label for the
vertices in a connected component. This will allow to
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directly retrieve each sequence family by reading the
parent information.

Online algorithm for a set of similarities. To build
G* from a set of sequence similarities, we develop
a two steps procedure: (1) iteratively build a collec-
tion of trees representing the connected components
of the graph GG and (2) transform each resulting tree
into a star tree. For the first step, we adopt the algo-
rithm called Union-Find by rank with path compres-
sion [21,1]. It consists in updating rooted trees of min-
imal height while discovering the edges of the graph G
online. For this purpose, the rank of a vertex is defined
as essentially its height in the tree and each edge (i, j)
is processed as explained in Algorithm 1 (see also Fig-
ure Fig. 1). It is basically based on the FIND function
that associates the root of the tree containing a vertex
of interest and the PATHCOMPRESSION function which
connects the vertices in a path to the root of a tree.
The time complexity was proved to be in our case al-
most O(m.) [1]. The second step is straightforward by
using PATHCOMPRESSION in O(n,) time [24]. This pro-
cedure requires the storage of n. parent and n. rank
values such that the memory requirement is O(n.).

Algorithm 1 AbpEDGE(4, j) by UNION- FIND

Function: FIND(z): returns the root of the tree containing %

Function: PATHCOMPRESSION(%, 7"): parent of vertices in
the path from 7 to the root of the tree containing ¢ are
setto r

: r1 < FIND(2); ro < FIND(j)

. k «— argmax;—q o (rank(r;))

. if rank(r1) == rank(rs) and r1 # ro then

rank(ry)++

. end if

: PATHCOMPRESSION(%, 7% )

: PATHCOMPRESSION(J, %)

Farallelization for multiple sets of similarities. We
take advantage of the possibility to explore series of
sets of sequence similarities with a client-server paral-
lel architecture. We assume that it is usually affordable
to split a large set into g sets. For the sake of clar-
ity, we consider here a group of g processors, which
is a reasonable hypothesis in practice. We note that
it would also be recommended to have sets of com-
parable size. We adopt a divide-and-conquer strategy
where different processors use the previous sequential
algorithm to independently obtain a collection of span-
ning star forests G7...Gy where Gy, = (C, E}) such
that £ C E,.. These subsolutions are successively
merged to obtain the final solution G* [6]. We first de-
sign an algoritm to merge two of these forests in O(n..)
time (see Algorithm 2). It is also based on the disjoint-
sets data structure since, for each vertex ¢, it basically
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Edge parent

(4,3) 1233567
(7,4) 1233563
(2,1) 1133563
(6,5) 1133553
(5,4) 1133353
(5,1) 3133353
(7,6) 3133333

Fig.1. An example of the steps involved in the algorithm called Union-Find by rank with path compression [
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Edges (first column, in red) are examined online. The disjoint-sets data structure, represented by trees (third column) and
implemented using the parent array (second column), is consequently modified. The two vertices of the current edge of

interest are colored in red.

consists in adding in one forest a formal edge between
1 and the root of the tree containing ¢ in the other forest.
Then we build a parallel formulation of our approach
[11,10] where G’{...G; are obtained with the step (1)
of the sequential algorithm and iteratively merged (see
Algorithm 3). The parallel time complexity can be es-
timated as O(m./q+n.*q). We notice that the merge
procedure is many orders of magnitude quicker than
the processing of a single set of similarities. For this
reason, we decide not to distribute over the processors
the merge procedures that will be consequently per-
formed by the server processor in the order of the G7,
availability.

Algorithm 2 MerGe(G7, G5)

Function: FIND(7): returns the root of the tree containing ¢
1: for all 7 such that FIND(?) # ¢ in G5 do

2: 1« FIND(?) in G5
3:  ADDEDGE(r,?) in G}
4: end for

Algorithm 3 Parallel SiLiX
1: each processor r build G with the sequential algorithm
2: if r > 1 client then
3:  MPI_SEND(G?) to server processor 1
4: else

5 forkin2 ....pdo
6: MPI_RECEIVE(G}) among G3, ..., G in their or-
der of availability
7 MERGE(GT, G})
8:  end for
9 for all 7 do
10: PATHCOMPRESSION(Z, FIND(%))
11:  end for
12: end if

2.2 Additional theory for clustering based
on alignment coverage with partial
sequences

Filtering with partial sequences in the HOGENOM
database. HOGENOM is a phylogenomic database
of gene families from fully sequenced organisms [14].
The first goal of HOGENOM is to allow the study
of the evolution of entire proteins considered as a
unit (by contrast with databases such as PFAM [9] or
PRODOM [18] that aim at studying the domain ar-
chitecture of proteins). Hence, in HOGENOM, pro-
teins are classified in the same family only if they are

-51—



V. MIELE, S. PENEL et L. DURET

Présentation longue

homologous over their entire length. In practice, pro-
tein sequences are compared against each other with
BLASTP [2]. For each pairwise alignment, the list of
High-scoring Segment Pairs (HSPs) is analyzed to ex-
clude HSPs that are not compatible with a global align-
ment (for details, see [14]). Then, proteins are classi-
fied in the same family if the remaining HSPs cover at
least 80% of the longest protein with a percentage of
identity greater or equal to 35%. One difficulty is that
HOGENOM includes some partial protein sequences,
because genome sequences are often not 100% com-
plete and hence some genes may overlap with gaps
in the genome assembly. These partial sequences can-
not be classified using the same criteria as the com-
plete ones and are therefore treated separately. In a
first step, gene families are built using only complete
protein sequences as explained previously. In a second
step, partial sequences are added to this classification,
using different alignment length thresholds (for details
about parameters, see [ 14]). It is important to note that,
if there are several families that meet these alignment
coverage criteria, a partial sequence is included in the
one with which it shows the strongest similarity score.

Modelling. To allow the treatment of partial se-
quences, we propose a modified version of our ap-
proach. We define the undirected graph H = G U
(P, Ep) with two sets of vertices C' and P, the com-
plete and partial sequences respectively, and the set
of edges F), between complete and partial sequences,
each edge being weighted by the similarity score. We
also impose that edges between partial sequences are
not allowed. We define n, = |P|, n = n.+n,, m, =
|Ep| and m = m, + m,,. At this point, we note that
sequence families also correspond to connected com-
ponents but those of a subgraph of H with only the
edge of maximum weight conserved for each vertex
in P: this will garantee that each partial sequence is
connected to only one complete sequence and prevent
it to link two connected components. In a similar way
than in 2.1, the problem consists in building a novel
graph H* = G* U (P, E};) subgraph of H that has the
following properties:

— H* is a spanning star forest,

— H* is called a semi-bipartite graph, i.e. a graph
that can be partitioned into two exclusive and
comprehensive parts (C' and P) with internal
edges (connecting vertices of the same part) only
existing within one of the two parts (£7) [4]. The
particularity is here that edges between the two
parts are weighted,

- Yv € P, deg(v) = 1.
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Online algorithm and parallelization. First, it is nec-
essary to insert an additional step between the two
steps (1) and (2) of the online algorithm presented
in 2.1: build a sub-ensemble of E, by selecting for
each vertex the edge of maximal weight, in O(my,)
time. Then we extend the step (2) to all the vertices
in (E, P) for a time complexity in O(n). This proce-
dure runs in O(n) space since it requires the storage
of n parent values. For the parallelized algorithm, we
modify the merging of two forests presented in Algo-
rithm 2 to consider vertices of P and once again select
edges of maximal weight, such that the overall parallel
complexity can be estimated to be in O(m/q+n X q).

2.3 Other methods and experimental design

Comparison experiments with other methods were
run on a quadri-quadcore Xeon 2.66 GHz with a 12
Gb RAM limit. All programs were run with default
parameters. Both programs SiLiX and Force [23]
take as input all the BLAST hits and perform a first
step of filtering then a second step of clustering. MCL
[8], MC-UPGMA [12], hcluster_sg [17] and ccomps
[7] use a pre-filtered set of couples of sequences IDs
with all the partial sequences removed then perform
the clustering step. The parallelized version of SiLiX
was run on a cluster of 2 octo-bicore Opteron 2.8 Ghz
and 2 octo-quadcore Opteron 2.3 GHz.

2.4 The siLiX software

All the presented algorithms are implemented into
the SiLiX software package which is written in
ANSI C++ and uses MPI (Message Passing Inter-
face). SiLiX can take two kinds of input. First,
the user can provide the result file of an all-against-
all BLAST search in tabular format ( -m8 option in
blastall) in which the diagonal and the upper diago-
nal hits have been removed (only query-subject hits
with query coming after subject in alphabetical or-
der are conserved). In that case, S1LiX performs the
filtering step by analyzing BLAST hits to search for
pairs of sequences that fulfill similarity criteria (align-
ment coverage, sequence identity) set by the user to
build families. In this mode, partial sequences can
be treated separately, as described above. Second, if
the user prefers to use other types of criteria for the
filtering, SiLiX can simply take as input a list of
pairs of sequences IDs and perform the clustering
step. Compilation and installation are compliant with
the GNU standard procedure. The library is freely
available on the SiLiX webpage http://lbbe.
univ-lyonl.fr/silix. Online documentation
and man pages are also available. S1LiX is licensed
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under the General Public License (http://www.
gnu.org/licenses/licenses.html).

3 Results

3.1 siLix faster and more memory

efficient than other methods

To test SILiX and compare it to state-of-the-art
programs, we extracted protein sequences from the
HOGENOM database (Release 5, December 2009,
[14]). The current release of HOGENOM contains 820
bacteria, 62 archaea and 51 eukaryotes for 3,666,568
protein sequences (76% bacteria, 3% archae and 20%
eukarya). We selected 3,159,593 non-redundant se-
quences including about 1% partial sequences. Se-
quences were compared between each other with
BLASTP [2] with an E-value threshold set to 107%.
The BLAST output file contains 1,905,335,339 pair-
wise alignments. We tested five previously published
programs, for which the source code is publicly avail-
able. These programs can be divided in two categories:
those performing the filtering of BLAST hits and the
clustering and those performing only the clustering.
For a fair comparison, we ran SiLiX in the two
modes (filtering+clustering or clustering only). The
clustering of the protein dataset with SiLiX is ex-
tremely fast (about 3 min) and requires only limited
memory capacity (see Table Tab. 1). Interestingly, the
filtering of the BLAST result file takes much more
time than the clustering itself (see the running times
of SiLiX with or without the filtering step). The run
time is indeed penalized by the necessity to retrieve the
sequence lengths in a yet efficient hash map structure.
Meanwhile it is necessary to note that, after the filter-
ing step, the number of similarity pairs given as input
to the clustering step represents less than 10% of the
number of pairwise alignments. Two of the five other
programs (Force [23] and ccomps [7]) turned out to
be limited by the available RAM memory (12 Gb) and
failed to cluster the protein dataset. MC-UPGMA [12]
which is very efficient in terms of memory usage takes
an order of magnitude more time than SiLiX. Lastly,
hcluster_sg [17] and MCL [8] deal with the dataset in
respectively 15x and 60x more time than SiLiX and
with high memory requirement. Consequently, S1LiX
presents the best abilities to tackle the challenge of
huge dataset analysis with CPU and memory require-
ments equivalent to those of a laptop computer.

3.2 siLiX scalable in practice

One could be satisfied to be able to deal with a huge
dataset in a couple of hours. Meanwhile, the number

of available sequences increases dramatically and the
number of similarities is quadratic with this number of
sequences. Moreover it could be valuable to offer the
possibility to run S1iLiX with different values of the
filtering parameters, to perform a sensitivity analysis
for example. For this first reason, we propose to face
the need for scalability into a parallel framework. We
designed a parallel implementation of SiLiX with
a low number of inter-processors communications to
take advantage of multiple kinds of parallel hardware
architectures. This algorithm delocalizes the process-
ing of the sequence similarity dataset, including the
filtering step, and merges the results in a last step (see
Methods). We designed a divide and conquer approach
that requires only ¢ — 1 communications where q is the
number of processors, followed by merge procedures
between partial results from two processors that are
considerably faster than the independant computations
on each processor. For these reasons, we observe prat-
ical performances consistent with the theoretical com-
plexity such that the run time decrease is inversely-
proportional to the number of processors (see Figure
Fig. 2).

4 Discussion

Different methods have been proposed for the clus-
tering of proteins into families of homologous se-
quences [8,12,23,22,15,14,17]. These methods differ
both in terms of the quality of the clustering, and in
terms of the computing resources necessary to perform
the clustering. The single-linkage clustering approach
is used in different phylogenomic databases such as
EnsemblCompara [22] or HOGENOM [14]. Here we
propose a new implementation of the single linkage
clustering method, SiLiX, which is extremely effi-
cient both in terms of the computing time and mem-
ory requirement. Moreover, this method can be cost-
effectively run on parallel architectures, and hence is
easily scalable. Thus, in terms of the computing re-
source requirements, this method is much more effi-
cient than other available methods for the treatment
of huge sequence datasets. We do not claim however
that S1iLiX outperforms other methods in terms of
the quality of the clustering. In fact it is known that
the single linkage clustering approach can be problem-
atic, because one single false positive link can lead to
the clustering of non-homologous sequences in a same
family. This risk of false positive links increases with
the size of the dataset, and hence the quality of the
clustering is expected to decrease as the amount of
sequences increases. Thus, the use of SiLiX alone
with a very large sequence dataset is likely to give
some heterogenous families. However, given its speed,
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method filtering clustering CPU MEM
(> 1.9 x 10? pairs) (> 1.38 x 10® pairs)|(min) (Gb)
SiLiX X X 138 0.36
Force [23] X X - Out of Memory
SiLiX X 3.2 0.24
hcluster_sg [17] X 51 4.5
MCL [8] X 194 6
MC-UPGMA [12] X 617 1.7
ccomps [7] X - Out of Memory

Tab. 1. CPU time and memory requirements for SiLiX and five state-of-the-art programs divided in two categories,
those performing the filtering of BLAST hits and the clustering and those performing only the clustering, on the dataset

of similarity pairs extracted from the HOGENOM database [
less than 10% of the original number of pairwise alignments.

]. After the filtering step, the number of similarity pairs is

180
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Fig. 2. CPU time of the parallelized version of SiLiX for varying number of processors on the dataset of similarity pairs

extracted from the HOGENOM database [14].

SiLiX can efficiently be used as a first clustering
step, before running other algorithms. For instance,
studying the similarity network of each family from
a topological point of view [3] is already affordable
with state of the art methods for connectivity or com-
munity structure detection ([5,16], see Figure Fig. 3).
This would allow to post-treat and curate the families
obtained with SiLiX and automatically remove sim-
ilarities that must be artifactual to consider subclus-
ters inside families. Interesting perspectives could also
consist in interpreting topology from an evolutionary
perspective.
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Abstract We discuss piecewise smooth hybrid systems as models for regulatory networks in
molecular biology. These systems involve both continuous and discrete variables. In the context
of gene networks, the discrete variables allow to switch on and off some of the molecular interac-
tions in the model of the biological system. Piecewise smooth hybrid models are well adapted to
approximate the dynamics of multiscale dissipative systems that occur in molecular biology. We
show how to produce such models by a top down approach that use biological knowledge for a
guided choice of important variables and interactions. Then we propose an algorithm for fitting
parameters of the piecewise smooth models from data. We illustrate some of the possibilities of
this approach by proposing a minimal piecewise smooth model for the cell cycle.

Keywords systems biology, hybrid models, cell cycle

1 Introduction

Hybrid systems are widely used in automatic con-
trol theory to cope with situations arising when a
finite-state machine is coupled to mechanisms that can
be modeled by differential equations [11]. It is the
case of robots, plant controllers, computer disk drives,
automated highway systems, flight control, etc. The
general behavior of such systems is to pass from one
type of smooth dynamics (mode) described by one set
of differential equations to another smooth dynamics
(mode) described by another set of differential equa-
tions. The command of the modes can be performed
by changing one or several discrete variables. The
mode change can be accompanied or not by jumps
(discontinuities) of the trajectories.

Depending on how the discrete variables are
changed there may be several types of hybrid sys-
tems: switched systems [14], multivalued differential
automata [15], piecewise smooth systems [2]. Notice
that in the last case, the mode changes when the tra-
jectory attains some smooth manifolds.

Piecewise affine hybrid systems have been used to
model dynamics of gene networks [1,3]. In these net-
works, most of the time, the gene variables are close to
discrete values (attractors) and the transitions between
discrete attractors are dictated by the relative position
of the transient values of these variables with respect
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to some thresholds. The transient dynamics leading
to attractors is considered to be piecewise affine where
the linear part of the dynamical equations is defined by
a diagonal matrix with negative entries. This approx-
imation allows to reduce the dynamics of simple ge-
netic circuits to a discrete automaton, and can be used
for various application such as model checking. How-
ever, the study of large networks with this approach
suffers from combinatorial explosion.

We must emphasize that piecewise affine models
are not always good approximations for the dynam-
ics of the modes. The machinery of the cell cycle
is an example. Proteolytic degradation of the cyclins
is switched on rapidly by the cyclin dependent kinase
complexes but between two successive switchings the
complexes have non-linear dynamics implying several
positive (autocatalytic processes) and negative feed-
back loops. These non-linear processes contribute to
the robustness of the mechanism. Another example is
the dynamics of the genetically regulated metabolism.
Genetic changes could be considered as boolean vari-
ables that are turned on and off by their mutual in-
teraction and by the interaction with the metabolites,
but between two successive switchings of the gene
expression the dynamics of metabolism is not linear.
More generally, the dynamics of multi-scale network
belongs to a patchy landscape formed by smooth, low
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dimensional, but curved manifolds, connected by dis-
continuous transitions. The patches represent low di-
mensional local invariant manifolds, typical for multi-
scale dissipative systems, and the transitions corre-
spond to bifurcations of these manifolds [7,6]. Piece-
wise smooth systems can provide more realistic and
more robust models describing these situations.

The idea of piecewise smooth patchy landscape
arises naturally from the model reduction theory. The
dynamics of a multiscale, but nonlinear large model,
can be reduced to the one of a dominant subsys-
tem [12,9,8]. In dynamical systems with separation
of timescales the dominant subsystem depends on
the relative contributions of different variables to the
timescales and on the comparison between timescales.
Both the contributions of different variables to the
timescales of the dynamics and the comparison among
timescales (which timescale is slower which one is
quicker) can change along a trajectory of the system.
Considering that the set of dominant subsystems is fi-
nite, the changes are necessarily discrete. Thus, al-
though one may try and sometimes succeed to find a
global reduced model, the general picture in the case
of multiscale non-linear dissipative systems is a se-
quence of several approximations (modes) valid lo-
cally. The modes integrate the degrees of freedom of
the system that are active for a certain time interval
[12,9,8].

The problem of how the modes can be rigorously
approximated for a given multiscale nonlinear model
will be approached elsewhere. In this paper we pro-
pose a heuristic to construct appropriate modes and ad-
equate piecewise smooth models by using a top-down
approach. Then, we show how the parameters of the
hybrid model can be fitted from data or from trajecto-
ries produced by existing smooth, but more complex
models.

2 Hybrid models

We consider the so-called hybrid dynamical systems
(HDS) consisting of two components: a continuous
part, u, defined by

Wi~ Futt), )
where v = (uj,u9,...,u,) € R", and a discrete
part s(t) € S, where S is a finite set of states.
For molecular networks, the continuous variables are
protein concentrations and the discrete states may be
gene activities described by boolean variables s =
(s1(t), s2(t), ..., sm(t)), where s; € {0,1} (such
boolean gene models are popular, see [4,10] among
many others).

t>0, @2.1)

—5H&—

There are several possible ways to define the
evolution of the s variables. Rather generally, this
can be done by a time continuous Markov chain with
transition probabilities p(s,s’,u) from the state s
to the state s’ (per unit time) depending on current
state u(t). However, in gene networks, transition
probabilities dependence on u is not smooth. For
instance, the probability for s to jump is close to one if
u goes above some threshold value, and close to zero
if w is smaller than the threshold. We can, in certain
cases, neglect the transition time with respect to the
time needed for u variables to change. Assuming that
some of the discrete variables contribute to production
of u and that other contribute to the degradation of
u we obtain a general model of hybrid piece-wise
smooth dynamical system :

du,;

dt SkP,;k (u) + Pio (u)

= 11

ngil(u) - Q?(u)v

l

n
sj=H()_wipug — hy),
k=1

Il
—

S =H( iy — hy)
k=1
2.2)

where H is the unit step function H(y) = 1,y > 0,
and H(y) = 0,y < 0, Py, P?,Qq, QY are positive,
smooth functions of u; representing production, basal
production, consumption, and basal consumption, re-
spectively. Here w, w are matrices describing the in-
teractions between the u variables, 1 = 1,2,...,n,
7=12,...,N,l=1,...,M and h, h are thresholds.

The class of models (2.2) is still too general. We
shall restrict ourselves to a subclass of piecewise
smooth systems where smooth production and degra-
dation terms will be assumed multivariate monomials
in u, plus some basal terms:

1k
Pii(u) = ajjpuy up™
P(u) = af
2() = agult . uldn
il il Uy n
O(u) = adu; (2.3)

which will be chosen according to a heuristic pre-
sented in the next section.

These models have several advantages with respect
to standard models in molecular biology and neuro-
science based on differential equations. They allow
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us to simulate, in a fairly simple manner, discontinu-
ous transitions occurring in such systems (see a typ-
ical graph describing time evolution of protein con-
centration within cellular cell cycle, Fig. 4.1). The
discontinuous transitions result either from fast pro-
cesses or from strongly non-linear (thresholding) phe-
nomena. This class of models is also scalable in the
sense that more and more details can be introduced at
relatively low cost, by increasing the number of dis-
crete variables and the size of the interaction matrices.

The definition of the modes slightly extends the
one of S-systems, introduced by Savageau [13]. Our
choice was motivated by the fact that S-systems
proved their utility as models for metabolic networks
whose dynamics we want to encompass by consider-
ing the modes. The introduction of basal terms avoids
spurious long living states when some products have
zero concentrations.

The monomial rates can be fully justified for linear
networks of biochemical reactions with totally sepa-
rated constants. The same is true for nonlinear mech-
anisms resulting from mass action law for instance. In
general simplified rates of complex mechanisms can
be rational functions of the concentrations. However,
when concentrations are very large or very small the
monomial power laws are recovered. For a multiscale
system changing regime (for instance a Michaelis
Menten reaction switching from a saturated enzyme
regime to a small concentration substrate regime) one
can use the discrete variables to illustrate the change.

In the next section we illustrate the possibilities of
this model and show that (2.2) can simulate the mitotic
oscillations of the cell cycle.

3 Heuristic for choosing the discrete
variables and the multivariate
monomial terms

The interactions between the molecular variables of
the model can occur at several levels:

i) The discrete interactions.

Discrete interactions manifest themselves punctu-
ally as a consequence of thresholding of rapid phe-
nomena. They contribute to changing the discrete
variables s;, 5;.

One protein can contribute to switching on or off
the discrete variables commanding the production
or the degradation of another protein. The action
of u; on u; is positive (an activation) if w;; > 0
(contribute to turn on production) or if w;; < 0
(contribute to turn off degradation). Conversely
the action of u; on u; is negative if w;; < 0 or
if wj; > 0.

ii The continuous interactions.

The continuous interactions guide the dynamics of
the modes. During the mode dynamics the vari-
ables s;, 5; are fixed. The continuous variable u;
activates u; if either ozj-k > 0 or d;l < 0, for some
k,l. Conversely, u; inactivates u; if either aé-k <0
or d;-l > 0, for some £, [.

In the following we provide a heuristic allowing to
produce hybrid models.

In order to define a hybrid model we need a hy-
brid interaction scheme. This consists in saying, for
each given species, whether its production/degradation
can be switched on and off and by which species, also
which species modulate the production/degradation of
a given species in a smooth way. The representation of
the hybrid interaction scheme can be given as a regu-
lated reaction graph.

A regulated reaction graph is a quadruple
(V,R,E, E,). The triplet (V,R,E), where
E C VX RUR x V, defines a reaction bipar-
tite graph, ie (z,y) € Eiffz € V,y € Randz is a
substrate of R, or x € R,y € V and y is a product of
z. B, C V x Ris the set that defines regulations, for
instance (z, z) € E, if z € V regulates z € R.

Consistently with the choice (2.2),(2.3) for
piecewise-smooth systems the stoichiometry of the
reaction graph (V,R,E) is mono-molecular, any
reaction has at most one substrate and at most one
product (generalizations are possible, but will not be
discussed here).

Some of the regulations in £, are discrete and some
are continuous and we can define the partition E, =
EU E¢. Similarly, there is a partition of the reactions
R = R®U R?®. A reaction y belongs to the switched
reactions y € R® if (x,y) € E%, forsome z € V.

The role of the regulators (continuous if they mod-
ulate the reaction rate, discrete if they contribute to
switching it on and off) should be indicated on the
graph together with the signs of the regulations.

Given a reaction, we identify its substrate and the
regulators. The non-basal term in the reaction rate is
a product of the concentrations of the substrates, con-
centrations of activators, divided by the concentrations
of inhibitors. The basal term is constant if there is no
substrate, or proportional to the concentration of the
substrate (for instance in consumption reactions).

Assuming that there are n species © € R" and
that the reactions have stoichiometric vectors v;, 1 <
j < m, one obtains the following piecewise-smooth
model:
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du
== > iR+ Y v(Ri(w)or(u)+ Ry (w)
jeRe keRd
(3.1

where o (0) = H(}_(; jyepr wrju; — hi). The
relation between oy, and s;, 5; from Eq.2.2 is straight-
forward.

The reaction rates have the forms given by (2.3).
The monomial exponents o, dé and the final rates

can be obtain from the following heuristic rules:

i) If areaction j is activated then aé = 1 for all activa-
tors and aé = —1 for all inhibitors 7 in the absence
of cooperativity. Cooperativity may be taken into
account by considering ]aé\ > 1.

ii) Basal rates are constant for reactions without sub-
strates and proportional to the concentration of the
substrate otherwise.

iii) If activated reactions are present with intermit-
tence, their non-basal rates are multiplied by dis-
crete variables s;.

As an example let us consider the minimal model
proposed by Goldbeter for mitotic oscillations of the
cell cycle [5]. Basically, this consists of three variables
C (cyclin), M (cyclin dependent kinase complex) and
X (proteolytic enzyme, most probably a polo-like ki-
nase). The production of M is activated by C (also
by M which is auto-catalytic), the production of X is
activated by M and the degradation of C is activated
by X. The hybrid interaction scheme contains six re-
actions. We decided that the degradation of the cyclin
C' acts discretely (on/off mechanism) and that all the
other reactions are always present in the model (their
rates are smoothly regulated). Then the hybrid model
is the following:

dC ~ - -
—r =k - RCHX — )~ KC
dM -

dX ~

3.2)

where H is the Heaviside unit step function.

4 Reverse engineering of hybrid models

We would like to develop a method allowing to find
the parameters of a model from the class introduced
above that best describes the observed trajectories of
a biological system. These trajectories can come from
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experiments or can be produced by non-hybrid mod-
els. In both situations we obtain a model whose pa-
rameters can be easily interpreted in biological terms.
The hybrid model can be further analyzed or used to
model more complex situations.

Geldbeter model

0.8

0.6

0.4

0.2

120 140 160 180 200 220 120 140 160 180 200
time t timet

Fig.4.1. (Middle) Regulated reaction graph for the min-
imal cell cycle model. Continuous arrows represent reac-
tions, dotted arrows represent regulations. (s) regulations
smoothly modulate the rates. (d) regulations discretely turn
on and off the reaction rates. (Left) Trajectories of the non-
hybrid model by Golbeter [5]. (Right) Trajectories of the
hybrid model.

In the following we present a reverse engineering
algorithm that works well for systems with sharp tran-
sitions.

Data. n trajectories (time series) wuy(t), ..., u,(t)
given at time moments %o, ¢1, ..., ty. A regulated re-
action graph (the smooth/discrete partition of the reg-
ulations can be unspecified).

Output. A model of the type (2.2),(2.3) with values
of the parameters that fit well the data.

The algorithm has several steps.

I. Splitting of the trajectory into smooth parts.

We look for K time intervals I, Io, ..., I . The dy-
namics on each of the intervals is smooth, it is given
by (2.2) with the s variables fixed. Mode transitions
(change of the variables) occur at the borders of these
intervals. We denote the switching times as 71, ...Tx.

Finding 71 is a problem of singularity detection.
This could be done by various methods, for example
by wavelet analysis. We have chosen as criterium the
value of the second derivative of u;. For piecewise
smooth systems, the derivatives of the trajectories are
discontinuous at the switching times 7. The second
derivative has delta-Dirac components located at 7,
which will show up as peaks in the numerically esti-
mated second derivatives.

II. Identification of the mode transitions.
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Given a switching time 7, the mode transition is de-
fined by the set of values values o; indicating reactions
to be turned on or off at 7. The presence of a disconti-
nuity is indicated by a peak in the second derivative of
one or several species u;. Without knowing which re-
action in the regulated reaction graph has discrete be-
havior, there are several possible choices for such reac-
tions. Each one of this choices could lead to a different
hybrid model corresponding to a different characteri-
zation of the interactions as discrete and continuous.
This step is supervised and could take into account bi-
ologist’s intuition.

The discontinuities of the trajectories give the tran-
sitions but not the first mode. This choice is also su-
pervised and takes into account periodicity constraints.
From the first mode and from the transitions, all the
modes (values of o; on the intervals ;) are straight-
forwardly obtained.

III. Determining the mode internal parameters.

The mode internal parameters are obtained by sim-
ulating annealing. Let u}"°%(¢) be the continuous hy-
brid trajectories obtained by integrating the modes be-
tween the calculated transition times. The simulated
annealing algorithm minimizes the following objective
function:

F =Y Coluf™® (ty) — ui(ty))”
ik

C}, are positive weights that increase with time. We
thus penalize large time deviations that can arise from
period misfit.

IV. Determining the mode control parameters.

Let o = H(Q (1, jyepr Wmstj — hy) be the dis-
crete variables determined above. Let o7 be the con-
stant values of 0,,, on T}. Consider now the optimal
trajectories u!™°%*(¢;) obtained before.

Then, one should have

( Z wmju;nOdes*(tl)—hj)(flT > 0,forallt; € Ty,
(m.j)eEr
4.1)
which is a linear programming problem for w,,,; that
can be resolved (if it has a solution) in polynomial
time.

The algorithm has been applied to the minimal cell
cycle model by Golbeter and the result is shown in
Fig. 4.1. Of course the fit is not perfect and one should
by no means expect a perfect fit. One of the reason
of the differences is that the model by Goldbeter uses
degradation terms that saturate and are practically con-
stant on the descending slope of the variables M, X,
while our linear degradation terms lead to exponential
decrease.

5 Conclusion

The results that we present are a proof of princi-
ple that piecewise smooth hybrid models can be con-
structed with a simple heuristic from basic informa-
tion about biochemical interactions. Using this class of
hybrid models instead of piecewise-linear approxima-
tions provides, in many situations, a better balance be-
tween discrete and smooth interactions. For instance,
the hybrid cell cycle model presented here has only
two discrete transitions per period and it is very robust.
A piecewise-linear version of the same model, would
need a lot more discrete transitions per period which
will reduce robustness and increase the difficulty of
the inversion procedure. In the future we will apply
the heuristic and the fitting algorithm to obtain a real-
istic model for the eucaryotic cell cycle.
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1 Introduction

Organogenesis and differentiation require the co-
ordinated expression in time and space of different
groups of genes. The accuracy of this process, gov-
erned by transcription factors (TFs) acting within a
complex gene regulatory network, ensures the acqui-
sition of specific organ shape and physiology. How-
ever, the logic of the cis-regulatory mechanisms is
far from being understood so far. Bioinformatics ap-
proaches to predict cis-regulatory modules (CRM)
from genomic sequences can greatly help to charac-
terize new enhancers and the associated developmen-
tal regulatory network. Approaches based on com-
bining expression data with comparative genomics
are expected to allow predicting regions of DNA that
regulate the expression of genes with greater accura-
cy. Previous approaches have been applied, based on
predicting clusters of transcription factor binding
sites, combined with phylogenetic footprinting [1,2],
or using a statistical framework in order to decipher
the most relevant combination of binding sites for
expression-based gene clusters [3]. We present here
a novel approach combining bioinformatics
predictions of CRMs and experimental validations,
which allowed us to identify CRMs from gene
expression data.

2 Data and results

We focus our interest on the development of the
cardiovascular system in Drosophila in order to in-
vestigate the regulatory logic of this process. During
embryogenesis, cardiogenesis is mediated by a gene
regulatory network (GRN) which includes conserved
signaling pathways and transcription factors and
leads to the formation of a linear cardiac tube, with
antero-posterior polarity driven by the Hox genes.
Then, during metamorphosis, the larval cardiac tube
is remodeled to form the adult organ. We recently re-
ported a precise temporal map of gene expression of
adult heart formation through the analysis of the tem-
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poral dynamics of heart-specific gene expression
profiling [4].

Starting from clusters of co-expressed genes dur-
ing cardiac tube remodeling during metamorphosis,
we applied a new method that uses a comprehensive
library of position weight matrices, combined with
phylogenetic conservation, to identify potential cis
regulatory modules common to a cluster of co-ex-
pressed genes. Using this method, we have been able
to predict several CRMs involving a particular class
of TFs for one of the clusters, in which gene expres-
sion is induced at 42h after pupation. Potential bind-
ing sites are evolutionary conserved and overrepre-
sented in the surrounding non-coding sequences of
co-expressed genes with a high statistical signifi-
cance. The class of TFs involved is likely to corre-
spond to nuclear receptors, of which the drosophila
homolog, Dhr3, is highly expressed during heart re-
modeling, on the onset of the induction of the cluster
of genes. Besides this nuclear receptor, the predicted
CRMs contain high confidence potential binding
sites for MyoD like factors, which are specific of
muscular tissues. We have performed in vivo valida-
tions, using transgenesis, using gateway cloning. The
results show that the predicted CRMs reproduce the
expected temporal expression pattern. Indeed, all six
tested CRMs drive a transitory expression in differ-
ent tissues from 42h to 96h after pupation. Our ap-
proach hence was successful in identifying CRMs
regulating the temporal activation of the target genes,
and our results suggests a modular architecture of the
regulatory machinery, in which the temporal and
spatial regulation are distinct.

We are performing further experimental valida-
tions, including mutagenesis of the predicted binding
sites and transgenic assays in gain- and loss-of-func-
tion context for the predicted TF DhAr3 to confirm the
validity of the predicted CRMs.
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Robustness, defined as the capacity of a system
to function reliably with unreliable components or to
adapt to changing external conditions, represents a
common feature of living systems. The fittest organ-
isms are those that resist to diseases, to imperfections
or damages of regulatory mechanisms, and that can
function reliably in various conditions. There are many
theories that describe, quantify and explain robust-
ness. Waddington’s canalisation [1] was formalised
by Thom [2] as structural stability of attractors un-
der perturbations. The canalization by attractors have
been recently proven for Drosophila development [3].
The new field of systems biology places robustness in
a central position among the living systems organiz-
ing principles, identifying redundancy, modularity and
negative feedback as sources of robustness [4]. As no-
ticed by von Dassow [6], systems biology models are
robust with respect to variations of their parameters.
Parametric robustness of models is also expressed by
the strong anisotropy of sensitivity coefficients along
directions in the parameter space (sloppy sensitivity).
Robustness does not exclude fragility [4], as some of
the model parameters could have a critical influence
on the behavior of the system.

We discuss here system robustness with respect to
randomness of the parameters. Our results can be ap-
plied to gene networks that function reliably with large
variability in the strength of interactions between com-
ponents. We formally define reliability as small vari-
ability of quantities defining network’s functioning or
output. We want to understand the general principles
leading to robust functioning, but also to spot eventual
fragility points that can be used to control the network.

Early insights into this problem can be found in the
von Neumann’s discussion of robust coupling schemes
of automata [5]. von Neumann noticed the intrinsic
relation between randomness and robustness. Quoting
him “without randomness, situations may arise where

Sl

errors tend to be amplified instead of cancelled out;
for example it is possible that the machine remembers
its mistakes, and thereafter perpetuates them”. To cope
with this, von Neumann introduces multiplexing and
random perturbations in the design of robust automata.

We distinguish [8,9] three generic types of paramet-
ric robustness: simplex concentration, cube concen-
tration and robust/fragile systems (systems with small
number of critical parameters). The first two types can
be related to the mathematical theory of concentration
phenomena in high-dimensional spaces [7]. Model re-
duction techniques [11,10] can be used to identify crit-
ical processes and design rules leading to various ro-
bustness situations.

Simplex concentration and dominance effects are
largely responsible for “sloppy sensitivity” phenom-
ena, involving inequivalent contributions of elemen-
tary dynamical processes to the behavior of the sys-
tem. Gene networks are multiscale systems, meaning
that they involve wide ranges of protein abundances
(from one to 10* per cell) and time scales of elemen-
tary dynamical processes, for instance biochemical re-
actions (from 1072 to 10*s). Contribution of these el-
ementary dynamical processes to the behavior of the
system is highly uneven. Thus, one process is dom-
inating over many others and can be called critical
[11]. Mathematically, system’s dynamical properties
depend on order statistics [9] (combinations of max
or min over many parameters or parameter combina-
tions). Order statistics have small variability even if
parameter variation range is large, a phenomenon that
is called simplex concentration.

Model reduction techniques for multi-scale network
models extract the dominant sub-system and identify
the critical parameters [11,10]. The model reduction
algorithm contains pruning steps that eliminate domi-
nated processes. These processes have little influence
on the dynamics, which explains the overall sloppy
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sensitivity of the model. As a result, a system with a
small number of critical parameters is a paradigm for
the robust/fragile concept.

Cube concentration produces reduced variability
when many equivalent contributions are added to-
gether [9]. This phenomenon generalizes the law of
large numbers. Properties showing cube concentration
depend on many parameters of the dominant subsys-
tem. An example of property having such behavior is
the period of large oscillating networks [9].

We proposed a scenario to test various types of ro-
bustness [9]. In this scenario the variability of a given
property (quantified by its log-variance) is computed
for random variations of the parameters in two cases:
1) all n parameters are changed independently with in-
creasing individual log-variance, and ii) » < n param-
eters are randomly chosen and then randomly changed
with fixed log-variance for increasing values of the in-
teger r. The two resulting plots (log-variance of the
property as a function of the log-variance of the param-
eters in one case, and as a function of the number r of
changed parameters in the second case) are discrim-
inating for the three types of generic robustness. We
have thus shown that for an oscillating signalling net-
work the period of the oscillations follows cube con-
centration, the largest relaxation time follows simplex
concentration, and the damping time of the oscillation
amplitude is robust/fragile [9].

As a new development we present the application
of this test to a large set of models from BioModels
database for a large set of dynamical properties. We
use a similar analysis, in the context of early develop-
ment stages of Drosophila, to study the robustness of
the cis-regulatory modules controlling the expression
of even-skipped segmentation genes [12]. These stud-
ies illustrate the genericity of the mechanism.

Understanding robustness has fundamental impor-
tance as it can guide thinking about biological sys-
tems. It is important to known whether the control
of a property of a system should be distributed (the
case of properties with cube or simplex concentration)
or localized on a well chosen target (the case of ro-
bust/fragile properties). Our studies also provide tools
to identify the various types of robustness and the set
of critical parameters which are important for practical
applications. These tools complement more traditional
sensitivity studies approaches. An even more impor-
tant practical consequence of our results is the pos-
sibility to cope with parametric uncertainty of gene
networks in a rational way. Indeed, determination of
the dominant subsystems of a given multiscale net-
work depends on the qualitative order relation and not
on the precise values of the parameters. Determination
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of these order relations (qualitative comparison of in-
teraction strengths by experimental techniques or by
sequence analysis) allow simplification of the dynam-
ics via model reduction tools and lead to identification
of critical parameters that need to be measured more
carefully.
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Abstract Structural genomics efforts lead to the determination of new protein structures that
often lack sequence and fold similarity to known proteins. Sequence and structure-based methods
may not be sufficient to predict the molecular function of these proteins. For such cases, the
identification of functional motifs gives useful clues for deducing the protein function.

We describe a new statistical method dedicated to the extraction of motifs of interest in pro-
tein loops. This method is based on the structural alphabet HMM-SA and the statistic over-
representation. Thanks to HMM-SA protein structures is encoded into sequences of structural
letters allowing the application of algorithms developed for sequence analysis such as the notion
of pattern/word exceptionality. Thus, as in DNA sequences, the statistic over-representation re-
lated to SCOP superfamilies is used to extract structural motifs of interest in protein loops. Our
analyses of biological annotations suggest that some structural motifs strongly over-represented in
a SCOP superfamily are involved in the protein function, such as calcium- or nucleotide-binding
site. Motifs detected by this approach could be used for the annotation of uncharacterized proteins.

Structural-alphabet motifs in protein loop structures: from structure to

1 Molécules Thérapeutiques in silico (MTi), Université Paris Diderot - Paris 7, UMR-S973 Inserm, Batiment Lamarck,

2 Université de Lyon, Lyon, France ; Université Lyon 1; IFR 128; CNRS, UMR 5086 ; IBCP, Institut de Biologie et

Keywords structural-alphabet motifs,
representation

1 Introduction

The prediction of protein function is a very im-
portant challenge. For many proteins, the search of
homologous proteins with known function provides
no straight answer. In such cases, the prediction of
functional sites can give useful clues for deducing
the protein function. Two types of methods have
been developed for binding site prediction. On the
one hand, some methods exploit the conservation of
motifs associated to binding sites, which is effective if
binding sites present strong amino-acid conservation
[1,2]. On the other hand, some methods exploit the
tri-dimensional (3D) structure of binding sites [3,4].
Most of these methods need for the learning functional
motifs the knowledge of the position of functional
site, and the computation of structural alignment or
geometric descriptors.

In this paper, we present an alternative strategy for
functional motif identification, based on a structural
alphabet and statistics to detect 3D-motifs with excep-
tionnal frequency. We focus on the functional mo-

Sl

functional motifs,

protein loops, statistic over-

tifs from protein loops and used the structural alpha-
bet HMM-SA [5]. It is a collection of 27 structural
prototypes of four residues called structural letters, al-
lowing the simplification of all protein structures into
uni-dimensional structural-letter sequences. The use
of word over-representation is motivated by the ob-
servation that functional sites in DNA are subject to
selection pressure, which is expected to result in un-
common (high or low) frequency [6,7]. In a previous
study, we have shown that HMM-SA, used in conjonc-
tion with pattern exceptionnality in the structural-letter
sequences, is an effective tool for the mining of protein
loops [8]. Here, we investigate the link between struc-
tural words (series of 4 consecutive structural letter se-
quences) and protein function, by looking for words
specific to superfamilies defined by SCOP [9]. The
role of these motifs in the protein function is then ana-
lyzed using the biological annotation Swiss-Prot.
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a) 3D structure of chain B of
protein 1GPW (pdb code)
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) Structural letter series of chain B of
protein 1GPW.
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Fig.1. Protocol of structural word extraction. a) the 3D
structure of a structure is used as input, b) the Ca coor-
dinates are simplified using HMM-SA, c) the result of the
simplification is a sequence of structural letters, d) loops
are extracted from the structural-letter sequences using reg-
ular expressions of structural letters, e) loops are systemat-
ically decomposed into overlapping words of four consecu-
tive structural letters.

2 Material & Methods

Data set

An initial list of 8 119 protein structures was ex-
tracted from the PDB of May 2008 using the software
PISCES [10] with the following criteria: obtained by
X-ray diffraction, resolution better than 2.5 A, longer
than 30 residues, less than 50% sequence identity be-
tween any pairs. We restricted the list to the 5429
structures classified in SCOP [9]. As it is assumed
that proteins grouped in the same SCOP superfamily
exhibit structural and functional similarities, this level
was chosen for our analysis. To allow statistical anal-
ysis, we further restricted the list to the proteins classi-
fied in superfamilies with at least two members in the
data set, resulting in 4911 proteins from 1493 super-
families. On average, we found 7.90 proteins (4-13.78)
by superfamily.

Extraction of structural words

We described the 3D conformations of protein loops
by structural words with the same protocol as in [8]
and summarized in Fig. 1. It is based on the structural
alphabet HMM-SA [5], a set of 27 structural proto-
types of four residues, called structural letters, estab-
lished using hidden Markov models.

Thanks to HMM-SA, a structure of n residues is
encoded into a sequence of (n — 3) structural letters,
where each structural letter describes the conformation
of 4-residues.
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The present study is focused on protein loops. We
then discarded regular secondary structures from the
structural letter sequences, based on the fact that
some structural letters are specific to regular secondary
structures [5,11]. The structural letter sequences of
protein loops were further split into overlapping struc-
tural words of four letters (i. e. describing the confor-
mation of seven residues).

We extracted a total number of 25304 differ-
ent structural words describing the conformation of
238 158 seven-residue fragments. As structural words
with very low frequency could be linked to structural
flexibility and regions with uncertain coordinates [8],
we did not consider structural words seen less than 5
times. This resulted in a set of 11 294 words, account-
ing for 224 148 seven residue fragments, and seen, on
average, 19.85 times (£+31.69).

Computation of structural word statistics

The description of protein structures as sequences
of structural letters allowed the application of algo-
rithms developed for sequence analysis such as the no-
tion of pattern/word exceptionality. The exceptionality
of a word denotes its over- or under-representation in
a data set. We used the SPatt software [12] to com-
pute the exact statistics of structural word in sets of
short sequences. It is achieved by comparing its real
frequency in the data set and the frequency that would
be expected under a background model defined as a
first order Markov chain estimated on the set of pro-
tein loops. The over-representation score of a word w
is given by:

Lp(w) = —logyo[P(NP(w) > N (w))]

where N°(w) and N*"*°(w) denote respectively the
frequency of w that is observed in the data set and ex-
pected under the background model, and P the prob-
ability of the event. A Lp score equal to 3 means that
the pattern is over-represented with a p-value of 1073,
To define the type of a word (over, under-represented
or not significant), its Lp score is compared to a thresh-
old. This significance threshold was defined by tak-
ing into account the multiple testing and was set to
5.97 using Bonferroni correction. Thus, a word with
an over-represented score higher (resp. smaller) than
5.97 (resp. -5.97) is over-represented (resp. under-
represented).

In order to investigate the link between structural
words and function, the over-representation was as-
sessed separately in each SCOP superfamily. In conse-
quence, for each structural word, we have two criteria:

— Lpmas: the maximal L, score among all superfam-
ilies,
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— nbgys: the number of superfamilies where a given
word is significantly over-represented.

For the sake of comparison, we also computed these
indicators in randomized data sets, obtained by ran-
domly reassigning loops among SCOP superfamilies.

Biological annotations

Swiss-Prot is a curated sequence database which
strives to provide a high level of annotation (such
as the description of the function of a protein, do-
main structure, post-translational modifications, vari-
ants, etc...), a minimal level of redundancy and high
level of integration with other databases [13].

We chose Swiss-Prot database because it is a manu-
ally curated database and shows the lowest annotation
error levels [14].

To map our structural words with Swiss-Prot
annotations, we used the PDB/UniProt Mapping
database [15], which consists of different files allow-
ing the correspondence between PDB and UniProt
codes, and PDB and Uni-Prot sequence numbering.
Among the 4911 protein structures, only 1487 are in-
cluded in the PDB/Uniprot Mapping database. The
confrontation of structural words with biological an-
notations is thus inherently limited to a restricted data
set.

We analyzed the correspondence between structural
words and functional annotations available in Swiss-
Prot database by counting the number of fragment of
a word associated to an annotation in the data set.

External tools for prediction of protein
features

Software REP [16] wad used to predict Repeat
regions from protein sequences. It is an iterative
homology-based Repeat finding method.

Software SitePredict [4] was used to predict nu-
cleotide and calcium-binding sites. SitePredict is
a machine learning-based method based on diverse
residue-based properties including spatial clustering
of residue types and evolutionary conservation. Only
residues with a score higher than 0.5 are considered as
residues involved in binding site.

3 Results & Discussion

Our goal is to systematically elicit structural motifs
of interest extracted from protein loops.

3.1 Extraction of motifs of interest in loops
using over-representation in SCOP

superfamilies

We computed the over-represention of the 11294
words in each superfamily. Fig. 2 presents these
two statistic criteria for each word: Lpy,q45, the high-
est over-representation score over SCOP superfami-
lies and nby s, and the number of superfamilies where
the word is over-represented. For example, the struc-
tural word GSUS is seen 169 times in 59 SCOP su-
perfamilies with an Lp,,,4, equal to 140 correspond-
ing to its over-represented score in the superfamily
“Pentapeptide repeat-like” (SCOP id 141571), mean-
ing that it is strongly associated to this superfam-
ily. It is also over-represented in the superfamilies “L
domain-like” (SCOP id 52058) and “RNI-like” with
over-representation scores of 40 and 7. Its nbgy, is,
thus, equal to 3. These two superfamilies have in com-
mon the property “contain amino-acid repeats”. The
consideration of nb,y, thus permits to take into ac-
count the fact that some superfamilies could share a
same over-represented structural motifs. In their study,
Tendulkar et al, used a frequency parameter to de-
fine functional motifs: a cluster of fragment is func-
tionally relevant if at least 70% of its fragments are
extracted from proteins belonging to the same SCOP
superfamily [17]. Using this criterion, the structural
word GSUS is not functionally relevant, since only
27% and 15% of its fragments belong to the superfam-
ilies “Pentapeptide repeat-like” and “L domain-like”,
respectively. Our indicators provide a more detailed
analysis, since statistical over-representation takes into
account the amount of data available in each superfam-

ily.

data-set Word nb Lp,na;  Nbgy.
SCOP 11294 4.3 (5.6) 0.2(0.7)
SCOP random 11294 2.5(0.9) 0.006 (0.4)

Ubiquitous words 23
sf-specific words 24

26 (14) 10.33(5.5)
89 (47) 1.4(04)

Tab. 1. Average statistic parameters for different word sets.
1: number of words. In brackets is indicated the standard
deviation.

We then checked the global significance of our re-
sults by comparing word statistics obtained using the
actual SCOP classification and a randomized SCOP
classification. We observe that Lp,,, and nbsy, are
significantly higher in SCOP than random SCOP (cf.
Tab. 1). This indicates that word over-representation
in SCOP superfamilies is not random.

From Fig. 2, we make the distinction between three
classes of structural words:
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Fig. 2. Plot of the SCOP superfamily criteria for the 11294
words. X-axis corresponds to Lp,, ., values measuring the
tendency of words to be specific to one particular superfam-
ily. Y-axis corresponds to nb, s, values defined the number
of superfamilies where words are over-represented.

— words being moderately over-represented in a
large number of superfamilies, called ubiquitous
words,

— words being highly over-represented in a small
number of superfamilies, called sf-specific words,

— all other words are considered as uninformative,
since that are neither sf-specific, nor ubiquitous.

The over-representation of a structural word indi-
cates a surprising high frequency in a superfamily with
respect to a background model of protein loops. A
structural word that is over-represented in a superfam-
ily was presumably selected during evolution because
it has an important role for protein structure or func-
tion. To analyze this hypothesis, we studied in more
details the most significant ubiquitous and sf-specific
words. To perform that, we compared ubiquitous word
to known recurrent structural motifs and investigated
the link between sf-specific words and the functional
site of proteins using Swiss-Prot annotations.

3.2 Examples of ubiquitous words

In this section we analyzed the 23 most ubiquitous
words, that means structural words over-represented
in a lot of superfamilyes (nbss« > 5). This ubiquitous
word set presents a b,y and Lpy,q, higher than on
all words (cf. Tab. 1), and they are found across super-
families with different folds (cf. Fig. 3). This Fig. 3
presents an illustration of properties of structural word
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PZCD, which is over-reprensented in 25 superfamilies.

a,

)

Frequency =560
Lp,, =348
nb_ =25

d) sf=Acyl_CoA N-acyltransferases

lutc_A:285-291

liic_A:138-144

Fig.3. Ubiquitous word PZCD. a) geometry of several
P ZCD-fragments optimally superposed. b) amino-acid con-
servation of the word generated by WebLogo [18]. ¢) word
statistics. d) example of structures, represented using Py-
mol [19], containing the structural word PZCD

Some recurrent structural motifs in loops are well
characterized and described in the literature, such as 3-
turns [20], a-turns [21] and ~-turns [22]. We carried
out a comparison between our ubiquitous words and
usual turn motifs. Following the definition of [20],
turns were defined as tetrapeptides with a C7* — Cf, 5
distance lower than 7 A , with the two central residues
(¢ + 1,7 + 2) in non-helical state, using the software
ExtractTurn [23]. We then computed, for each ubiqui-
tous word, the number of fragments containing a turn.
Some words are not associated with turns: for exam-
ple, SKGI and HBBQ have less than 7% of their frag-
ments containing turns. On the contrary, other words
are clearly associated to turns: all PZCD-fragments
and 99% of FQKG-fragments contain a § — turn in
position 2-5 and 1-4, respectively. It is interesting to
note that 1% of FQKG fragments fail the 5 —turn as-
signment because they do not verify the threshold for
the distance between C1' — Cf', which varies between
7.03 and 9.83 A. In their paper, Fuchs et al. [24] de-
fined “turn-like” conformations as corresponding to a
four-residue fragment with a Cf* — Cf distance around
7 A. This suggests that structural motifs could com-
plement the classical geometric criteria to provide an
assignation of turn-like fragments without relying on a
strict distance threshold.

3.3 Examples of sf-specific words

In this section, we analyzed the 24 most significant
sf-specific words, that means structural words with a
Lpmas higher than 50, and a nb; g, strictly smaller than
5.
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Sf-specific words are strongly over-represented
in 16 different superfamilies. Some superfamilies
(EF-hand, P-loop containing nucleotide triphosphate
hydrolases, S-adenosyl-L-methionine-dependent
methyltransferases) group proteins containing small
ligand-binding sites. Other superfamilies, e.g.,
L domain-like (52058), Pentapeptide repeat-like
(141571) contain amino-acid repetitions. The statistic
criteria of these most significant sf-specific words
are presented in Tab. 2. Their very high over-
representation in this superfamily could indicate a
conservation in proteins of this superfamily during the
evolution for functional reasons.

We thus wanted to know whether sf-specific words
actually correspond to functional sites of proteins. We
analyzed their association with functional annotations
available in Swiss-Prot database [13]. The results of
this analysis are presented in Tab. 2.

We can note that ten structural words, indicated in
italic in Tab. 2, are strongly over-represented in sev-
eral superfamilies poorly or not at all associated to
a Swiss-Prot annotation. Six other sf-specific words
are associated to Disulfide or Repeat annotations. The
seven other sf-specific words are strongly associated
the a functional annotation: nucleotide-binding site,
calcium-binding site or binding annotations. More-
over, we can observe that some words are overlapping.
For example YUOD and UODO, ZDOD and DODQ or
SUQH and UQHS.

We here focused on three words UQHS, YUOD,
DODQ (presented in Fig. 4) and analyzed in further
details their link with SCOP superfamilies.

3.3.1 uoHSs is a part of REPEAT regions Struc-
tural word UQHS is strongly over-represented in the
superfamily “L. domain-like” (SCOP id 52058) group-
ing proteins containing Reapeat regions, i.e. repetition
of amino-acid regions.

We can see that structural word UQHS presents
amino-acid preferences (cf. Fig. 4) in close agree-
ment with this consensus sequence of Repeat LRR:
LxxLxLxxNxL or LxxLxLxxCxxL [25].

This word has 55% of its fragments annotated by the
Repeat LRR (Leucine-Rich Repeat) annotation. This
annotation indicates repeated sequence motifs or do-
mains. This result shows that structural word UQHS
is a part of Repeat regions (cf. Fig. 4) and suggests
that unannotated UQHS-fragments correspond also to
a part of Repeat regions.

To valide this hypothesis, we predicted repeat LRR,
using software REP [16], in protein 1dce_A that con-
tain two unannotated UQHS-fragments: 1dce_A:470-
476  (amino-acid  sequence=LSHNRLR) and

4 a) UQHS N

Frequency =53
Lp, =75
Nb, =1

sf=L domain-like
S amino acid repetitions

Frequency =73
Lp,, =157
Nb, =1

sf=47473 “EF-hand”
> calcium binding site

Frequency =111
Lp, =184
Nb, =1

sf=52540 “P-loop”
> nucleoside binding site

-

Fig.4. Illustration of the three functional words : UQHS
(a), DODQ (b) and YUOD (c). For each word, we provide:
the statistics (word occurrence, Lppqz, nbsy=), the super-
family where the word is the most over-represented, the
superimposition of fragments associated to this word, the
amino-acid conservation of using a Logo [18], and an ex-
ample of the word in a protein structure. Motifs and protein
structures are represented using Pymol [19].
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Word Lpy,qz nbsp«  annot  match/total **
UQHS 75.07 1 Repeat 12/22 (52)
SUQH 6342 1 Repeat 11/26 (70)
QHSG 51.75 1 Repeat 4/10 (37)
HSGI 76.26 1 Repeat 5/12 (63)
oxXUs 52.05 1 Repeat 1/15 (43)
ZSGI 5222 1 Repeat 7/36 (99 )
GSUS 14049 3 Repeat 6/38 (169)
GZDO 8472 3 Repeat 1/35 (115)
DODQ 157.01 1 CABIND 15/23(73)
ZDOD 9127 1 CABIND 11/16(48)
YUOD 184.67 1 NP_BIND 39/41(111)
UODO 210.14 4 NP_BIND 49/60 (142)
OEIl 5384 1 NPBIND 6/7 (33)
EIJU 51.68 1 NPBIND 7/15(48)
USLG 13735 2 NPBIND 2/22 (121)
UZCI 6370 2 NPBIND 1/13(99)
RUDO 55.55 1 Binding 5/10 (27)
URNH 5495 1 Disulfide 7/14 (43)
RNHB 51.33 1 Disulfide 9/20 (59)
UGRU 60.07 1  Mutagen 1/12(37)
EGZD 5168 1 (48)
GRUD 7055 1 (33)
SLGS 11845 1 (60)

Tab.2. Results of the sf-specific word annotations. **
match and total denote respectively the number of frag-
ments that is annotated and the total number of fragments.
This comparison with Swiss-Prot annotation is restricted to
the set of proteins that are common to our datase and Swiss-
Prot database. The number between brackets describes the
total number of fragments in our data set. Bold font indi-
cates ration match/total higher than 50%. Italic font indi-
cates ration match/total smaller than 50%. NP_BIND: Ex-
tent of a nucleotide phosphate binding region. CA_BIND:
Extent of a calcium-binding region.

1dce_A:493-499 (amino-acid sequence=ASDNALE).
We found two predicted Repeat LRR in protein
ldce_A at positions 484-507 and 529-553. Region
484-507 overlapps the second unannotated UQHS
fragment (493-499). The first UQHS unannotated
fragment is close in the sequence to the first predicted
LRR-Repeat and has an amino-acid sequence (LSH-
NRLR) in agreement with the consensus sequence of
LRR-repeats, suggesting that it is a LRR-repeat.

We can conclude that the structural motif UQHS
corresponds to a part of the highly conserved region
of LRR-repeat, that is not defined as protein func-
tional site. However, proteins with LRR repeat have
strong biological implications: they are involved in
protein-protein interactions in plant and mammalian
immune response [26]. A number of human diseases
have been shown to be associated with mutation in the
genes encoding LRR-proteins, principally in LRR do-
mains [26].
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3.3.2 Some sf-specific words are involved in
binding sites

DODQ is a calcium-binding site. Structural word
DODQ is over-represented in the superfamily “EF-
hand” (SCOP id=47473) grouping proteins with EF-
hand units, made of two helices connected with
calcium-binding loop.

This word presents amino-acid preferences (cf.
Fig. 4) in agreement with the sequence consensus of
the calcium-binding motifs [DxDxDG] [27].

Structural word DODQ is strongly associated to the
calcium-binding site annotation (cf. Tab. 2). This re-
sult shows that structural word DODQ is a calcium-
binding site, and suggests that the 9 unannotated frag-
ments are calcium-binding sites.

To validate this hypothesis, we predicted, using
SitePredict, the calcium-binding sites in proteins con-
taining unannotated DODQ-fragments. Six out of the
nine unannotated DODQ-fragments contain residues
predicted as involved in calcium-binding sites. Thus,
among the 23 DODQ-fragments, 20 correspond to an-
notated or predicted calcium-binding sites.

Rigden et al. extracted structural motifs from
calcium-binding proteins in order to analyze the struc-
tural diversity of these proteins [27]. From the six pro-
teins common to our data-set and theirs, they extracted
13 calcium-binding sites. The structural alphabet anal-
ysis of these sites shows that all correspond to struc-
tural motifs DODQ, except one which corresponds to
DODS.

These results allow to conclude that structural word
DODQ is involved in calcium-binding sites.

YUOD is a nucleotide-binding site. YUOD is strongly
over-represented in the superfamily “P-loop contain-
ing nucleoside triphosphate hydrolases” (SCOP id
52540) grouping proteins with nucleotide-binding site.

YUOD presents a clear amino-acid conservation
(cf. Fig. 4) in agreement with the one of P-loops:
[AG]XXXXGK[TS] [28].

The structural motif YUOD is very strongly assciated
to the nucleotide binding site annotation (cf. Tab. 2):
only 2 fragments (logo_X:45-51, 11wj_A:354-360 )
are not annotated by this annotation.

To investigate the functional role of these unanno-
tated fragments, we predicted the nucleoside-binding
site of these two proteins using the software SitePre-
dict. These two proteins (logo_X, 1lwj_A) do not
contain predicted nucleotide-binding site, that can not
confirm the functional role of these two fragments.

In their study, Via et al. used 3DLogo to extract
structural motifs in P-loops [29]. They illustrated their
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method on six proteins containing P-loops, by predict-
ing the residues involved in ATP/GTP-binding sites.
From this protein set, we extracted six structural words
corresponding to their predicted binding sites. Five of
them are encoded into YUOD and one into KUED, two
words that are structurally close.

These results allow to conclude that structural word
YUOD is involved in nucleotide-binding sites.

3.3.3 Limits of our method We have analyzed
in details the 23 most significant sf-specific words, and
20 of them could be mapped to a SwissProt annotation.
Using relaxed parameters (nbsr. < 5 and Lppq, >
10), the number of sf-specific words can be raised to
565. Among these 565 sf-specific structural words,
only 46 words have an association with an Swiss-Prot
annotation.

This deceptively low number of sf-specific words
with confirmed functional implication can be ex-
plained by two elements: (i) only 30% of the pro-
teins used in our study are mapped to SwissProt an-
notations in the PDB/UniProt Mapping Database, and
(i1) for a given protein, annotations reflect the state
of our current knowledge and could thus be incom-
plete. This important bottleneck introduced by Swiss-
Prot probably lowers the effective information con-
tent of our structural words. For example, struc-
tural word UGRU is seen 37 times in the SCOP data
set and is strongly over-represented in the superfam-
ily “S-adenosyl-L-methionine-dependent methyltrans-
ferases” (SCOP id=53335) (cf. Table Tab. 2). In
the Swiss-Prot protein data-set (1487 proteins), it is
seen only 12 times, indicating in a loss of 65% of
UGRU-fragments in this validation step. Out of these
12 fragments only one fragment is annotated by the
“Mutagen” annotation (cf. Table Tab. 2). How-
ever, the manual analysis of the functional annota-
tions of the 29 UGRU-fragments seen in the superfam-
ily “S-adenosyl-L-methionine-dependent methyltrans-
ferases” through the Swiss-Prot web interface (http:
//www.uniprot.org/uniprot/) reveals that
12 fragments are annotated by the binding site to S-
adenosyl-L-methionine (SAH/SAM) ligand. Among
the 17 unannotated UGRU-fragments, 8 are extracted
from proteins co-crystallized with SAH/SAM, and
the UGRU-fragments contain residues involved in
the SAH/SAM-binding site. Thus, 69% of UGRU-
fragments are involved in a SAH/SAM-binding site

This is an example where the automatic validation
using the PDB/UniProt Mapping Database clearly un-
derestimate the real functional implication of a struc-
tural word.

4 Conclusion & Perspectives

We present a method allowing the extraction of tri-
dimensional motifs from loops important for protein
structure or function. This method is based on the
simplification of loop structures using structural alpha-
bet HMM-SA and the over-representation of motifs in
a set of proteins with similar function, provided by
SCOP superfamily classification.

The analysis of statistical over-representation of
motifs in SCOP superfamilies allowed distinguish-
ing two interesting classes of motifs: ubiquitous, i.e.
words over-represented in lot of superfamilies, and sf-
specific motifs, i.e. words over-represented in several
superfamilies.

The comparison between ubiquitous words and
small known 3D motifs showed that some of ubiqui-
tous words contain J-turns motifs. They are specific to
some superfamilies that shows the importance of these
motifs for protein folding or function.

The analysis of the functional annotations of sf-
specific motifs, provided by Swiss-Prot database,
showed that some motifs are included in Repeat re-
gions (=amino-acid repetitions). Some others are
identified as involved in functional sites such as
binding sites of small ligands (calcium, nucleotide,
SAH/SAM).

Thus, this study showed that, as in DNA, over-
representation is an effective tool for the extraction of
motifs of interest involved in protein structure or func-
tion.

In this study, we showed that the identification
of these sf-specific motifs in proteins suggests some
annotations that are not containing in Swiss-Prot
database. Thus, sf-specific words could be used to im-
prove the functional annotation of proteins and add an-
notations in Swiss-Prot database. Moreover, the iden-
tification of these functional words in structural-letter
sequences corresponding to the structure of uncharac-
terized proteins is useful for the prediction of func-
tional sites in these proteins.
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Abstract This work was recently published in BMC Bioinformatics [1] and a preliminary
version was reported in [2]. It deals with the preprocessing of protein sequences for supervised
classification. Motif extraction is one way to address that task. It has been largely used to
encode biological sequences into feature vectors to enable using known machine-learning
classifiers which require this format. However, designing a suitable feature is not a trivial task.
For this purpose, we propose a novel encoding method that uses amino-acid substitution
matrices to define similarity between motifs during the extraction step. We carried out various
experiments to compare with existing approaches. The outcomes confirm the efficiency of our
encoding method to represent protein sequences in classification tasks.

1 Proposed Method

1.1 Overview

The DDSM (Discriminative Descriptors with
Substitution Matrix) encoding method is composed
of three parts [1]. First, we extract discriminative
substrings using an adaptation of the Karp, Miller
and Rosenberg (KMR) algorithm [3]. A motif is
considered to be discriminative between a family F
and other families if it appears in F significantly
more than it does in the other families. Second, we
keep only one motif for each cluster of substitutable
motifs of the same length. Third, we construct an
object-property table where objects are protein
sequences and properties are motifs. We denote by 1
the presence of a motif or of one of its substitutes
and O otherwise.

The second part can be also divided into two
phases: (i) identifying clusters’ main motifs and (ii)
filtering.

i - The main motif of a cluster is the one that is the
most likely to mutate to another in its cluster. To
identify all the main motifs, we sort Ci/ in a
descending order by motif lengths, and then by P,
(probability of mutation to another motif [1]). For
each motif M” of cir; we look for the motif M
which can substitute M’ and that has the highest
Pm. The clustering is based on the computing of the
substitution probability between motifs [1]. We can
find a motif which belongs to more than one cluster.

Skl

In this case, it must be the main motif of one of them
(see table 1 and figure 1). We draw attention that all
measures concerning the substitution among motifs
are derived from substitution matrices.

ii - The filtering consists of keeping only the main
motifs and removing all the other substitutable
ones. The result is a smaller set of motifs which can
represent the same information as the initial set.

1.2 lllustrative Example

Given a Blosum62 substitution matrix and the
following set of motifs (table 1) sorted by their
lengths and Py, we assign each motif to a cluster
represented by its main motif. We get 5 clusters
illustrated by the diagram shown in figure 1. This
figure illustrates the set of clusters and main motifs
obtained from the data of table 1 after application of
our algorithm.

(&7 LLK IMK VMK GGP RI RV RF RA PP
Pm 089 087 086 0 075 072 072 05 0
Main | LK LLK LLK GGP RI RI RI RV PP

motif

Tab. 1. Motif clustering

o
FPP*
IMEK

—_— GGP*
(e

-

//
=" @
RA
RV
RI*
_—

Fig. 1. Motif clustering. Kept motifs are : LLK, GGP,
RI, RV and PP.
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2 Experiments and Results

We tried to conduct our experiments on various
kinds of datasets. These datasets differ from one
another in terms of size, number of class, class
distribution, complexity and sequence identity
percentage. In this paper we present only two already
published datasets (DS1 and DS2 in table 2). This
allowed us to carry out a comparison with several
related works. DS1 [4] contains seven classes that
represent seven categories of quaternary protein
structure with a sequence identity of 25% extracted
from Swiss-prot. The problem here lies in
recognizing the 4D structure category from the
primary structure. DS2 consists of 277 domains: 70
all-o domains, 61 all-p domains, 81 o/ domains,
and 65 a+B domains from SCOP. This challenging
dataset was constructed by Zhou [5] and has been

extensively used to address structural class
prediction [5,6].
Dataset Identity percentage Family/class Size  Total
Monomer 208
Homodimer 335
Homotrimer 40
DS1 25% Homotetramer 95 717
Homopentamer 11
Homohexamer 23
Homooctamer 5
All-o. domain 70
All-B domain 61
ps2 849 o/ B domain 81 21t
o + 3 domain 65

Tab. 2. Experimental data

We combine our encoding method with several
known classifiers (decision tree C4.5, naive bayes
NB, support vector machines SVM and nearest
neighbour NN). We compare with several
approaches reported in [4,5,6] and we report the
results (accuracy rates) of the experiments on DS1
and DS2 in figure 2 and 3.

— 90

QQ, 80 4 79.2 78.9 77 752

- ODDSM & C4.5
g 701 CIDDSM & SVM
g gg : [DDSM & NB
S 401 EIDDSM & NN
= 304 EFDC & NN

= 20 CAAC & NN

é 10 4 [IBlast-based
© 0

Fig. 2. Comparison with results reported in (Yu et al.,
2006) for DS1. Details in [1].
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Fig. 3. Comparison with results reported in (Chen et al.,
2006) and (Zhou, 1998) for DS2. Details in [1].

In both figure 2 and 3, we can notice that DDSM
(first  four histograms) allows reaching high
accuracies. However, in related works, authors
perform a fine-tuning to look for the classifier
parameter values allowing to get the best results,
whereas we just use the default parameter values of
both our encoding method and the classifiers.
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1 Introduction

The Bcl-2 family controls induction of apoptosis
(programmed cell death) at the mitochondria via
opposing functions of prosurvival and proapoptotic
regulators [1]. At the level of primary structure,
members of this family are currently classified based
on the presence of one or more Bcl-2 Homology
(BH) domains, which participates in the formation of
homo- and hetero-dimers [2]. Antiapoptotic
multidomain proteins (‘Bel-2-like” members) are
considered to share sequence similarity in four BH
domains (BH1-4). Proapoptotic proteins are divided
into two subgroups: proapoptotic multidomain
proteins (‘Bax-like” members), which are assumed to
contain only two or three BH domains (BH1-3), and
proapoptotic BH3-only proteins (including Bid or
Bim), which have sequence similarity only in the
BH3 domain, a short amphipathic a-helix.

Recent phylogenomic [3], bioinformatics [4] and
structural studies [5] highlighted the extent of
sequence variation between Bcl-2 family proteins
and raised several important points. First, while they
appear to be bona fide family members, a number of
multi-BH proteins lack the BH1 or BH4 domains or
do not have any recognizable BH3 signature.
Moreover, despite being classified as a BH3-only
protein, Bid exhibits a 3D structure with a fold
identical to that of Bcl-2 and Bax. This conserved
Bcl-2 ‘core’ fold is composed of a globular bundle of
5-7 amphipathic helices surrounding one central
hydrophobic a-helix. However, except for Bid, most
BH3-only proteins have unrelated predicted
structures and some were assigned to the class of
intrinsically unstructured proteins. Last, highly
divergent viral homologues sharing the same helical
fold as Bcl-2 but with virtually no recognizable
sequence similarity have recently been reported. All
these lines of evidence point to a need (i) to redefine
the specific structural features and sequence
signatures of the extended Bcl-2 family; (ii) to
capture expert knowledge and integrate novel data
into a dedicated database, such as the recently
developed BCL2DB [6].

Sl

2 Results

We have developed a set of profiles specific for
the various Bcl-2 family subgroups (homologous
helix-bundled cellular and viral members, and
related BH3-only and BH3 domain-containing
proteins) using profile-based hidden Markov models
(HMMs) combining sequence and structure
information with the HMMER [7] package and the
NPS@ web server [8]. These unique HMM profiles
of conserved residues were compared to standard
profiles (e.g. PFAM) for Bcl-2 family/BH3 domain
recognition and used for database searches and
pangenomic queries. We checked the results for
sensitivity to include all presumed members of the
family and verified that the HMM-detected
sequences do not overlap with other known families.
Our different models can be useful for improving the
power of computational annotations (classification)
and testing for potential membership in the family,
including that of novel cellular and viral sequences
with vanishingly low sequential similarity. As an
example, we report the discovery of BCL-WAV
(Acc#: D2Y5Q2), a divergent Bel-2 homolog found
in water-living anamniote vertebrates (fishes and
anurans). BCL2DB will be expanded with an update
system to automatically include these predicted
members along with Bcl-2 family proteins with
known (experimentally confirmed) functions.

By exploiting knowledge of the conserved block
positions, we also analyzed insertion/deletion events
(indels) occurring in the sequences of vertebrate Bcl-
2 family proteins adopting the Bcl-2-like topology.
Our data suggest that indels represent an important
source of genetic and structural divergence between
family members (paralogs) and species homologs
(orthologs), likely to translate into functional
diversity. These signatures were used as
phylogenetic markers to propose a sequence of
events leading up to the present-day repertoire of
helix-bundled Bcl-2 family proteins.
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3 Conclusions and future work

Computational redefinition of the Bcl-2 family
and identification of distantly related members (e.g.
viral homologues) represent major challenges to
accelerate the functional understanding of massively
available sequences issued from genomic and post-
genomic efforts and to reveal remote evolutionary
links. Analysis of the full set of known and novel
protein sequences retrieved by the HMM profiles
will be used to update BCL2DB and its classification
system.

Acknowledgements

VRL is supported by a doctoral fellowship from
La Ligue Contre le Cancer (Comité de Saodne et
Loire). This project is developed on the GIS-IBiSA
PRABI bioinformatics platform.

References

[1] RJ. Youle and A. Strasser, The BCL-2 protein
family: opposing activities that mediate cell death.
Nat Rev Mol Cell Biol., 9:47-59, 2008.

[2] JM. Hardwick and RJ. Youle, SnapShot: BCL-2
proteins. Cell., 138(2):404, 404.e1, 2009.

[3] A. Aouacheria, F. Brunet and M. Gouy,
Phylogenomics of life-or-death  switches in
multicellular animals: Bcl-2, BH3-Only, and BNip
families of apoptotic regulators. Mol Biol Evol,.
22:2395-416, 2005.

[4] D. Lama and R. Sankararamakrishnan. Identification
of core structural residues in the sequentially diverse
and structurally homologous Bcl-2 family of
proteins. Biochemistry,. 49:2574-84, 2010.

[5] M. Kvansakul, H. Yang, WD. Fairlie, PE. Czabotar,
SF. Fischer, MA. Perugini, DC. Huang, PM. Colman.
Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-
like domain-swapped dimer that binds a highly
selective subset of BH3-containing death ligands.
Cell Death Differ,. 15:1564-71, 2008.

[6] A. Aouacheria and SV. Blaineau. BCL2DB: moving
'helix-bundled" BCL-2 family members to their
database. Apoptosis,. 14:923-5, 2009.

[71 Eddy SR, A new generation of homology search
tools based on probabilistic inference. Genome
Inform. 23, 205-211, 2009.

[8] C. Combet, C. Blanchet, C. Geourjon and G.
Deléage. NPS@: Network Protein Sequence
Analysis. Trends Biochem Sci., 25, 147-150, 2000.

—-80—



Présentation courte/poster 2

Fast and accurate multiple sequence alignment of large and
diversified sets of distant homologues

Matthieu BARBA, Olivier LESPINET and Bernard LABEDAN

Institut de Génétique et Microbiologie, UMR8621 CNRS,
Université Paris-Sud X1, Batiment 400, 91405 Orsay Cedex, France
{matt hi eu. barba, olivier.lespinet, bernard.|abedan}@gnors. u-psud.fr

Abstract Frali allows delivering an accurate and biologically relevant multiple sequence
alignment (MSA) of large and heter ogeneous families comprising remote homologues. First, an
expert alignment of well-studied representatives of each subfamily is built semi-manually to
define a seed alignment that represents the frame of the whole family. Then; the targeted
addition of the rest of the parental sequences to this frame is processed after being sampled
according to their degree of relatedness to their homologues prealigned in the frame. These new
sequences are further clustered before aligning them to this frame using a hidden Markov
model based profile-profile approach. This process allows keeping the accuracy gained at the
step of building the seed alignment as checked both by benchmarking and by studying a family
of distant homologous enzymes involved in various biological functions. Interestingly, this
approach further allows a rapid update of a reference MSA as soon as new homologues appear.

Keywords multiple alignment, remote homologues, HMM profile.

Aligner rapidement et exactement de grands jeux d’homologues distants

Résumé Pour obtenir un alignement multiple exact et biologiquement valide de séquences homologues
distantes appartenant a des grandes familles hétérogénes, une graine formée des représentants
caractéristiques de chaque sous-famille est construite pour représenter I’ architecture de la famille. Puis,
le reste des séquences homologues a cette graine est ajouté progressivement de facon complétement
automatisée par une approche profil-profil de modées cachés de Markov. Cette approche permet de
maintenir la qualité optimale de la-graine et (cerise sur le gateau) de mettre a jour automatiquement a

tout moment I’ alignement de référence.

Mots-clés alignement multiple, homologues distants, profil HMM.

1 Introduction

Many biologists consistently use completely
automatic tools to generate multiple sequence
alignment (MSA) without considering their potentia
flaws. In fact, athough many algorithms are now
available [1,2,3], congtructing a MSA is not a trivia
task [4]. Since defining homology is aways a
hypothesis, only empirical approaches are suitable.
Hence, as aready underlined [3], MSA are not plain
data but models. Therefore, manual construction still
remains more appropriate than automated one to get
biologically relevant MSA [4], and if an automatic
approach is used, a manual check is obligatory to
improve the obtained output. It becomes increasingly
difficult to meet these requirements as the number of
potential homologues increases vertiginously.

Skl

Presently, families containing several thousands of
homologues have become common, making it
mandatory to use a limited number of automated
tools, such as Muscle [5], while rendering difficult
the required manual check of the output. Moreover,
computing such aignments of large sets of
sequences in areasonabl e time implies a concomitant
loss in correctness. Indeed, Kemena and Notredame
[3] showed that the present MSA methods lose their
accuracy when the number of sequences to multiply
align is>100.

The challenge of building accurate MSA becomes
even harder when dealing with distantly related
homologous proteins. This often occurs in large and
diversified families where subfamilies may be very
distant from each other, their amino acid sequences
sharing very low percentage of sequence identity as
exemplified in the test case described below (8§ 4.2).
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Stage |
frame alignment

Stage Il
reference alignment

a b

Reconstructing the frame
(seed) alignment of well
characterized proteins

Adding highly-related
proteins homologous
to the frame proteins

Adding more and more
distantly-related proteins
to the reference alignment

Fig. 1. Stepwise automated generation of an accurate
reference alignment of a large and assorted family (stage
I1) using as a template a biologicaly relevant frame
aignment built semi-manually (stagel).

To cope with these technica limitations, we
propose a 2-stage approach based on (i) the
construction of a high quality seed alignment, using a
small, selected, set of sequences, and (ii) the
progressive and targeted addition of the rest of the
homologues to this seed (Fig. 1). By definition, a
seed alignment would be optimal where each site
corresponds to homologous positions, i.e. if each
column contains the amino acids believed to have
evolved from a common ancestor only through
character substitutions [6,7]. For this reason, we call
such a biologicaly relevant seed alignment a frame
alignment, by analogy with the skeleton of an
evolutionary tree, assuming that the topology of its
deepest branches is aready well defined since
residues in each column are supposed to be
consistently and correctly aligned (Fig. 1, stage I). In
the second, entirdy automated, step, al the
remaining homologous sequences are sampled along
a decreasing gradient of evolutionary distances and
further clustered in order to be added selectively and
stepwise, using the closest sequences present in this
frame aignment as a template a each step. To
continue the tree analogy, building such a reference
alignment with our entirely automated tool, Frali
corresponds to the gradual addition of more recent
twigs and leafs mainly on the existing deep branches
(Fig. 1, stage I). Moreover, securing the first stage
alows automation of the process of continuously
updating the reference MSA when newly published
genomes become accessible, while keeping
permanent its accuracy and biological relevance.

2 Methodology

2.1 Stage I: Building the seed (frame
alignment)

We regard as representative sequences the few
proteins that have been experimentally studied and
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thus are supposed to be correctly annotated.
Optimally, at least one representative sequence of
each distant subfamily must be included. Moreover,
to assess dignment, we preferentialy chose
experimentally studied proteins that have been
crystalized. Accordingly, the primary amino acid
sequences were multiply aligned using Expresso [8].
Whenever the number of sequences with known
structures was too low, and/or some subfamilies
lacked 3D structure data, we used PSI-Coffee since
this is ranked as the most accurate program
immediately after 3D structure—based algorithms[3].

Although those automated methods are generaly
efficient, we aways had to review manually the
frame alignment obtained so that errors — such as the
introduction of indels in structural data —could be
avoided. This manual check was made by visualizing
the digned 3D structures using ad hoc tools [9].

2.2 Stage Il: From the frame to the
reference alignment

Once an optimal seed aignment has been
obtained, the remaining homologous sequences can
be automatically added to the produced frame to
build a reference alignment (Fig. 1, Stage 1) using
Frali. To maintain a high level of accuracy during the
whole process, the addition is made stepwise, as
summarized in Fig. 2: clustering the homologues,
matching them with their closest partners in the
frame alignment, and aligning their hidden Markov
model (HMM) based profiles[10].

2.2.1 Preparing a high-confidence reference
alignment. To facilitate their targeted addition to the
reference adignment, we first clustered the
homologues sharing >70% sequence identity over
>70% of the length of the shorter matching sequence
using the fast and aignment-free CD-hit program
[11]. In parallel, their closest homologues prealigned
in the frame were likewise clustered. Each cluster
was processed through the steps given in Fig. 2:

2.2.1.1 Detecting matching clusters. Since the
sequences belonging to such clusters are very close
by construction, one of them should reasonably be
sufficient to search for matching sequences in the
corresponding set of prealigned sequences in the
frame. Indeed, athough the number of new
sequences would seem to be huge, a large fraction of
them are actually the n" near identical copy of the
same sequence, since they are encoded by different
strains of the same species or closely related species.
Consequently, instead of comparing each sequence
of each cluster to every reference aignment
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sequence, we defined one sequence representing
each kind of clusters. Thus, the number of

raw number of sequences. Representative sequences
of each cluster were selected as the longest sequence

representatives increases far more slowly than the to avoid accidentally using fragments.

New New.s_eq uences
sequences divided in
subgroups

Subgroup of
new sequences

Frame

. >
alignment Reference

_ alignment
Final

alignment

Profile
pairwise alighment

Closely related subgroup of
reference sequences

Dl E—

Adding the newly aligned sequences
to the reference alignment

Fig. 2. Outlining the main steps of Frali: new homologous sequences are clustered and each cluster is matched with its
closely related subgroup present in the frame alignment by aligning their HMM profiles, alowing their facilitated

addition to the reference alignment.

2.2.1.2 Aligning matching clusters. First, the
matching frame alignment was stripped of its empty
columns before building the HMM profile, and
adding them back into the final reference alignment.
The new homologues are aligned using Muscle [5],
one of the very few methods able to handle large
datasets in reasonable times [2]. Although the
intrinsic performance of heuristic methods like
Muscle is not optima (discussed in [3]), we
ascertained that the elevated level of identity of
these highly-related sequences ensures the
biological relevance of the obtained MSA. Once
matching clusters have been detected using their
representative  sequences, all their respective
sequences were aligned to the prealigned closest
frame sequences. Such a progressive addition by
subgroups is a crucia trait in our approach. Indeed,
it precludes the probable blurring of features
specific to each subgroup, such as conserved
residues or specific indels (not shown) that would

appear in the case of a unique addition of many
highly divergent proteins. Noticeably, aligning such
groups of closdly related homologues allows the
further generation of accurate HMM profiles for
both the cluster of new sequences under study
(HMM _cluster) and the associated cluster of the
frame (HMM_frame). The two HMM profiles are
then fused using the HHalign program [10]. After
addition of each cluster, 2 important points are
examined by Frali. (i) Frali extracts selectively the
pat of HMM_cluster aligning with the
HMM _frame by excluding any sequence element
located before or after the aligned fraction so as to
maximize the efficiency of the HHalign step. Thisis
crucia in discarding the unalignable part (columns
absent in the frame) and automatically outlining the
homologous segment present in fused proteins. (ii)
Frali prevents the misalignment of sequences that
are too divergent from the template sequences.
Noisy profiles are precluded by impeding the
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addition of too distant sequences that will introduce
holes of >30 residues. Note that such a safety device
does not restrain the addition of sparse natura
indels in newly added sequences, since these gaps
could be precious phylogenetic markers [27]. Thus,
this clusterization step is clearly maintaining the
biological relevance when progressively enlarging
the frame alignment to the reference aignment,
while automated tools would locally damage this
relevance (not shown).

2.2.1.3 Improving the HMM dignment and
reiterating the whole process for the other clusters.
The profile-profile aignment is improved by
keeping the accepted indels in the new sequences
while reinjecting the common indels that were
present in the frame prealignment. This improved
cluster aignment is added to the reference
alignment. The three steps of the process described
above are repeated iteratively for all the other
clusters of the set of highly-related sequences,
delivering finally a safe reference aignment

2.2.2 Sepwise addition of increasingly distant
homologues to the reference MSA. The whole
process in Fig. 2 is repeated iteratively while
decreasing stepwise the threshold values of
sequence identity that are imposed when building
the clusters of related sequences to be added, and
when matching these clusters to their homologues in
the previous reference MSA. These 2 clustering
steps are executed once at the beginning of the
program and are required for only a few seconds
due to the speed of the CD-hit program [11]. Frali
progressively processed the homologues found at
the 60, 50, 40, and 30% sequence identity cutoffs.
Such a stepwise computation of successive new
profile-profile alignments is essentia in getting a
final correct reference MSA, especially when the
level of identity becomes too low, while resolving
specific problematic cases listed below: (i) Two
filters are applied to prevent the introduction of
fragments in the reference aignment. First, a
maximum length value (which may be defined for
each subfamily studied) is imposed as a cutoff
before sequence addition to the multiple alignment.
A second filter is used after the sequences were
aligned, to ensure that the aligned part is complete.
This is important, for instance, in the case of multi-
domain proteins that are a particular chalenge for
multiple alignment methods [2]. Since the alignment
is done by aligning a query against a template, only
the alignable parts of fused proteins will be
automatically kept by Frali in the final aignment.
The unalignable fragments are set aside in a distinct
file that can be read later. (ii) Moreover, we have
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added a script that detects fused pro-teins where the
combined domains of the same protein are
homol ogous to one ancther (see below, for instance,
the case of TrpF and TrpC enzymes). After their
detection based on the knowledge of the prealigned
frame, these homologous domains are cut and
properly aligned during the making of the reference
alignment. (iii) Whenever the number of unwanted
gaps increases, it might be better to refrain from
adding uninformative holes. Keeping the reference
alignment as such may prove more stable, since its
length would not vary every time an odd sequence
appears. Where a significant number of sequences
require a common and large gap, the user might
consider adding it manualy before adding new
sequences

3 Implementation of Frali

Frali (http://embg.igmors.u-psud.fr/frai/) is a
standalone Perl script package working in a Linux
environment with a command-line mode. Frali
includes its own modules, and the binary
executables needed, such as CD-hit, Blastall,
Formatdb, HHalign, and Muscle, provide for both
32 and 64 bit operating systems.

Frali requires 2 main sets of previously computed
data (1) the frame alignment that has been built
semi-manually on the basis of expert knowledge
(see above), (2) al available homologues that have
been collected, as described above. Both inputs are
prepared as text files containing FASTA formatted
sequences. The output files in FASTA format
contain the final updated reference alignment, the
leftover sequences that could neither be aligned nor
added, and fragments (sequences too small to be
added).

Frali can aso be used to add directly into the
reference alignment new homologous sequences as
soon as they are released in public databases. Our
choice of defining a representative sequence for
each new cluster (see above) allows an acceleration
of the process without loss of accuracy. Such a fast
and easy update is very helpful for users interested
in curation of functional annotation and/or keeping
constantly up-to-date phylogenetic trees.

4 Assessing Frali

4.1 Evaluating the accuracy of Frali

We compared the outputs of our 2-step approach
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with those of different automated programs, namely
ClustalW [13], Dialign [14], Diaign-TX [15], Mafft
[16], Muscle [5], Probcons [17], Tcoffee, and
3Dcoffee [18]. Among the benchmark reference
alignments described in BAIIBASE 3.0 [19] we
have utilized the whole package Rev30 made up of
30 digned families (containing from 24 to 142
sequences), using either the whole sequences or
only their homologous regions. Since these RV30
families contain subfamilies with >40% similarity
but <20% similarity across the subfamilies, we first
applied the psi-CD-hit program [11] to build 10
different seeds for each family by drawing lots
among the clusters of its members that share >30%
sequence identity. These 600 sets contain 2-15
members (from 2-38% of the total number of family
members). Each set was submitted to 2 paralel
actions: (i) the sequences extracted from the origina

BAIIBASE aignment were used as a reference seed
to which the rest of the homologues were added
using Frali; (ii) the full set of al these homologues
were submitted to each automated program as
unaligned sequences. Since Frali discards the
unalignable part of the sequences (Fig. 2 b2), this
part (that varies from one seed to the other) was
systematically removed before carrying out the
reference MSA generated by the automatic tools.
This removal was essential to preclude any bias
when assessing the obtained reference alignments
by measuring the number of correctly aigned
residue pairs divided by the number of aligned
residue pairs in the true alignment (score SP) and
the number of correctly aligned columns divided by
the number of columnsin the true alignment (score
TC), as defined in Thompson et al. (2005).

100

90

80

s 2 li+ Frali
ClustalW
Dialign

70 Dialign-TX 70

—® - Mafft

= ===Muscle

====Probcons

—— T-Coffee

TC

80

60

50

40

Fig. 3. Ranking the accuracy of Frali using protein alignment benchmarks. For each BAIIBASE family 10 different
clusters of sequences were built that have been multiply aligned using either our 2-step approach (bali+Frali) or various
automated programs listed between panels SP and TC. For comparison, exactly the same portions of each sequence
included in each set have been used to build the final MSA. We computed for each set the rank of each program using
2 BAIIBASE scores, namely SP (left panel) and TC (right panel), and we computed for each family the median of the
ranks in its 10 respective sets. Left and right panels show the percentage of families where each program has been
ranked in position 1 to 8.

To gauge each method, we first ranked the SP
and TC scores of each program for each set of each
family and we further classified each program by

computing the median of these 10 ranks for both
scores in each family (Fig. 3). Our approach appears

to be significantly more accurate than the tested
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automated programs (Fig. 3) since it is ranking in
the first position in 76.67% of the analyzed families
regarding the TC score and in 98% of the tested
families when measuring the SP score. Note that
when automated programs perform better than Frali,
namely 12.67% with Probcons, 10% with Mafft,
and 1.67% with ClustalW in the case of the TC
score, these BAIIBASE families were made of
closely related sequences. Moreover, in those cases,
Frali is generaly ranked second, giving a very
dightly lower score.

4.2 Testing the biological relevance of
Frali using a challenging family

Two maodels describing the possible evolution of
enzyme activities were experimentally validated a
decade ago when a gene encoding the TrpF activity
was obtained by transforming either the gene
encoding the HisA activity [19] according to the
patchwork model [20] or the gene encoding the
previous TrpC step [21] according to the retrograde
model [22]. Moreover, another retrograde case was
previoudy described since HisA was found to be
homologous to its next step HisF [23,24]. Besides,
TrpA appears to be distantly related to TrpC and
TrpF (unpublished data). Thus, five genes encoding
TIM-barrel proteins — TrpA, TrpC, TrpF, HisA, and
HisF - are found to form a family of homologues
that are probably very ancient. Indeed, the sequence
identity separating these exhaustively studied
proteins was found to be low (25% separating HisA
from HisF) to extremely low (only 11% between
HisA and TrpF and 13% between HisF and TrpF

according to [25]), but their X-ray structures are
superimposable. Thus, these remotely related
structural homologues appear to be a challenging
test case for analyzing the relevance of Frali.

Since the 3D structures of the mgjority of these
enzymes have been determined, we could build a
frame MSA with 19 sequences using either
Expresso [8] or Muscle [5]. Unsurprisingly, these
two automated programs gave unsatisfactory
alignments and the deduced trees built using the
FastTree2 program display poor biologica
relevance (not shown). As described above, we
improved this seed alignment to a faithful alignment
after manual expert edition using Swiss-PdbViewer
4.0 [9]. The tree reconstructed automatically using
Muscle [5] and Expresso [8] were biologically less
relevant than the ones obtained from the manually
built frame MSA (Fig. 3, Ieft panel) since their HisA
and HisF subtrees were not monophyletic and
branch with TrpF sequences (not shown). Moreover,
their relative branch length and topology were
longer than that of the tree built from the frame
alignment taken as a reference. Indeed, the K tree
scores [26] of Muscle and Expresso trees are
1.25787 and 0.63350, respectively. Fig. 3 further
shows how Frali alows building progressively a
reference alignment with selected addition to the
frame (left panel) of the homologues displaying
first at least 40% identity (central panel) and then
the rest of the 3229 more distant homologues (right
panel). The deduced phylogenetic tree keeps the
same skeletal structure already observed in the
frame alignment, each subfamily becoming just
more and more burgeoning.

framework

40% identity

TrpF

;i;\\‘é"-ig - TrpC

Stage |

Stage |l

Fig. 4. Progressive addition of newly related sequencesto the frame tree (left panel) reconstructed from a manually improved MSA . Trees were built
using the FastTree2 program [12]. Central panel shows how the newly added sequences are added nicely as twigs specific to each subfamily on the
conserved frame of the whole tree. Right panel confirms this selective addition on an invariant ancient tree skeleton with a concomitant shortening of

the deepest branches.
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5 Discussion

Frali has been designed to help the biologist
escape various methodological and conceptua
difficulties when building multiple alignments of
large and diverse arrays of homologues that can be
very distant. The proposed approach has a cost, since
it requires a preliminary manual editing of the MSA
of a limited number of experimentaly well-
characterized proteins that stand for the various
subfamilies of such arrays. This limited number of
seed sequences could be as low as 5% of the tota
number of family members. Once such a solid basis
is established, the whole aignment can be obtained
very rapidly by using the completely automated Frali
program. This reasonable effort of manual editing is
rewarding in the end since it can guarantee getting a
reference MSA that is both accurate and biologically
relevant. This is mainly due to our strategy of
progressive addition of new homologous proteins
that have been sampled by tight clustering, defining a
high similarity to a few of the prealigned sequences
in the frame alignment. This careful handling of the
sequences during the profile-profile step and the
strict treatment of the indels helps maintain the
accuracy of the obtained reference alignment, as
shown in comparative studies with automated
programs on the same benchmarking data (Fig. 3).
Noticeably, contrarily to the case of completely
automated one-step methods, the biologist will keep
mastering the intricacies of the process of multiply
align complex families of homologous sequences at
each step of the Frali approach, even when they are
highly dissimilar.

Our tool presents severa decisive advantages over
other methods. (i) Whatever the present and future
level of flooding of newly released genomic
sequences, we guarantee the accuracy of the MSA
since we start with a high level of truthfulness at the
step of the frame alignment, and we keep it unabated
when adding stepwise and gradually the whole set of
the other homologues. (ii) Our procedure is fagt, its
rate being linearly proportional to the increase in the
total number of sequences to be aigned. (iii) Frali
resolves instantaneoudly difficult cases such as multi-
domain and/or fused proteins without any prior
detection or treatment. (iv) The opening of too large
holes is prevented by our gradual and stepwise
procedure, but the possibility of introducing a limited
number of gaps is kept since they could be valuable
phylogenetic markers [27]. (v) Phylogenetic trees
derived from MSA generated with Frdli
systematically display a better topology and a shorter

length than those derived using one-step automated
tools.

In addition, the full reference MSA may be
updated at any time while keeping its accuracy and
biological relevance. Indeed, addition of newly
published homologues takes a few seconds and is
highly precise. Therefore, Frali alows effortlessly
the last update of a phylogenetic tree of alarge and
complex family to be generated at anytime. Note,
however, that the occurrence of representatives of a
completely new sub-family could require a
supplementary step before their addition to the
reference alignment.
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Abstract

Intrinsically disordered regions are common in many proteins and have been

associated with many diseases and functions. In this study, we distinguish different types of
intrinsic disorder using genetic interactions and comparative genomics.

Keywords

1 Introduction

Intrinsically disordered regions are common in
many proteins, especially in higher eukaryotes [1].
Intrinsically disordered proteins (IDPs), which have
a large fraction of disordered residues, have been
associated with many diseases and functions, but
there is still much active investigation about their
cellular roles [2]. In this study, we distinguish
different types of intrinsic disorder using genetic
interactions [3] and comparative genomics.

2 Results

2.1 Genetic Interaction Network

Identifies Functional Disorder

We first observe that genes that have numerous
genetic interactions (hubs) often tend to encode
proteins that have a higher percentage of disordered
residues (Fig 1).
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Fig. 1. The degree of a gene in the genetic interaction
network is correlated with the % of disorder of the gene
product. Genetic hubs tend to encode disordered proteins.
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Disorder, Intrinsically Disordered Protein, Conservation, Genetic Interaction.

Interestingly, IDPs are split into two groups:
among the hubs, the level of disorder tends to be
highly associated with multifunctionality, whereas
the IDP non-hubs do not exhibit this correlation (Fig
2). The IDP genetic network hubs appear to be
responsible for previous associations of disorder with
signaling and also show strong enrichment for
so-called date hubs [4] and single-interface hubs [5].
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Fig. 2. Among the genetic hubs, disorder is associated
with multifunctionality whereas is it not the case for
disordered proteins that are encoded by non hub genes.

2.2 Defining Conserved Disorder

We hypothesized that we could further distinguish
different forms of disorder with different functional
contexts by examining evolutionary properties.
Specifically, we investigated which disordered
regions were also disordered in orthologous proteins
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across the yeast clade. Intriguingly, we found strong
evidence for “conserved disordered” regions across
the yeast clade, indicating selection on disorder as a
structural property often with little or no constraints
on the actual sequence.

2.3 Phosphorylation Sites are found in
Regions of Conserved Disorder

We found these regions of conserved disorder are
strongly associated with proteins harboring many
linear motifs and are specifically predictive of
phosphorylation sites (Fig 3), indicating their critical
role in signaling. In contrast, disordered regions that
are not conserved do not exhibit strong correlation
with these features and likely correspond to disorder
that is not functional.
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Fig. 3. The density of phosphorylation sites is represented
for regions of various degrees of conservation at the amino
acids (AA) and disorder levels. The blue region shows that
the conservation of disorder in a region is associated with
a high density of phosphorylation sites whereas there is no
such association with the conservation of specific amino
acid sequence.

2.4 Amino Acid Conservation
distinguishes Functional Roles of
Conserved Disorder

Finally, we found that regions of conserved
disorder with quickly evolving sequences are
functionally distinct from conserved disorder where
the underlying amino acid sequence is highly
constrained. This class of disordered proteins has
markedly different signatures in a variety of
physiological and functional data and appears to be
associated in RNA/protein binding and protein
folding (Fig 4).
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Fig. 4. The percentage of positions with amino acid and
disorder conservation shows significant differences in
various families of proteins.

3 Conclusions

In summary, we split the protein disorder along
two axes 1) conservation of disorder, which separates
the functional from non-functional disorder. This
corresponds to the distinction between hubs and
non-hubs in the genetic interaction network ii)
conservation of amino acids in disordered regions,
which separates signalling from RNA binding and
protein folding/chaperone activity.
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Summary

The dynamical analysis of large biological
regulatory networks requires the development of
scalable = mathematical = modelling  methods.
Following the approach initially introduced by R.
Thomas, we formalise the interactions between the
elements of a network in terms of discrete variables,
functions and parameters [1]. This approach has been
implemented into the software GINsim, which
enables the definition of logical regulatory graphs
representing  regulatory components  (nodes),
interactions (arcs) and rules (parameters). Model
simulations with GINsim result in state transition
graphs, which represent the temporal behaviour of
wild type or mutant regulatory networks [2]. We are
particularly interested in asymptotic behaviours,
which correspond to terminal strongly connected
components or attractors in the state transition
graph.

For complex networks, the explicit construction of
state transition graphs can be cumbersome or even
intractable. Therefore we developed computational
strategies to cope with this problem, including an
algorithm enabling the determination of stable states
directly from the model (without computing the state
transition graph) [3], and a reduction approach
preserving essential dynamical properties [4].

Here, we propose an algorithm to compact state
transition graphs on the fly. The result of a
simulation is compressed into a hierarchical graph.
With this intent, we consider the strongly connected
components (SCC) of the state transition graph
which are either trivial attractor (terminal SCC
consisting in a single node), complex attractor
(terminal SCC of cardinal greater than 2), or
complex transient components (non terminal SCC of
cardinal greater than 2). All the other nodes are
trivial transient states (non terminal SCC of cardinal

Sl

equal to 1). We define o an application returning, for
each trivial transient state, the set of SCCs (complex
transient, complex or trivial attractor) reachable from
it. The trivial transient states with the same image by
o and connected by a transient path are then grouped
into a single basin of attraction. The SCCs and the
basins of attraction define the nodes of our
hierarchical representation of state transition graphs.

Our methodology is based on a modified version
of Tarjan's algorithm [5]. During a depth first search,
this algorithm associates an index to each node
newly encountered, and uses hierarchical properties
of these indexes to find the cycles. Since we
compress the components in the course of
computing, we cannot keep track of these indexes
after compaction. When a new strongly connected
component (or a basin) is found, each of its states is
compacted along with a reference to this strongly
connected component in a common decision
diagram. Ultimately, this diagram holds all the states
and the components they belong to.

An alternative approach would be to derive the
structure of the state transition graph directly from
the logical regulatory graph. This approach has been
successfully applied to characterise stable states [3].
We are now working on an extension of this
approach to other kinds of attractors, using recent
mathematical results connecting the presence of
positive or negative regulatory circuits in the
regulatory graph with the occurrence of multiple
attractors or dynamical cycles in the state transition

graph [6].
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Abstract We introduce a new type of representation named HyperBalls that links atom spheres
using hyperboloids. This graphical rendering method, based on the GPU ray-casting technique,
accurately and efficiently represents molecules ranging from a few atoms up to huge
macromolecular assemblies with more than 500,000 atoms.

Keywords GPU computing; Cg ray-casting; improved Ball & Stick, Licorice representations; HyperBalls;

1 Introduction

Different types of representations exist to draw
molecules, ranging from the most simple ones such
as van der Waals space-filling spheres depicting
atom positions to more sophisticated ones such as
molecular surface representations that define the
overall macromolecular shape. In addition to these
two extreme cases, it is possible to define
intermediates such as Ball & Stick or Licorice
models depicting covalent bonds or ribbon
metaphors for representing protein backbone
structures. Here, we introduce another depiction,
complementary to these well known representations,
that could be particularly interesting to represent a
continuous dynamic evolution of bonds. This
contrasts with existing static representations
provided by Ball & Stick or Licorice models that
suffer from an “all or nothing” dilemma. We have
named this new representation HyperBalls, as it is
composed of a sphere depicting the atoms linked by
hyperboloids. This implicit HyperBalls surface
relates to MetaBalls, which also provide an
analytical expression, but is based on simpler second
order equations. The representation  using
hyperboloid primitives can be adapted to highlight
the continuous evolution of bonds — passing from a
one sheeted hyperboloid to a two sheeted
hyperboloid — and can furthermore encapsulate
classical types of representations such as space

Sl

filling, Ball & Stick or Licorice models. HyperBalls
hence provide a generic unified molecular
representation and is well adapted to render coarse-
grained models, even further increasing the number
of molecules that can be represented.

Recently, we have developed a method to
visualize Molecular Skin Surface using the ray-
casting technique on GPUs [1]. Here, we extend this
method to implement the HyperBalls representation.

2 Results

The HyperBalls representation is well suited to
depict several different molecular metaphors that
were, until now, quite difficult to define precisely. In
this part, we will briefly describe several examples.

2.1 Visualizing the dynamic evolution of
non-covalent bonds

Visualization of non-covalent bonds in general,
and of hydrogen bonds in particular, is a specific
point of interest of the HyperBalls method.
Classically, this particular type of molecular
interaction is represented as dashed lines. Another
possibility is to visualise interactions in 2D to clarify
the scene and focus on a point of interest. A major
limitation of these representations is that no clues
about the interaction strength are provided: either an
interaction exists, or it does not. Using HyperBalls, it
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is possible to parameterize the representation in
order to observe a change of the hyperboloids as a
function of the distance between interacting atoms or
molecules (see Fig. 1). This metaphor would be
particularly useful to depict the temporal evolution
of non-covalent bonds to better understand
phenomena such as the formation of hydrogen bonds
between water molecules.

WAL
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e %

Fig. 1. Hydrogen bond formation emphasized using
HyperBalls.

2.2 Visualizing ion coordination

Similarly to hydrogen bonds, the coordination
between ions and surrounding molecules can be
rendered as cylinders or lines. The use of the
HyperBalls  representation  provides  another
perception of such bonds and can be adapted to
highlight the ion's coordination environment (see
Fig. 2). This can be particularly useful to illustrate
asymmetries in the coordination sphere.

Fig. 2. Ton coordination visualization.

2.3 Rendering huge molecular assemblies

The HyperBalls representation is well suited to
depict reduced models of big molecular systems such
as coarse-grained models or elastic spring networks.
Given that the thickness of the bonds can be varied
as a function of the distance between atoms, the
HyperBalls representation provides some distinct
advantages for depicting springs or coarse-grained
bond behaviour (data not shown).

—94—

Futhermore, the use of GPU ray-casting allows us
to visualize huge assemblies at real time frame
rates. For example, it is possible to visualize virus
capsids containing over 560,000 atoms with a frame
rate of 35 fps (see Fig. 3), which cannot be achieved
with common molecular viewers such as VMD or
Pymol, on the same hardware. It is also possible to
visualize molecular dynamics trajectories of
macromolecular assemblies containing more than
300,000 atoms with an interactive frame rate of 17
fps.

Fig. 3. Virus capsid (~560,000 atoms) visualization.

3 Conclusion

In this paper, we have introduced a new molecular
representation called HyperBalls. This new
molecular representation is well adapted to display
non covalent bond changes or coarse-grained
models. Furthermore, we used the ray-casting
technique on GPUs for accurately and efficiently
visualizing the HyperBalls representation, even for
huge assemblies. A simple viewer program should be
available soon, but the final goal is to implement
such algorithms in well known molecular viewer
programs such as VMD and make them widely
available.
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1 Introduction

Pseudogenes were first discovered in 1977, in the
Xenopus laevis genome. Since, different studies have
reported pseudogenes in several organisms, ranging
from bacteria to human. Two different types of
mechanisms are involved in the emergence of
pseudogenes: First, pseudogenes can appear through
a process of genomic material duplication. This
phenomenon mostly arises by a retrotransposition
because they are derived from a mature mRNA
product and it lacks the upstream promoter region
and the introns of normal genes [1]. These
pseudogenes called “processed pseudogenes” are
often considered “Dead on Arrival”, as they become
non-functional immediately upon the
retrotransposition event [2]. The second mechanism
consists in the drift from existing functional genes to
pseudogenes through the accumulation of deleterious
mutations. This phenomenon mostly arises after a
duplication event, who generates redundant
paralogous copies of a gene. One of outcomes in the
evolution of duplicated genes is that one copy
becomes silent through the accumulation of
degenerative mutations [3]. However, it exists
universally conserved genes that also undergo such a
gradual erasure of the sequence. A well-established
gene may have an essential function, and its
disappearance may reflect an important phenomenon.
Such a gene loss could be adaptive: that gene could
either encode a no more useful function, or some
other genes in the genome could fulfill that function.
The availability of complete genomes sequences
allows to investigate gene losses at a larger scale, and
to consider co-losses in different lineage. So, to
perform automatically these analyses, we developed
the module “GeneLoss” that is part of the multi-
agent system “Dagobah”. The framework “Dagobah”
is a set of autonomous softwares running in parallel,
communicating between each other and with external
software platforms (Ensembl [4], NCBI [5], Figenix
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[6]), and sharing persistent results. “Dagobah” aims
to perform, completely automatically, the prediction
and the phylogenetic placement of all the genetic
events that occurred during the evolutionary history
of genomes. Within “Dagobah”, the ”GeneLoss”
agent is dedicated to specifically study the gene
deletion and the pseudogenisation processes. Finally,
our “GeneLoss” module is also be able to find intact
but un-annotated genes.

2 Strategy of “GenelLoss” module

The aim of “GeneLoss” is to re-annotate genes in
a specific lineage from a reference gene. From a
robust multiple sequences alignment built from a set
of species, we build a phylogeny through a pipeline
of the automated platform Figenix. Phylopattern [7]
identifies an orthologous group, which contains the
query protein. The comparison of orthologous
species with the list of species under investigation,
allows identifying species where the orthologous are
missing. We verify the ortholog absence using the
“TBlastN” algorithm on the Ensembl database of the
species concerned. When a hit is found, we check by
new phylogenetic analysis if the hit is ortholog to the
group defined before. If no ortholog is found, we
conclude to a gene loss. If an ortholog is found, we
investigate whether it is a mis-annotated gene, or a
pseudogene. Analyses are first done at the protein
level. To do this we extract a piece of DNA
containing the ortholog signal found and we try to
predict the most similar protein with GenePredix [6].
Then, according to an identity threshold, we test the
length and the similarity of the homolog sequences
(hit and prediction). When the ortholog protein
sequence found is under the threshold, the study
remains at protein level. We check if the protein
conservation is consistent with time of divergence
with the last ancestor known which encodes the
protein. The consistence is calculated by a mean of
identity divergence by million of years according to
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the known orthologous protein of species studied. If
the signal is consistent, we conclude to the putative
existence of that orthologous gene, otherwise we
conclude to its pseudogenisation. When the ortholog
sequence found is not too divergent, we perform a
study at the genomic level. We align with “LaganM”
[8] the DNA sequence with ancestral sequence
reconstructed by “Ortheus” [9]. Then, we search all
possible mutation events, comparing the target
sequence to the ancestral sequence. If no
degenerative mutation exists, we conclude the
putative existence of the gene. In the other case we
conclude to the pseudogenisation of the gene. The
last step is to summarize the results. Each species has
a character for the gene of interest: present, apogene
(for putatively present), pseudogene, or lost. The
Sankoff parsimony [10] is used to highlight the
ancestral and derived characters. At the end of study,
these information and the genomic events are
pinpointed on a tree of life.

3 Results and Discussion

To show the efficiency of “Genel.oss” module, we
have benchmarked it with more than twenty cases of
gene loss described in literature. Among them there
are gene losses in the primate lineage [11], in the
hominidae lineage [12,13], in the human lineage [14]
and in the dog lineage [15]. For each of this studies,
we found the same results than those published.
Furthermore, for most of them, we identified new
interesting information and further details, which
allowed us to refine the previous descriptions. Here
we will take to example the gene coding to
acyltransferase 3 (Acyl3) protein [12], described by
the authors as a pseudogene in Homo and Pan, due to
a nonsense mutation in exon seven appeared after the
divergence of gorillas from the human lineage and
before the human-chimp split. With “GeneLoss” we
found the mutation already described, and many
others non-described mutations. A splice mutation in
the ancestor of Hominidae seems to be the first event
leading to the process of pseudogenisation. Four
nonsense mutations and one insertion of four bases
occur after this event in different Hominidae lineage.
In addition, our analysis also revealed a loss of the
Acyl3 gene in the Gallus gallus genome, which has
never been described yet.

4 Conclusion

“GenelLoss” is the first tool able to study gene loss
and the pseudogenisation automatically. We
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demonstrated its accuracy and its efficiency.
Currently, a large scale analysis is undertaken in the
human lineage case.
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Abstract We describe here the project PLUME (FEATHER in the english version). This pro-
ject references software used or developed in the Higher Education and Research community. It
is built around a collaborative web site, each software is described by a regular user, or for

« ESR » cards by the developer himself.

Keywords Promote software, internal developments, listing, contribution.

Plume: Promouvoir les Logiciels Utiles, Maitrisés et Economiques pour la
communauté de I'Enseignement Supérieur et de la Recherche

Résumé Nous décrivons ici le projet PLUME, qui référence les programmes utilisés ou développés
dans la communauté Education-Recherche. Il est construit autour d'un site web collaboratif, chaque lo-
giciel étant décrit par un utilisateur régulier, ou pour les fiches « ESR », par le développeur lui-méme.

Mots-clés Promouvoir les logiciels, développements internes, référencement, contribution.

1 Introduction

Le projet PLUME vise a Promouvoir les Logiciels
Utiles, Maitrisés et Economiques dans la commu-
nauté de 1'Enseignement Supérieur et de la Re-
cherche(ESR) en les référencant sur son site Web pu-
blic http://www.projet-plume.org. « Utiles » signifie
utilisés « Maitrisés » veut dire que plusieurs sites
utilisent ces logiciels couramment, tandis que « Eco-
nomiques » regroupe au premier chef les logiciels
libres, mais également les « gratuiciels » ou les logi-
ciels diffusés sous licence propriétaire, mais avec des
tarifs particuliérement avantageux pour I'ESR.

Plume a quatre objectifs principaux:

- Mutualiser les compétences sur les logiciels,
- Promouvoir les développements internes,

- Animer une communauté autour du logiciel,

- Promouvoir l'usage et la contribution aux logi-
ciels libres.

Les contributions viennent des membres de cette
communauté Enseignement Supérieur—Recherche,
qui rédigent des fiches descriptives réparties par mé-

tiers et activité : Biologie, Chimie, Agronomie, Dé-
veloppeur, Calcul scientifique, Mathématiques, etc...

On trouve trois grandes catégories de fiches: des
logiciels en production, des logiciels développés au
sein de I'ESR, ainsi que des fiches « ressources ».

2 Contributions

2.1 Logiciels « validés »

Les «logiciels validés » référencés dans Plume
sont des logiciels largement utilisés dans la commu-
nauté de 1'Enseignement Supérieur et de la Re-
cherche. Ce sont soit des logiciels généralistes, soit
des logiciels « métiers » qui peuvent avoir une utili-
sation plus réduite du fait de 1'étroitesse de leur
champ applicatif. La fiche est relue avant publication
par au moins deux personnes. Chaque logiciel est dé-
crit par une fiche synthétique qui décrit les fonction-
nalités, son opérabilité, sa pérennité et l'utilisation
faite dans les laboratoires. Le contributeur met régu-
lierement a jour la fiche (environ tous les 6 mois)
afin que le référencement suive les évolutions du lo-
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giciel. Une fiche qui ne peut étre mise a jour en rai-
son de la défection de son contributeur est retirée du
serveur.

2.2 Logiciels développés dans I' ESR

Ces fiches « ESR » décrivent les logiciels dévelop-
pés ou en cours de développement dans la commu-
nauté ESR Ces fiches sont destinées a valoriser les
productions logicielles et a les faire connaitre aux
chercheurs/enseignants du domaine dans un but de
collaboration scientifique. A chaque fiche sont asso-
ciés les noms des développeurs, des laboratoires as-
sociés et des tutelles.

2.3 Ressources

Ces fiches présentent synthétiquement des res-
sources liées aux logiciels présentés dans PLUME et
plus généralement aux logiciels libres ou utilisés
dans la communauté ESR : articles, support de cours,
événements, recommandations juridiques et adminis-
tratives pour diffuser un logiciel de laboratoire, mé-
thodologie pour tracer la propriété intellectuelle dans
des codes logiciels, ...

3 Bioinformatique dans Plume

La bioinformatique se retouve dans le théme bio-
logie http://www.projet-plume.org/biologie: Une cin-
quantaine de contributeurs ont rédigé actuellement
plus de 30 fiches en rapport avec la biologie.

Le caractere « utile » et « maitrisé » de ces logi-
ciels est d'une part affirmé par les contributeurs, spé-
cialistes du domaine et utilisateurs du logiciel,
d'autre part par le fait qu'un logiciel n'est référencé
dans Plume que s'il est en production dans au moins
3 sites différents. Cela permet d'avoir un avis perti-
nent en condition réelle d'utilisation du logiciel, et
contribue a la valeur ajoutée de Plume par rapport a
d'autres sites qui référencent aussi des logiciels utili-
sés en bioinformatique. De plus chaque fiche est re-
liée avec les logiciels connexes. Certains contribu-
teurs acceptent de fournir un support léger aux logi-
ciels décrits pour aider les lecteurs a L'installer.

De nombreux logiciels bioinformatiques sont dé-
veloppés dans les laboratoires et malheureusement
restent méconnus. Plume permet de valoriser et dif-
fuser ces développements.

Plume permet également par un systéme de re-
cherche sur des mots clés de trouver rapidement un
type de logiciel attendu. La bioinformatique re-
groupe des themes tres variés et le travail de référen-
cement des logiciels utiles et maitrisés en bioinfoma-
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tique est grand. Actuellement on trouve des fiches
sur :

des applications de séquencage haut débit (MACS,
Galaxy, S-MART), le transcriptome (BASE, GAGG),

les séquences (Blast EMBoss, BioMaJ), la spectro-
métrie de masse (massXpert), la chimie (Zebre),
l'agronomie (Virtual Laboratory Environment), la
génomique comparative (Narcisse), les formats de fi-
chiers (.bar, .bed, .gff)

Les formats de fichiers sont nombreux dans la dis-
cipline et actuellement peu sont encore référencés.

La plateforme Plume propose une organisation
originale et bien structurée qui a pour but de mainte-
nir ce service sur le long terme. Regroupant des logi-
ciels issus de nombreux domaines scientifiques, la
plateforme est appelée jouer un réle important dans
la communauté ESR francaise ou étrangeére, de part
sa notoriété. La communauté Bioinformatique a tout
intérét a utiliser et faire vivre ce service, afin de pro-
fiter de l'effet de synergie entre les disciplines appor-
té par la plateforme qui devrait permettre d'augmen-
ter la visibilité des logiciels produits par cette com-
munauté.

4 Lacommunauté Plume

Toute personne de I'Enseignement Supérieur et de
la Recherche peut participer a Plume en tant que
membre (pour proposer des fiches logicielles ou
commenter les fiches existantes) ou contributeur
(afin de rédiger de nouvelles fiches) : On peut égale-
ment proposer de s'investir de maniére permanente
en devenant « responsable thématique ».

A ce jour (Avril 2010), Plume regroupe 530
contributeurs (dont 55 pour le theme Biologie) et
1192 membres.

Développeurs et utilisateurs de logiciels « UME »,
nous attendons vos contributions: elles permettront
de faire connaitre a vos collégues les logiciels que
vous appréciez. Dans le cas de fiches « ESR », en of-
frant un site centralisé de référence, PLUME peut
vous aider a faire connaitre plus largement vos pro-
ductions ou celles de votre laboratoire, et ainsi
contribuer a créer une communauté d'utilisateurs.
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Abstract IntAct is an open-source, open data, molecular interaction database and toolkit. Data
is abstracted from the literature or from direct data depositions by expert curators following a
deep annotation model providing a high level of detail. As of June 2010, IntAct contains over
218,028 curated binary interaction evidences. The data are released on a weekly basis and are
available in both XML (PSI-MI XML) and tabular format (PSIMITAB). IntAct is also a member
of the International Molecular Exchange consortium (IMEXx) that aims at sharing manual cura-
tion effort and exchange completed records between collaborating partners, thus increasing the
amount of data made available to the scientific community. To be able to exchange and share
molecular interaction annotations, IntAct implements the PSIQUIC services, making its data
available to any PSIQUIC client. It also embeds a PSIQUIC client in its user interface, so that
results from the IntAct interface are expanded by data from other databases such as MINT, Bi-
oGrid and DIP. PSICQUIC is an effort from the HUPO Proteomics Standard Initiative
(HUPO-PSI) to standardise the access to molecular interaction databases programmatically. It
is motivated by the idea that such annotations should not be provided by single centralized
databases, but should instead be spread over multiple sites. Data distribution, performed by
PSICQUIC servers, is separated from visualization, which is done by PSICQUIC clients. PSIC-
QUIC is a client-server system in which a single client integrates information from multiple
servers. It allows a single machine to gather up molecular interactions from multiple distant

web sites, collate the information, and display it to the user in a single view.

Keywords
MIQL, standards, database

1 Introduction

IntAct is an open-source, open data,
molecular interaction database and toolkit. Data is
abstracted from the literature or from direct data
depositions by expert curators following a deep
annotation model providing a high level of detail
from the experimental reports on the full text of the
publication. IntAct aims to provide the user with all
the relevant experimental detail described in the
originating article, with all entries being fully
compliant ~ with  the  International Molecular
Exchange consortium (IMEx
- http://imex.sourceforge.net/) guidelines [1] and
the Minimum Information required to report a
Molecular Interaction Experiment (MIMIx-
http://www.psidev.info/index.php?q=node/278)
standard [2], whilst also providing extra levels of
information beyond these minimum requirements.

IntAct, PSICQUIC, molecular interaction, open-source, open data, HUPO-PSI,

12 The IntAct Molecular Interaction Da-
tabase and its curation policy

IntAct makes extensive use of a number of
controlled vocabularies, primarily the Molecular
Interaction ontology of the Proteomics Standard
Initiative (PSI-MI, [3]) to describe the technical
details of the experiment, binding sites, protein tags
and mutations. The Gene Ontology [4] is used to
describe the sub-cellular location an interaction may
be shown to occur in or the function of an enzyme in
an enzyme/substrate assay. Interacting molecules are
systematically mapped to stable identifiers from
public databases such as UniProtKB for proteins [5],
ChEBI [6] for small molecules, Ensembl [7] for
genes and the DDBIJ[8]/EMBL[9]/GenBank[10]
nucleotide databases for nucleic acids. Binding sites
are also cross-referenced to the InterPro database
[11] whenever possible.

As of June 2010, IntAct contains over

218,028 curated binary interaction evidences.
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Interactions from over 275 species are described,
although our main focus is on human and model
organisms such as mouse, Drosophila melanogaster,
Caenorhabditis elegans, FEscherichia coli and
Arabidosis thaliana. In response to the growing data
volume and user requests, IntAct provides a two-
tiered view of the interaction data. A Quick Search
box allows simple “Google-like” searches to be
performed, however, the search interface allows the
user to iteratively develop complex queries using the
flexible Molecular Interaction Query Language
(MIQL), exploiting the detailed annotation with
hierarchical controlled vocabularies. Users can
search for interactors that are annotated with terms
from the Gene Ontology [12], InterPro, ChEBI and
the UniProt Taxonomy, or interactions described
using specific terms from the PSI-MI controlled
vocabularies. Results are provided at any stage in a
simplified, tabular view. Specialized views then
allow ‘zooming in’ on the full annotation of
interactions, interactors and their properties.

IntAct source code and data are freely
available at http://www.ebi.ac.uk/intact. The data
are released on a weekly basis and are available in
both XML (PSI-MI XML) and tabular format
(PSIMITAB).

13 IntAct and development of PSICQUIC,

acommon query interface

The  Proteomics Standards Initiative
Common Query InterfaCe (PSICQUIC) aims at
standardizing the programmatic access to molecular
interaction databases. On the simplest level,
PSICQUIC provides a set of methods to
simultaneously query multiple molecular interaction
databases. The PSICQUIC interface allows single
word or phrase queries (e.g. abl1 AND “pull down”),
search in specific attributes/columns (e.g. abll AND
species:human), wildcards (e.g. abl*), and logical
operators, through the use of MIQL. PSICQUIC
servers may return data in one or more output types,
usually the tabular MITAB25 or the more detailed
PSI-MI XML format. To be able to exchange and
share molecular interaction annotations, IntAct
actively participates in the development of
PSICQUIC. IntAct implements the PSICQUIC
service, making its data available to any PSICQUIC
client. It also embeds a PSICQUIC client in its user
interface, so that results from the IntAct interface are
extended by data from other databases such as
MINT, BioGrid and DIP. The ChEMBL database
provides protein-chemical entity interactions, and
Reactome provides simplified pathway information
all through the same interface, enabling these to be
merged into a single view from PSI-compliant tools
such as Cytoscape. A full list of available services
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can be found on the PSICQUIC registry
(www.ebi.ac.uk/Tool/webservices/PSICQUIC/registr
y/registry?action=STATUS).

14 PSICQUIC implementation

PSICQUIC is motivated by the idea that
no one single centralized databases can provide
all available interaction data, but by combining
the data from multiple sites, the user benefits
from increased coverage of the interactome of a
particular ~ organism.  Data  distribution,
performed by PSICQUIC servers, is separated
from visualization, which is done by PSICQUIC
clients. PSICQUIC is a client-server system in
which a single client can integrate information
from multiple servers. It allows a single machine
to gather up molecular interactions from
multiple distant web sites, collate the
information, and display it to the user in a single
view. One immediate user of the PSICQUIC
service has been the IMEx consortium. IMEx
aims at sharing manual curation effort and
providing a non-redundant set of high-quality,
consistently annotated completed records
provided by collaborating partners.
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1 Introduction

IMGT/3Dstructure-DB ~ (1,2) is the three-
dimensional (3D) structure database of IMGT®, the
international ImMunoGenetics information system®
http://www.imgt.org (3), the global reference in
immunogenetics and immunoinformatics. Major
breakthroughs characterize IMGT® and, therefore,
IMGT/3Dstructure-DB: a standardized identification
(IMGT keywords), a standardized nomenclature
(IMGT gene and allele names), a standardized
description (IMGT labels), and a standardized
numerotation (IMGT unique numbering). IMGT-
ONTOLOGY concepts have been crucial in bridging
the gap between sequences and 3D structures (4,5) in
IMGT/3Dstructure-DB  database and in the
IMGT/DomainGapAlign (2) and IMGT/Collier-de-
Perles (6,7) tools.

2 IMGT/3Dstructure-DB

The IMGT/3Dstructure-DB structural data are
extracted from the Protein Data Bank (PDB) and
annotated according to the IMGT-ONTOLOGY
concepts of classification, using internal tools and
IMGT/DomainGapAlign. IMGT/3Dstructure-DB
provides the closest genes and alleles that are
expressed in the amino acid sequences of the 3D
structures, by aligning these sequences with the
IMGT domain reference directory. Each entry in the
database is detailed in an IMGT/3Dstructure-DB
card. Eight tabs are available at the top of each card:
‘Chain details’, ‘Contact analysis’, ‘Paratope and
epitope’, ‘3D visualization Jmol or QuickPDB’,
‘Renumbered IMGT file’, ‘IMGT numbering
comparison’, ‘References and links’ and ‘Printable
card’. As an example, the ‘Chain details’ comprises
information, first, on the chain itself (chain ID, chain
length, IMGT chain description...), then on each
domain, starting from the N-terminal end (IMGT
domain description, gene and allele names...).
IMGT/Colliers de Perles on two layers, available for
the variable (V) and constant (C) type domains, are
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displayed with hydrogen bonds. ‘Contact analysis’
provides contacts between structural units (domains
or ligand) and are obtained by a local program
written in C in which atoms are considered to be in
contact when no water molecule can take place
between them. The atom contact types and categories
for each amino acid are provided in ‘IMGT
Residue@Position cards’. ‘IMGT pMHC contact
sites’ graphically represent, in IMGT Colliers de
Perles, the MHC amino acid positions that contact
the peptide side chains in pMHC complexes, and
thus allow comparison of pMHC interactions. These
features are part of the information provided by
IMGT/3Dstructure-DB.  In  June 2010, the
IMGT/3Dstructure-DB  database manages 2242
coordinate files (PDB, INN and Kabat).

3 IMGT/Collier-de-Perles

IMGT Colliers de Perles are 2D graphical
representations (6,7) available for the V type domain
(V-DOMAIN of IG and TR, V-LIKE-DOMAIN of
IgSF other than IG and TR), C type domain (C-
DOMAIN of IG and TR, C-LIKE-DOMAIN of IgSF
other than IG and TR) and groove (G) type domain
(G-DOMAIN of MHC, G-LIKE-DOMAIN of
MhcSF other than MHC). Any domain represented
by an IMGT Collier de Perles is characterized by the
length of its strands, loops and turns and, for the G
type, by the length of its helix. IMGT Colliers de
Perles are generated with the IMGT/Colliers-de-
Perles tool which allows the users to draw IMGT
Colliers de Perles starting from their own amino acid
sequences. Sequences have to be gapped according
to the IMGT unique numbering (using for example
IMGT/DomainGapAlign). Adjustements are possible
manually in the window for unusual features.
IMGT/Collier-de-Perles tool can be customized to
display the CDR-IMGT according to the IMGT
Color menu or to visualize the amino acids according
to their hydropathy, volume or IMGT
physicochemical classes (8).
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4 IMGT/DomainGapAlign

IMGT/DomainGapAlign is a tool which aligns the
user amino acid sequences with the IMGT domain
reference directory, identifies the closest V, C and G
domains, creates gaps according to the IMGT unique
numbering and highlights differences with the
closest reference(s). For an antibody V domain
sequence, IMGT/DomainGapAlign identifies the
closest germline V-REGION and J-REGION, and
provides a delimitation of the strands, framework
regions (FR-IMGT) and CDR-IMGT. The IMGT
gene and allele name of the closest sequence(s) from
the IMGT domain reference directory is provided
with a percentage of identity and a Smith-Waterman
score. Regions and domains are highlighted using the
IMGT Color menu. Several sequences can be
analysed simultaneously and users can choose how
many alignments to display for each sequence. The
IMGT Colliers de Perles are generated from the
gapped sequences provided by the
IMGT/DomainGapAlign tool.

5 IMGT/DomainDisplay

IMGT/DomainDisplay is a tool which provides
the display of amino acid sequences from the IMGT
domain directory. This directory contains, for the IG
and TR, amino acid sequences of the domains
encoded by the C genes and the translation of the
germline V and joining (J) genes. The identified
genes are classified based on the IMGT
nomenclature of IG and TR genes and alleles that
was approved in 1999 by the Human Genome
Organisation (HUGO) Nomenclature Committee
(HGNC), entered in IMGT/GENE-DB, and endorsed
by the World Health Organization (WHO)-
International Union of Immunological Societies
(IUIS) Nomenclature Committee. Entrez Gene at the
National Center for Biotechnology Information
(NCBI), Vertebrate Genome Annotation (Vega) at
the Wellcome Trust Sanger Institute, and Ensembl at
the European Bioinformatics Institute (EBI)
currently use IMGT nomenclature.

6 Conclusion

IMGT/3Dstructure-DB and tools are widely used
by researchers, particularly for antibody engineering
and humanization design (1). Indeed they allow to
precisely define and to easily compare amino acid
sequences of the FR-IMGT and CDR-IMGT,
between the nonhuman (mouse, rat...) and the
closest human V domains. A recent analysis
performed on humanized antibodies used in

oncology underlines the importance of a correct
delimitation of the CDR to be grafted.
IMGT/3Dstructure-DB facilitates the identification
of potential immunogenic residues at given positions
in chimeric or humanized antibodies, including those
of the C domains. These therapeutic applications
emphasize the importance of the IMGT/3Dstructure-
DB standardized approach that bridges the gap
between sequences and 3D structures whatever the
species. Since 2008, amino acid sequences of
monoclonal antibodies (mAb, suffix -mab) and of
fusion proteins for immune applications (FPIA,
suffix -cept) from the WHO/International
Nonproprietary Name (INN) programme have been
entered in IMGT®.
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Abstract Robust reconstruction of metabolic networks has become an important challenge in
biology and the definition of powerfull methods for model validation constitute a critical step. To
this end, we propose a new modelling approach that helps to investigate the system’s phenotype
and its semi-quantitative behavior by accrying out metabolic flux analysis. We have implemented
this method in “Metaboflux“, and applied it to the Trypanosoma brucei energetic metabolism to
determine fluxes in each individual glycosomal branches compatible with biological observations.

Keywords Petri Nets, Flux analysis, Metabolic network, Trypanosoma brucei.

1 Introduction

The main objective of this paper, given a model and
some experimental data, is to propose a method for
the prediction of fluxes and model validation (identi-
fied as a critical part [1]) in metabolic networks. Flux
analysis and model validation may be both addressed
by carrying out Petri Net (PN) simulations to study the
behavior of a model and confront it to the available bi-
ological data.

Flux balance analysis (FBA) gives a mathematical
framework [2,3] to analyze metabolic capabilities of
an organism in a constraint-based model. It calcu-
lates all of the feasible chemically balanced metabolic
routes through the network by maximizing an unique
objective function (biomass production, a metabo-
lite concentration). Despite the success of FBA and
several context specific extensions (as MOMA[4],
rFBA[5]), the definition of the objective function re-
mains a challenge for improving the biological mean-
ing [6]. This task may be yield by integrating ad-
ditional constraints for increasing biological assump-
tions in a multi-objective function. In such analysis,
the complexity of the underlying problems involves
the use of meta-heuristics.

We present a new method for running fluxes analyses
when integrating heterogeneous available data. The
structural complexity of metabolic networks can lead
to alternatives fluxes that can be formulated as a com-
plex optimization problem. Most of the real values of
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the fluxes are unknown and the biologically realistic
range for most parameters may span large intervals of
values. We have applied a heuristic algorithm to com-
pute optimal flus distribution solutions. The key ques-
tion that our method addresses is to identify any set of
parameter values for which the network model would
exhibit a realistic behavior, given initial conditions.
Furthermore, we propose several scenarii of fluxes for
biological expertise as the developped heuristic may
propose a set of closed optimal solutions.

2 Method

The known biological informations are modelled by
a stochastic PN (transitions are given for the reactions
and places for metabolites) where delays can be as-
signed to transitions as a probability distribution. This
variant of PN allows the specification of flux ratio that
will be tested through the simulation process. From a
given set of probability distributions representing the
flux amount of reactions (the input set of parameters),
the simulation of the PN allows the exploration of all
possible behaviors of the system. At the end of a run,
if all input metabolites are consumed, we get the con-
centrations of the intermediate and output metabolites.
We integrate the expected metabolites concentrations
and/or some known fluxes revealed by biological ex-
periments (when available) within a multiple objective
function (Eq.1 on the following page) that has to be
optimized. This function defines the biological con-
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straints that have to be satisfied for getting a realistic
model. The energy value is calculated by the objective
function where X;, .. stands for the known metabo-
lite concentration or for the known flux ratio (when
they are available), X ;4 stands for the correspond-
ing values resulting from a PN simulation and w; as a
normalizing factor.

Energy = N

= (wl * (Xifinal
=0

Xiinit
During this stage, the simulation process (resulting
from the Petri net model) is encapsulated in a sim-
ulated annealing process [7] that ends by a Nelder-
Mead minimization stage [8]. Simulations are carried
out by fitting the set of input parameters until the sys-
tem reaches the best optimization given by the low-
est Energy value. To explore a large set of possi-
ble behaviors of the system, several runs of simula-
tions are interlaced with the simulated annealing pro-
cess (Fig. 1). A set of solutions is given by the best
cluster of flux distributions, that best fits the expected
metabolites concentrations. The process is repeated
giving several scenarios for biological expertise. Our
methodological development are implemented in the
standalone MetaboFlux software (http://www.cbib.u-
bordeaux2.fr/metaboflux).

3 Case study

MetaboFlux has been applied to study the glu-
cose metabolic network of a parasitic protist of ver-
tebrates that causes sleeping sickness in Africa, Try-
panosoma brucei. A major part of glucose metabolism
of the procyclic form of T. brucei, including the 6
first glycolytic steps, occurs in an organelle called
glycosome. The glucose metabolic network, includ-
ing the glycosomal contribution, has been built by
exploiting genomic, reverse genetic and metabolomic
data [9]. Some known biological constraints, such as

Analysis core

Metaboflux's
parameter file

1

1% Random set
of parameters

Energy

Setof parameters
Temperature

Simulated
annealing
Temperature = threshold
SA — Set of parameters

Downbhill

Simplex
Optimized — Set of

parameters

Clustering / Representation

Fig. 1. The pipeline of MetaboFlux. The network structure
is given via a SBML file.

the maintenance of the glycosomal AT P/ADP and
NADH/NAD™ balances, have not been carefully
addressed in the current model. Indeed, glycosomes
are peroxisomes-like organelles, which are not sup-
posed to exchange ATP/ADP and NADH/NAD™
molecules with the cytosol. Consequently, metabolic
fluxes in the different branches of the metabolic net-
work have to be compatible with the maintenance
of these balances. The resulting scenarios, given by
MetaboFlux, strongly support the current metabolic
model. This analysis determined metabolism fluxes in
each individual branches compatible with known con-
straints. Metaboflux was designed in such a way that
biologists will be able to test the model with new data,
to define new relevant fluxes scenarios.

4 Conclusion

In this work, a novel method was presented that al-
lows to analyse the structural complexity of metabolic
networks by running efficient dynamic simulations for
fluxes prediction. MetaboFlux will be able to assist
biologists to test different structural models by calcu-
lating their optimal metabolic behaviors according to
available heteregoneous biological data and shows in-
teresting performances for the model validation task.
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Abstract IMGT-ONTOLOGY, the first ontology for immunogenetics and immunoinformatics,
manages the immunogenetics knowledge through diverse facets relying on seven axioms and
represents a paradigm for the elaboration of integrated ontologies in system biology.
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1 Introduction

IMGT®, the international ImMunoGeneTics
information system® (http://www.imgt.org), is the
reference in immunogenetics and
immunoinformatics. IMGT® standardizes and
manages the complex immunogenetics data which
include the immunoglobulins (IG) or antibodies, the
T cell receptors (TR), the major histocompatibility
complex (MHC) and the related proteins of the
immune system (RPI) which belong to the
immunoglobulin superfamily (IgSF) and to the MHC
superfamily (MhcSF) [1]. The accuracy and
consistency of IMGT® data and the coherence
between the different IMGT® components
(databases, tools and Web resources) are based on
IMGT-ONTOLOGY, the first ontology for
immunogenetics and immunoinformatics [2]. IMGT-
ONTOLOGY  manages the immunogenetics
knowledge through diverse facets relying on seven
axioms, IDENTIFICATION, CLASSIFICATION,
DESCRIPTION, NUMEROTATION,
LOCALIZATION, ORIENTATION and
OBTENTION, that postulate that objects, processes
and relations have to be identified, described,
classified, numerotated, localized, orientated, and the
way they are obtained, determined. These axioms
constitute the Formal IMGT-ONTOLOGY, also
designated as IMGT-Kaleidoscope [3].

2 IMGT-ONTOLOGY axioms and
concepts

The IDENTIFICATION axiom has generated the
concepts of identification which allow to identify
any biological objects, processes and relations in
IMGT®. They provide the terms and rules that were
necessary to define the IMGT standardized keywords
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used, in IMGT® databases, for the identification of
IG, TR or MHC nucleotide and protein sequences,
and structures according to their fundamental
biological and immunogenetics characteristics.

The CLASSIFICATION axiom provides the rules
that are necessary to classify the 1G and TR genes.
Indeed, the IG and TR genes belong to highly
polymorphic multigene families organized as
clusters in several loci in the genome [4,5]: therefore
their classification requires a strong knowledge
standardization. As a major contribution, the
concepts of classification allowed to set up a unique
nomenclature of human IG and TR genes, which was
approved by the Human Genome Organisation
(HUGO) Nomenclature Committee (HGNC) in 1999
and has become the community standard. The IG and
TR genes are managed in the IMGT/GENE-DB
database [6]. IMGT/GENE-DB database entries are
cross-referenced by HGNC database, Genatlas,
Entrez Gene (NCBI) and Vega (Wellcome Trust
Sanger Institute).

The DESCRIPTION axiom and related concepts
correspond to the standardization of terms and rules
which allow to describe the structural and functional
characteristic features of the IG, TR and MHC
nucleotide and protein sequences, and 3D structures.
Description concepts include IMGT standardized
labels and the topological relationships that are used
for the annotation process. Interestingly, 64 of the
IMGT labels have been integrated by Sequence
Ontology (http://www.sequenceontology.org/).

The NUMEROTATION axiom and the concepts
of numerotation determine the principles of a unique
numbering for variable, constant and groove
domains in 1G, TR and MHC sequences and 3D
structures. The concept of 'IMGT unique numbering'
and its graphical representation, the 'IMGT Collier

i
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de Perles' represent a major breakthrough and are the
flaship of IMGT® since they allow to bridge the gap
between sequences and structures [7,8]. Thanks to
both concepts, IMGT® provides a standardized and
a fine description of allelic polymorphisms of IG and
TR genes and of the somatic mutations in IG
sequences. It also provides the rules for the
delimitations of the framework and complementarity
determining regions of IG and TR allowing the
standardization of the contact analysis between
residues in 3 D structures.

The LOCALIZATION axiom postulates that
molecules, cells, organs, organisms or populations
and their processes and relations have to be localized
in time or space. At the molecular level in the field
of immunogenetics, the concepts of localization
allow to characterize the localization of IG, TR and
MHC genes and proteins.

The ORIENTATION axiom defines the rules for
the orientation of objects in IMGT®. In the context
of genome analysis, it has led to set the 'Genomic
orientation' concept (for chromosome, locus and
gene) and the 'DNA strand orientation' concept.

The OBTENTION axiom has generated a set of
standardized terms that precise, for any object of
IMGT®, its origins (‘Origin’ concept) and the
conditions in which the sequences have been
obtained (‘Methodology’ concept).

3 Conclusion

The axioms of IMGT-ONTOLOGY have been
essential for the conceptualization of the molecular
immunogenetics knowledge and for the creation of
IMGT®. AIll the components of the IMGT®
integrated system have been developed, based on
standardized concepts and relations, making IMGT®
a system and an ontology that bridge biological and
computational spheres in bioinformatics [9]. IMGT-
ONTOLOGY concepts are available, for the
biologists and IMGT® users, in the IMGT Scientific
chart [1]. They are being formalized step by step in
OWL language with the Protégé ontology editor. A
first version has been published on NCBO Bioportal
site (http://bioportal.bioontology.org/) and is also
available from the 'IMGT downloads'. The concepts
of IMGT-ONTOLOGY are currently used for the
exchange and the sharing of knowledge in: (i)
fundamental and medical research (repertoire
analysis of the IG antibody sites and of the TR
recognition sites in normal and pathological
situations such as autoimmune diseases and
infectious diseases), (ii) veterinary research, (iii)
genome diversity and genome evolution studies of

the adaptive immune responses, (iv) structural
evolution of the IgSF and MhcSF proteins, (v)
biotechnology related to antibody engineering (scFv,
phage displays, combinatorial libraries, chimeric,
humanized and human antibodies), (vi) diagnostics
and  (vii) therapeutical approaches (grafts,
immunotherapy, vaccinology). IMGT-ONTOLOGY
was a key component in the elaboration and setting
up of standards of the European ImmunoGrid project
(http://www.immunogrid.org/) whose aim is to
define the essential concepts for modelling of the
immune system. IMGT-ONTOLOGY can also be
used for multi-scale level approaches at the
molecule, cell, tissue, organ, organism or population
level, emphasizing the generalization of the
application domain. In that way IMGT-ONTOLOGY
represents a paradigm for the elaboration of
ontologies for immunogenetics and
immunoinformatics information systems.
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Abstract The functions of proteins are strongly related to their localization in cell
compartments (cytoplasm or membranes) but the experimental determination of the sub-cellular
localization of proteomes is laborious and expensive. A fast and low-cost alternative approach
is in silico prediction, based on features of the protein primary sequences. However, biologists
are confronted with a very large number of computational tools that use different methods that
address various localization features with diverse specificities and sensitivities. As a result,
exploiting these computer resources to predict protein localization accurately involves querying
all tools and comparing every prediction output; this is a painstaking task. Therefore, we
developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs
concerning complete prokaryotic proteomes. The current version of CoBaltDB integrates the
results of 43 localization predictors for 784 complete bacterial and archaeal proteomes.
CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant
information about predicted features (signal peptide, transmembrane segments). Data are
organized into three work-sets ("specialized tools*, “meta-tools and “additional tools “). The
database can be queried using the organism name or a list of locus tags and may be browsed
using numerous graphical and text displays. With its new functionalities, CoBaltDB is a novel
powerful platform that provides easy access to the results of multiple localization tools and
support for predicting prokaryotic protein localizations with higher confidence than previously

possible. CoBaltDB is available at:

http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten

Keywords Tools database, subcellular localization, prokaryotic annotation.

1 Introduction

Determining the subcellular localization of
proteins is essential for the functional annotation of
proteomes [1]. Bacterial proteins can exist in soluble
(i.e free) forms in cellular spaces (cytoplasm and
periplasm in diderms), anchored to membranes or
cell wall (in monoderms). They can also be released
into the extracellular environment or directly
translocated into host cells [3]. All protein synthesis
takes place in the cytoplasm, so all non-cytoplasmic
proteins must pass through one or two lipid bilayers
by a mechanism called “secretion”.

Establishing  whole  proteome  subcellular
localization by biochemical experiments is possible
but arduous, time consuming and expensive. Data
concerning predicted proteins (from whole genome
sequences) is continuously increasing. High-
throughput in silico analysis is required for fast and
accurate prediction of additional attributes based
solely on their amino acid sequences. There are large
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numbers of global (that yield final localization) and
specialized (that predict features) tools for computer-
assisted prediction of protein localizations, using
various methods.

This plethora of protein localization predictors and
databases constitutes an important resource but
requires time and expertise for efficient exploitation.
Some of the tools require computing skills, as they
have to be locally installed; others are difficult to use
(numerous parameters) or to interpret (large
quantities of graphics and output data). Web tools
are disseminated and need numerous manual
requests. Additionally, researchers have to decide
which of these numerous tools are the most pertinent
for their purposes, and selection is problematic
without appropriate training sets. Recent work shows
that the best strategy for exploiting the various tools
is to compare them [3,4]. Here, we describe
CoBaltDB [5], the first public database that displays
the results obtained by 43 localization predictor tools
for 776 complete prokaryotic proteomes.

Skl
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2 Construction and Content

The CoBaltDB database contains three main types
of data: 1) prediction using 23 feature-based
localization tools, ii) prediction obtained using 5
localization meta-tools and iii) data collected from
20 public database. These data were organized in
five “boxes™ with regard to the features predicted:
three boxes correspond to signal peptide detection
(Lipoprotein, Tat- and Sec- dependent targeting
signals); one box for the prediction of alpha-
transmembrane segments (TM-Box); and one box for
outer membrane beta-barrels prediction. We
retrieved and tested 99 currently (in 2009) available
specialized and global tools that use various amino
acid features and diverse methods (HMM, NN,
SVM...). Some tools are Gram specific, for these
reasons we have sorted the genome by phylogeny
[2]. Currently, CoBaltDB contains pre-computed
results obtained with 48 tools and databases, and
additionally provides pre-filled access to 50 publicly
available tools. Web-based tools were requested via
a Web automat (http request) and standalone tools
were installed on a Unix platform. The global python
pipeline used multithreading to speed up the
precomputation. The CoBaltDB platform has been
developed as a Java client-server application. The
server is installed at the Genouest Bioinformatics
platform. An applet version is envisaged.

3 Utility

Our goal was to build an open-access reference
database providing access to protein localization
predictions. CoBaltDB was designed to centralize
different types of data and to interface them so as to
help researchers rapidly analyse and develop
hypotheses concerning the subcellular distribution of
particular protein(s) or a given proteome.

It presents four tabs that perform specific tasks:
the “input” tab allows selecting the organism or a list
of locus tags. The “Specialized tools” tab supplies a
table showing, for each protein some annotation
information and for each feature box (Tat, Sec, Lipo,
aTMB, bBarrel), a heat map representing the
percentage of tools predicting the truth/presence of
the corresponding localization feature. Clicking on
the heat map opens a new window that shows the
tools raw data. The proteins which are referred as
having an experimentally determined localization
appear in yellow. The “meta-tools” tab provides the
predictions given by meta-tools and global
databases. The “additional tools” tab enables queries
to be submitted to a set of 50 additional tools.
Finally, for each protein, all results were summarized

in a synopsis; the synopsis presents the results
generated by all the tools in a unified manner, and
includes a summary of all predicted cleavage sites
and membrane domains. In order to allow the
investigators to establish their own hypotheses and
conclusions.

4 Conclusion

We have developed CoBaltDB, the first friendly
interfaced database that compiles a large number of
in silico subcellular predictions concerning whole
prokaryotic proteomes. Currently, CoBaltDB allows
fast access to precomputed localizations for
2,548,292 proteins in 784 proteomes. In all our
analyses with CoBaltDB, it became clear that that
the combination and comparative analysis of results
of heterogeneous tools improved the computational
predictions, and contributed to identifying the
limitations of each tool. Therefore, CoBaltDB can
serve as a reference resource to facilitate
interpretation of results and to provide a benchmark
for accurate and effective in silico predictions of the
subcellular localization of proteins. Users can easily
create small datasets and determine their own
thresholds for each predicted feature (type I or 11 SPs
for example) or proteome.
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Approche Génomique
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1 Introduction

La levure Saccharomyces cerevisiae est un cham-
pignon unicellulaire microscopique présent naturelle-
ment dans différentes niches écologiques. Elle est uti-
lisée depuis I’antiquité dans la transformation de nom-
breux aliments, et en particulier en vinification.

Il existe de fortes variations de phénotypes entre
les différentes souches de S. cerevisiae. La souche
ECI1118 de levure ccenologique industrielle a été
sélectionnée pour ses caractéristiques d’initiation de
la fermentation alcoolique en production vinicole
[1]. Elle possede ainsi des propriétés phénotypiques
spécifiques qui la différencient de la souche modele
de laboratoire S288C séquencée en 1996 [2]. La
compréhension de I’origine génétique des propriétés
fermentaires spécifiques des levures cenologiques est
un enjeu majeur des prochaines années.

Les propriétés spécifiques d’une spore haploide,
594, issue de la souche diploide cenologique indus-
trielle EC/118 sont maintenant bien documentées
mais 1’origine génétique de ses caractéristiques
phénotypiques n’est pas encore connue.

Une recherche de Quantitative Trait Loci (QTL) [3]
dans une population de ségrégants, issue d’un croi-
sement entre S288C et 59A a permis de mettre en
évidence deux régions influencant les caractéristiques
phénotypiques d’intérét, liés a la fermentation, et les
niveaux de transcriptions d’un grand nombre de genes
(eQTL). Ces deux régions d’environ 30 000 et 76 000
paires de bases contiennent respectivement 16 et 32
genes (données non publiées).

Dans ce travail, nous proposons : (i) d’analyser
les polymorphismes existants entre le génome de la
souche S288C et celui de la spore 59A puis (ii) une
analyse permettant de proposer une liste de geénes can-
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didats dont les polymorphismes pourraient étre a I’ ori-
gine des principaux phénotypes d’intérét fermentaires.

2 Polymorphismes entre S288C et 59A

Pour comparer le génome de la souche 59A a ce-
lui, déja connu, de S288C (SGD : 8 avril 2008)
[4,5], un séquencage de type Illumina/Solexa [6] a
été réalisé (8 millions de lectures appariées de deux
fois 35 nucléotides). Les différences entre les deux
génomes ont été identifiées en alignant les lectures sur
le génome de référence avec la suite logicielle MAQ
(version 0.7.1) [7], spécialisée dans I’assemblage de
données de séquencage haut-débit prenant en compte
leur qualité. L’assemblage a été effectué en autorisant
3 différences nucléotidiques par lecture au maximum.

Cette méthode a permis de détecter 46592
différences nucléotidiques entre les génomes de la
référence S288C et celui de la spore 59A, dont
29270 concernent des régions annotés comme co-
dantes (CDS) et 11000 entrainent des changements
protéiques. Le pourcentage d’éléments fonctionnels
modifiés par des polymorphismes sont décrit dans le
tableau ci-dessous (voir Tab. 1). On remarque la pro-
portion importante de séquences protéiques modifiées
par au moins un polymorphisme (60%).

3 Analyse Populationnelle de I’Effet des
Polymorphismes sur les Phénotypes

Les deux régions d’intérét influencant les ca-
ractéristiques phénotypiques d’intérét fermentaires
(QTL et eQTL) contiennent respectivement 5 et 15
genes codant pour des protéines polymorphes. Il est
donc nécessaire de cibler, parmi tous ces genes, des
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Nom des Pourcentage d’éléments
éléments fonctionnels modifiés
fonctionnels (Nbr modif / Nbr total)
Gene 76,22 % (5012/6576)
Pseudogene 57.14 % (12/21)
ANRt 8,73 % (24 1275)
ARNr 4,00 % (1/25)
Site de régulation 1,77 % (54/3057)
Protéines 60,48 % (3977/6576)

Tab. 1. Proportion des principaux éléments fonctionnels du
génome de la levure [5] modifiés par des polymorphismes
nucléotidiques existants entre S288C et S9A.

candidats dont on évaluera expérimentalement 1’impli-
cation dans les variations phénotypiques. Pour cela, on
s’est appuyé sur des données de séquence de 32 autres
souches représentatives de la diversité des S. cerevi-
siae d’origines diverses, disponibles publiquement au
Sanger Institute [8]. Toutes ces données de séquence
correspondent a des spores haploides, représentant
168 136 nouvelles positions polymorphes. Pour ces
32 souches et pour S288C et 59A, trois valeurs de
phénotypes ont été mesurées en phase initiale de fer-
mentation (S. Dequin, communication personnelle) :

(1) Vipae : vitesse maximum de fermentation

(2) Vs : vitesse a mi-fermentation

(3) T'f : temps de fermentation nécessaire pour

produire 79g de CO»
Les QTL associent les phénotypes de la V4, a la
premiere région d’intérét et de la Vg et du 7'f a la
deuxieme.

A partir de ces données, nous avons utilisé un
modele linéaire pour décomposer le phénotype y d’une
souche donnée s comme la somme d’un phénotype
moyen p, d’un effet v du genotype de cette souche
g(s) et d’un bruit e ~ N(0, 02).

ys:u+’7g(s)+€

On teste ainsi I’hypothese nulle selon laquelle il n’y
a pas d’effet du génotype des souches étudiées sur les
variations du phénotype considéré :

Ho : 745y = 0, Vg(s)
Hy:3 g(s) 7£ 9(8/) tel que Yq(s) 7& Yo(s")

Une analyse de variance (ANOVA), effectuée pour
chacun des trois phénotypes, permet de quantifier le
rejet de Hy. La p-value obtenue donne donc une indi-
cation de la significativité de la corrélation phénotype-
génotype pour chaque site (acide aminé) polymorphe,
entre S288C et 594, au sein des génes des deux régions
d’intérét fermentaire.

Nous avons ainsi mis en évidence 5 sites poly-
morphes dans la premiere région, sur 18 total, dont la

repartition des génotypes est corrélée a la V4, (avec
une méme p-value = 0,013). Un géne de cette région
porte 4 de ces sites, ce qui peut-étre expliqué par un
déséquilibre de liaison dii a leur proximité physique.

Parmi les 43 sites polymorphes de la deuxieme
région, 3 sites de 2 genes différents sont corrélés au
Tf (p-value = 0,019 pour 2 des sites et p-value
= 0,002 pour I’autre) et 4 sites de 4 genes différents
sont corrélés a la V50 (p-values < 0, 048).

Apres évaluation du taux de faux positifs par per-
mutation, les niveaux atteints ne sont pas suffisant
pour confirmer I’existence de I’effet d’un des poly-
morphismes sur les phénotypes associé€s a la fermen-
tation (avec un seuil a 5 %). Par contre, les génes as-
sociés aux p-values les plus faibles sont des candidats
privilégiés sur lesquels effectuer un test expérimental
d’impact fonctionnel.

4 Conclusion

Le geéne candidat de la premiere région, portant le
plus de sites corrélés, a été validé expérimentalement
comme étant a 1’origine de la différence de vitesse
maximum de fermentation existant entre la souche de
laboratoire et I’haploide cenologique [9].

Pour la deuxiéme region, dont les phénotypes as-
sociés de T'f et de Vg sont correlés, les deux genes
mis en évidence ici pour leur implication dans ces
deux phénotypes sont actuellement en cours de vali-
dation expérimentale.

En conclusion, 1’approche proposée permet une
sélection, sans a priori d’annotation fonctionnelle,
des genes candidats potentiellement a I’origine des
spécificité phénotypiques de la levure cenologique.
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Abstract A significant portion of proteins carrying fundamental functions contains arrays of
tandem repeats. This presentation will provide a survey of current challenges related to these
proteins including: identification of repeats in proteomes, prediction and molecular modeling of
their 3D structures, applications of these knowl edge to the annotation of genomes. Examples of
successful application of hybrid approaches for prediction of the 3D structures of these proteins
that combine bioinformatics analysis, molecular modeling, x-ray fiber diffraction, electron
microscopy, STEM mass measurements, optical spectroscopy, and other biophysical techniques
will be presented.

Keywords Structural bioinformatics, repeats , amino aeiguence, protein structure .

Genome sequencing projects are revealing a laegel  elongated filamentous shapes har
number of biologically important proteins havingthconventional X-ray crystallography and NN
tandem arrays of up to 40 residue repeats [1, 2].sfudies. As a result, these proteins are ur
significant portion of these proteins carryepresented in the databases of the 3D struc
fundamental biological functions. Furthermore, ov@tese difficulties increase the potential impac
the last years a number of evidences has béwsbrid approaches that combine bioinforma
accumulated about the high incidence of tandeanalysis, molecular modeling, x-ray fiber diffractj
repeats in the virulence proteins of pathogensnsoxelectron microscopy, STEM mass measurem:
and allergens [3]. Genetic instability of theseioag optical spectroscopy, and other biophys
can allow a rapid response to environmental changeshniques. In the past few years, a serie
and thus can lead to emerging infection threats. dtructural predictions have been made for
addition, the tandem repeats frequently occur fmoteins including a beta-solenoid model
amyloidogenic, prion and other disease-relatithmentous hemagglutinin (FHA) ofBordetella
human sequences [4]. pertussis, alpha/beta-solenoid models of sew

This presentation will provide a survey of Currerlneucme-Rlch-Repeat (LRR) proteins, an alg

challenges in this area including identification 02?1 I;g%'gur:i?seol? Orfo?e};:gnrﬁg rzgm?lrgéoéﬁmeyl:l
protein repeats in proteomes and structural priedict P ’ PErp

of the 3D structure of these proteins. The probdém liitaisztrugtures Off 5:10]‘] ar&q targylm? f'brl'ls [?’m’t
identification of protein repeats is linked to tfaet  12]. gme 0 tle prde tIC ea mé) ecular s_,ruc.
that, frequently, these repeats are stron%gre subsequently etermine experimen

degenerated during evolution and, therefore, can {mrmlng that the structures of proteins w

be easily identified. To solve this problem, sel/ertfndem repeats can be predicted correctly. T

computer programs which are based on differe?ffamples suggest that, in generab initio

algorithms have been developed [1, 5, 6 grediction of such proteins is more reliable t

Nevertheless, there is still room for improvemeht redlct!on of globular proteins and this approgah
these methods. e actively used for the structural annotation:

. . genomes. Further development of reliable hy
Structural study of proteins with tandem repeatsethods for prediction of the 3D structures

also represents a challenge. Most of these proteinsteins with tandem repeats promise to be fe
have filamentous structure made of the repetitibn i@search  subjects of structural biology
equivalent modules [2]. Their large molecular weighioinformatics.
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Abstract

Background: Because Genome Browsers (GBs) hold a central place in genomic projects, the
diversity of tools available to scientists for visualizing and exploring genomes has increased
dramatically over the last years. It often turns out to be a daunting task to compare and choose
a well-adapted GB, as multidisciplinary knowledge is required to carry out this task and the
number of tools, functionalities and features are overwhelming. To help the interested
community making informed choices, there is an urgent need to apply and adapt standard
software evaluation processes to bioinformatics tool families, such as GBs.

Results: We have implemented an industry promoted software qualification method, QSOS, to
evaluate many of the available GBs using more than 120 criteria. We have defined about half of
those criteria specifically for GBs, and incorporated the other half directly from QSOS'’s
generic section. We have evaluated six GBs according to this methodology and present here a
subset of our results organized according to three different user profiles: a biologist whose
interest primarily lies into user-friendly and informative functionalities, a bioinformatician who
wants facilities to integrate the GB into a wider framework, and a computer scientist who might
choose a GB according to more technical features, for instance the possibility of developing a
customized version by modifying the source code.

Conclusions: A website is publicly available at the URL http.//genome. jouy.inra.fr/CompaGB. It
offers a dedicated framework for GBs evaluation and comparison. It has been set up to help
scientists to (1) choose GBs that would better fit their particular project, (2) visualize GBs
features comparatively with easily accessible formats, such as tables or radar plots and (3)
perform their own evaluation against the defined criteria.

Keywords : Genome Browser, software evaluation methodology, software comparison.

particular problem and as a result, the current

1 Background

Data in the field of genomics are ever growing in
size and diversity, thus making visualization and data
mining  increasingly  challenging. = Advanced
visualization tools such as genome browsers (GBs)
have been developed to help biologists focusing on
relevant clues with respect to their field of interest.
The development of such complex software is often
challenging and time consuming, but many genome
browsers have been developed since the dawn of the
21st  century: Bluejay [1], GenoMap [2],
GenomeComp [3], GenomeViz [4] to cite a few.
Projects aiming at supplanting or complementing
current GBs are blooming as well. Although these
different GBs provide the basic functionalities for
browsing annotations on a genomic scaffold, their
philosophy, functionality, interoperability and
implementation are often unique or dedicated to a
particular scientific field. The starting point for most
of them lies in specific needs for a lab to study a
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landscape of GBs is fragmented [5]. Such a disparity
makes direct comparison difficult and external labs
interested in integrating an existing GB to their own
projects often ends up making their choice based on
arbitrary decisions.

Attempts to categorize and compare GBs features
have already been made, thus highlighting the need
for guidance and clarity in this matter. In 2006, TS
Furey carried out an overview and comparison of the
UCSC Genome Browser, the Ensembl Genome
Browser and the NCBI MapViewer along three axes:
presentation, content and functionality [6]. In 2007,
JD Gans and M Wolinsky published a summary table
comparing 31 Genome Viewers according to 11
generic features, such as input formats or availability
of the source code [7]. In this paper we implement a
robust and traceable methodology to help creating a
framework for GBs evaluations and comparisons. To
the best of our knowledge, this is the first effort to
compare GBs features using an open source standard

Skl



Présentation courte/poster 15

Evaluating Genome Browsers Using a Software Qualification Method

methodology and to set up a community resource
centered on this kind of information. Here we
present some results concerning the methodology,
the criteria and the evaluation of six GBs according
to three different user profiles: a biologist, a
bioinformatician and a computer scientist. The six
tools were chosen to cover a broad variety of tools,
from the simplest locally developed GB to the most
sophisticated one, disseminated into a large
community of scientific labs and users around the
world. We also included one recent tool from the last
generation of GBs which was developed with Ajax
technologies. Results are discussed in the light of
those three distinct user contexts.

2 Methods
2.1 The QSOS methodology

The Qualification and Selection of Open Source
software (QSOS) method [10] is designed to qualify,
select and compare free and open source software in
an objective, traceable and argued way. QSOS
provides tools for defining the list of criteria,
evaluating software, and a web server to visualize
and compare the evaluations as a table or radar
graph. It offers the possibility to weight the criteria
so that they fit user specific context. For example, a
criterion can be given a weight of 0 to indicate it is
“unimportant”, a weight of 1 if it is considered of
average importance and a weight of 3 if it is critical
for the user. The scoring is modulated according to
the user's weighting to propose a selection of
solutions that best meet the user requirements. The
QSOS methodology version 1.6 provides a
mandatory generic section which includes 65 criteria
whose objective is to evaluate the potential and ease
of integration of the software into a project: Who
developed the software? What type of license for
distribution? What is the richness of support /
training / documentation? What is the frequency for
releases?

2.2 Choice of six compared and evaluated
Genome Browser

We have chosen to evaluate six GBs with this
methodology: MuGeN (version 20060919) [8],
GBrowse (version 1.69) [11], UCSC genome
browser (version hgl9) [12], Ensembl (version r54)
[13], Artemis (version 10.08) / ACT (version 7.5.2)
[14] and JBrowse [15]. GBs were chosen such as to
cover a broad variety of software and functionalities:
from a simple and easily accessible software
developed by a local INRA team (MuGeN) to a
representative selection of the most popular GBs that

are potentially of interest for us. This selection is by
no mean exhaustive and does not reflect the
complete richness of the visualization tools in the
field. It is intended to be a representative sample of
the different types of GBs.

3 Results

3.1 The list of criteria

Comparing software packages with the QSOS
methodology, which will be detailed later on, relies
in part on scoring a set of weighted criteria. To
provide the versatility required by the users with
respect to the features of a GB, we built a list of
criteria as comprehensive as possible. Our first step
was to formulate a list of about 60 criteria tailored
for GBs specificities. Three levels of scoring (full,
limited/medium and poor) were defined specifically
for each criterion to discriminate as objectively as
possible between the different capabilities (see
http://genome.jouy.inra.fr/CompaGB). Some criteria
are for information purpose only (no score), e.g. the
type of application. The criteria have been organized
in four sections:

- Section 1: Generic features, which includes
criteria concerning the origin, functionalities and the
context of development of the GBs;

- Section 2: Technical features, which includes
criteria such as the type of application, ease of
installation, performance, supported platforms, API /
interoperability, security...

- Section 3: Data content and connectivity,
which focuses on criteria such as the possibility to
display private data on top of public annotation,
supported formats, connectivity with databases or
web services, export features, data mining, ...

- Section 4: Graphical User Interface (GUI),

that deals with criteria such as visualization
techniques, richness of widgets, degree of
customization for the tracks representing the
genomic  annotations, ease of  navigation,
comparative genomic features.

Finally, a more specific section entitled

“Annotation editing and creation” is meant to be
informative on the possibility of collaborative
annotation, function assignment using a controlled
ontology and assessment of the quality of the
annotation. It was attached arbitrarily as a subsection
of Section 3 (see Discussion).
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Table 1 presents some criteria of section 1 -
generic features - for the six evaluated Genome
Browsers of this work: MuGeN [8], GBrowse [11],

UCSC genome browser [12], Ensembl [13],
Artemis/ACT [14] and JBrowse [15].
Copy-  Date Type Main
-right  publi-  appli- Tf:chno- scientific
owner -cation -cation purposes
Explora-
MuGeN INRA 2003 Sfand P éﬁ( tion
alone B&LE*
EBI, Explora-
Ensembl EMBL, 2002 Web app Perl CGI -tion,
WTSI H&HE*
Creating
Artemis / Stand annota-
ACT WTSI 2000 alone Java _tion
B&LE*
?I\S]H)L Explora-
GBrowse (. > 2002 Web app Perl CGI -tion
%
Berkley MO
ucC Explora-
UCSC  Santa 2002 Webapp C -tion,
Cruz H&HE*
uc Explora-
JBrowse Berkle 2009 Webapp Ajax -tion
Y MO*

Tab. 1. Example of generic features for the five
compared GBs. * Abbreviations : B&LE :
Bacteria and lower eukaryotes ; H&HE : Human
and higher eukaryotes ; MO : Model organisms

3.2 The user profiles

We introduce three typical user profiles to
illustrate our approach and present our evaluation for
distinct needs and contexts.

3.2.1 The biologist profile

This first profile portrays a biologist, Dr Emma
“doc” Brown, with no background in computer
science and who would like to browse existing data
on two model organisms, the human and the mouse.
Dr Brown's field of research is Down syndrome and
her lab aims to list genes whose increased expression
is involved in perturbation of learning and memory
faculties. She decides to use a GB to collect known
information about the functions of chromosome 21
genes and the pathways in which they participate.
The gene candidates will then be the focus of a series
of molecular biology experiments using mouse
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models. In Table 2, we present some features that are
on the wish list of users who, just like Dr Brown,
want to browse and rapidly analyse both public and
private data for a well defined purpose.

Search Search Export Simul-
E . -taneous
180~ by by  graphic .
i views of
-nomics sequence annota- (vector/ ;
similarity -tion  bitmap) multiple
Y P)scales
MuGeN  +++ n +++/
e ) +++ )
+++ /
+++ +++ +++ +++
Ensembl o
Artemis /
+++ +++ 4+ 4
ACT
GB B +++ e Ty
rowse o
UCSC +++ +++ 4+ - +
JBrowse  +++ - +++ -/- _

Tab. 2. Example of criteria related to the ease of
utilization

Though the ergonomics of all the interfaces
among our selection are convenient, we conclude
that Ensembl, JBrowse and Gbrowse provide the
most user-friendly experience in terms of user
support, responsiveness of the application, search
functionalities and export facilities. The ability to
export quality pictures in either variable or fixed
resolution is a valuable asset to share findings in a
publication. Ensembl make use of a fair number of
technologies to speed up performances (mod perl,
Memcached and Ajax). JBrowse features Ajax
technologies and was build from the ground up to
offer a smooth and animated panning, zooming,
navigation, and track selection. Its ergonomics and
responsiveness are very user friendly but it is trailing
GBrowse and Ensembl in term of functionalities.

Beyond those generic features, the use of a
GB for a research biologist can vary greatly
depending on the project goals and backgrounds. Use
cases may include, but are not limited to, viewing
heterogeneous information on gene annotation
(ESTs, microarray data, comparative genomics,...),
searching for known or disease-related genes,
looking for wvariations in the genome (SNPs),
browsing for sequence similarity with other species,
generating illustrations for a publication,.... Some
criteria were specifically formulated for those
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different uses. Artemis is the only tool in our
selection that offers advanced annotation and editing
features.

3.2.2 The bioinformatician profile

The second scenario illustrates the needs of Dr
Frank Hunstein, a bioinformatician that intends to
use a GB into the framework of a wider pipeline and
needs a local installation of the GB to support a large
amount of private data sets from experimental labs.
For example, a wet lab has successfully used tiling-
array to study gene expression for the entire genome
of their favorite organism. They wonder whether
these exciting data can shed light on previously
unidentified genes and Dr Hunstein offers to help
them. Dr Frank Hunstein is used to writing scripts to
format the data appropriately and join scattered bits
of data but doesn't want to commit himself to
decipher the source code. In his search for a GB, he
is interested in looking at technical features relevant
to connecting the different heterogeneous data
sources and functionalities into a coherent
construction. Table 3 presents some of these features
for the six compared GBs.

Upload
private data

Connectivity Connectivity
to local files to databases

MuGeN + + +
Ensembl +++ + +
Ar/ieg}s / + + +
GBrowse +++ + +++
UCSC +++ +++ +
JBrowse + +++ +

Tab. 3. Example of criteria related to the connectivity to
a pipeline of data

We think DAS (Distributed Annotation System)
protocol is a concept of interest for Dr Hunstein. It is
a communication protocol wused to exchange
annotations on genomic or protein sequences and its
philosophy is that annotations should not be
provided by single centralized databases but spread
over different locations. The GB then gathers up
information from multiple Internet resources and
integrates them into a single display to the user.

Ensembl and Gbrowse support DAS protocol. Of
importance to Dr Hunstein as well, are some criteria
dealing with the process of installing the software
and their local dependencies. Depending on the
amount of annotation to support, the disk space
required by the GB can quickly become trivial
compared to the disk space needed by the annotation
data.

3.2.3 The computer scientist profile

This third scenario presents a developer, Dr Rocky
Auror, who wishes to have a customized version of
an existing GB. Dr Auror is part of the "functional
and evolutionary genomics" division of a DNA
sequencing center, which provides the scientific
community with access to high-throughput
sequencing. Metagenomics projects producing a
profile of bacterial diversity from soil samples have
cluttered up his disk space with thousands of
sequenced genomes. A bioinformatics tool that
allows exploration of a vast amount of
environmental samples is needed in order to carry
out data mining and Dr Rocky Auror pictures a
revolutionary navigator to show and explore
thousands of genomes from a functional and
evolutionary perspective. He decides to check out
existing tools to serve as a solid basis for his
creation. Some of our criteria are specifically
formulated toward this kind of information, as table
4 shows.

. Adaptibility
M(Z)dfutl}?er ity Licensing’s  of the GUI to
permissiveness represent the
source code .
annotation
+++ - ++
MuGeN (GPL)
+++
Ensembl +++ (Apache) =+
Artemis / -
ACT +++ (GPL) +++
+++
GBrowse +++ (Artistic) =+
J’_
UCSC +++ (free for =+
academic)
+++ (GNU
JBrowse +++ LGPL and -+
artistic)

Tab. 4. Example of criteria related to software
adaptability
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Dr Rocky Auror also would like to further
manipulate the data, run some analysis scripts or use
an API for the purpose of data mining. Among the
GBs that we have evaluated, Ensembl is the only one
providing a Perl API that serves as a middle-layer
between an application and the underlying database.
With regards to data mining tools, both UCSC
(“Table Browser”) and Ensembl (“BioMart”) have
advanced  user-friendly interfaces. = Ensembl,
Gbrowse and MuGeN have been developed with
technical adaptability in mind, such as extending the
source code by writing plug-ins. Gbrowse has a
complete collection of analysis plug-ins, written by
many different members of the GMOD community,
such as PrimerDesigner, RestrictionAnnotator,
Spectrogram, CreateBlast DB,... JBrowse is the most
recent GB: it provides excellent performances in
term of load time and memory use but it doesn’t yet
include such a diverse collection of plug-ins. Finally,
Gbrowse, JBrowse and Ensembl offer the user the
possibility to represent the data as a color gradient
where the color intensity vary according to
quantitative data.

3.3 The six compared GBs

Figures la and 1b summarize the scoring of our
evaluations (without weighting of the criteria) for the
six compared GBs.

Generic
Section
]
15
BN
Data A
Content and
Connectivity

s o | O _Techni-:al
A 7 Features
N, '

\'- .'./

Graphical
User
Interface

------- VuGeN (20060919-Feb 2009)
Ensembl (rS4-July 2009}

= e Artemis/ACT (10.08-7.5.2)

Fig. 1. Fig la. Radar plot averaging the four main
section of criteria for MuGeN, Ensembl and
Artemis/ACT
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Fig 1b. Radar plot averaging the four main section of
criteria for GBrowse, UCSC and JBrowse

Overall we found that MuGeN is a great tool to
read and display a GenBank file, though its
navigation features could be more complete. It is
time and memory consuming for MuGeN to load
higher eukaryote genomes. The UCSC browser
natively displays a broad range of annotation on
human, including cross-species comparisons but to
the best of our knowledge, the underlying strategy
lies into centralizing data on their server and no
external labs have installed it locally for the purpose
of storing and browsing their own data. The Ensembl
website also provides exhaustive annotation for
human and higher eukaryotes but also promotes
itself has a flexible and open source
software/database system that can be customized and
locally installed. In this latter category, Gbrowse is
very popular as well and has been designed to be an
open source portable toolkit. Its strength lies in its
anchoring into bioinformatics standards (DAS
protocol, GFF format,...) and it can be -easily
customized to fit the needs of a model organism's
community. JBrowse is an Ajax web application that
features a very fast and ergonomic user interface.
Even though it supports the same data sources (GFF,
BED, WIG, SAM/BAM...) as GBrowse, JBrowse's
development is more recent therefore its
functionalities are yet less abundant. Artemis is the
only choice among our selection for editing and
creating a new set of annotations. With regards to
GBs implementation strategies, we found that web
applications offer the best balance between
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deployment, accessibility, sharing of the data, and
ease of connection to other web resources. Gbrowse
or Ensembl offer the possibility to be locally
installed, thus ensuring privacy, and/or to be
installed as a public web-site.

4 Discussion and conclusion

4.1 Evaluation of GBs

This work was performed to provide clues to the
community for performing well-argued and traceable
GB evaluations. This does not mean that the used
methodology makes GB evaluations totally unbiased.
QSOS does not allow concurrent evaluation of the
same software, and we think this might introduce a
bias. Once we did perform a draft of an evaluation,
we sent it to the team that developed the software for
correction and comments. But even with this
safeguard, evaluations reflect to some extent the
perception and the background of the evaluators. To
overcome this limit and ponder our evaluation so as
to reflect a large consensus, we believe the only way
is to have multiple concurrent evaluations from a
larger community. In this regard we have set up a
web site  with forum, wiki, trackers, news,
guidelines... where we allow users to post comments
about previous evaluations, register to carry out an
evaluation or suggest modifications to the list of
criteria. As the project is open and anyone can
participate and contribute evaluations, we also wrote
a guideline that documents the whole process.

It is important to point out that the aim of this
work is to improve the quality, the richness and
reliability of evaluations. One consequence of this
choice is that the evaluation process might appear
quite time-consuming to some participants. Though
it is very dependant of the evaluator background and
the GB complexity, this might be dissuasive. This
also explains the limited number of GBs evaluations
our group has performed until now. We are aware of
this weakness and we are planning to propose a
simplified evaluation process in the next future.

4.2 The web site

We designed the web site
http://genome.jouy.inra.fr/CompaGB as a framework
dedicated to present and future GBs evaluations and
comparisons. This resource can serve as a basis to
get relevant information about GBs features and to
make their comparisons easier. We encourage users
of GBs to evaluate their software using this
framework. We believe all public genome browsers
have their strengths and weaknesses depending on
what context and purpose it is to be used.

4.3 The QSOS methodology

The QSOS methodology helped us to frame and
standardize GB comparisons. A weak point of the
methodology is the definition of a list of relevant
criteria, a step that can be very time consuming.
Moreover, some specific criteria, such as “annotation
editing and creation” do not fit easily into the main
generalist sections. Finally, we decided to put the
“annotation editing and creation” under the “Data
content and connectivity” section of criteria but this
in an arbitrary choice. We found also preferable to
balance the depth of the list so that it is
comprehensive yet not too tedious in order to keep
the evaluation process as lightweight as possible.
Concerning QSOS tools, one drawback we found to
the web application is that it doesn't display scoreless
criteria.

4.4 Challenges

A recent review assessed the strengths and
limitations of the current genomic data visualization
tools, and also the coming challenges in this dynamic
field [9]. The authors pointed out four directions for
software developers in order to meet future needs in
genomics: enhancing data integration facilities,
handling visual representation of comparisons of
huge amounts of data (typically millions of
elements), developing interactive interfaces allowing
seamless navigation across relevant levels of
resolution, and improving integration between
automated computation and visualization. We wholly
agree with these future needs, except that we add a
supplementary one: the development of standard
procedures for software evaluation and comparison,
in order to help the scientific community to perform
consistent choices.
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1 Introduction

L’annotation structurale et fonctionnelle des
génomes constitue souvent la premiére étape
nécessaire a la description et a la compréhension des
fonctions biologiques présentes chez un organisme
microbien. Cependant, le processus standard
d’annotation d’une souche bactérienne isolée n’offre
souvent que des réponses partielles quant aux
spécificités fonctionnelles et physiologiques de
I’organisme  concerné.  Plusieurs  publications
récentes montrent I’intérét d’une stratégie dite
« protéogénomique »  (intégration massive de
données protéomiques et génomiques) pour
comprendre les  spécificitées  fonctionnelles
(adaptation, pathogénicité) de certaines espéces ou
souches bactériennes [1, 2].

Pour élaborer des stratégies d’annotation
innovantes basées sur I’intégration de sources
d’informations complémentaires mais hétérogeénes,
deux grands types de méthodes existent:
I’intégration physique des données (avec des
applications type entrep6t) et I’intégration virtuelle,
basée sur des protocoles de communication entre
applications permettant un acces transparent.

Dans ce travail, nous proposons une méthodologie
basée sur I’intégration virtuelle d’un environnement
logiciel existant pour I’annotation des
génomes microbiens, AGMIAL [3], avec des outils
plus ciblés sur deux domaines qui nous paraissent
majeurs pour la génomique microbienne : la
génomique comparée, via I’application MOSAIC [4]

Skl

et la protéomique expérimentale, via I’application
PARIS [5].

2 Méthodologie

Du point de vue technique, notre choix s’est porté
sur les Services Web qui ont pour avantage de
pouvoir s’implémenter a posteriori autour des
applications. Ce sont des technologies bien adaptées
au déploiement et a l'intégration de composants
logiciels dans un environnement hétérogene, et qui
permettent aussi de gérer la diversité des
architectures.

Les trois composants logiciels ne disposant pas de
la méme architecture logicielle, différentes étapes
ont été nécessaires pour faciliter leur intégration :

1. Nous avons tout d’abord associé a chaque
composant des scénarios liés au processus.

2. 1l a ensuite s’agit de rendre chaque composant
fournisseur de données en développant une
couche de Services Web avec une API
(Application Program Interface) homogéne.

3. Enfin nous avons développé des interfaces de
représentation des données dans chaque
application afin de rendre les applications
potentiellement clientes des autres composants.

3 Résultats

Une dizaine de scénarios biologiques pour I’aide a
I’annotation ont été construits, et trois ont été
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considérés par les biologistes comme prioritaires
(voir table 1 ci dessous).

(Scénario)
Question
biologique

(1) Aide a
I’annotation
automatique d’un
génome dans
AGMIAL (régions Cco FO
conservées/variables

d’une souche par

rapport a une souche

de référence)

(2) Aide a

I’interprétation des

protéomes

expérimentaux dans CO FO CO
PARIS (gels de 2

souches de la méme

espéce)

(3) Aide a

I’annotation de

protéines d’intérét

dans AGMIAL (spot CcO - FO.
correspondant présent

dans un gel protéique

de PARIS)

AGMIAL MOSAIC PARIS2 Contraintes

- Génome de référence
existant

- Gestion de la
confidentialité

- Gestion de la
confidentialité

- Gestion de la
confidentialité

Tab. 1. Exemples de trois scénarios développés pour
construire I’intégration des 3 applications AGMIAL,
MOSAIC et PARIS. (CO=Consommateur,
FO=Fournisseur)

Ces  trois  scénarios sont en  cours
d’implémentation au niveau des interfaces des
applications AGMIAL et MOSAIC. lIs vont étre
testés sur des données biologiques de
Propionibacterium freudenreichii et Lactococcus
lactis. Ces Services Web apportent une aide
précieuse pour la validation des annotations de
I’application AGMIAL, qui reste le composant
intégrateur de la nouvelle architecture. Cependant,
nos scénarios montrent que les autres applications
peuvent  également  bénéficier de  cette
interopérabilité.

Par exemple, la classification des protéines d’un
génome donné dans AGMIAL ou PARIS peut se
faire en fonction du type de segment, variable
(spécifique a une souche donnée) ou conservé, prédit
par MOSAIC, sur lequel se situent leurs génes.

Au final les Services Web développés, et basés
sur les protocoles SOAP et HTTP, se révelent étre
une technique peu intrusive et donc assez légére a
mettre en place. Ce choix nous a permis, de plus,
d’intégrer des Services Web externes au projet,
comme ceux de I’application Kegg
(http://www.genome.jp/kega/soap/) pour les voies
métaboliques. Cependant, nous avons été confrontés
a différents problémes, en particulier, la gestion des
données privées qui nécessite une réflexion
complémentaire autour de la sécurité et notamment
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I’homogénéité des processus d’authentification a
travers les applications.

4. Conclusion

Une des limites importantes de I’intégration de
données  concerne souvent les  problémes
sémantiques qui  nécessitent un travail de
modeélisation et de mise au point d’ontologies. Pour
s’en affranchir partiellement, I’intégration virtuelle
d’objets biologiques simples et bien identifiés que
nous avons réalisée autour des trois applications
AGMIAL, MOSAIC et PARIS constitue un moyen
rapide, efficace et peu intrusif de faire des liens entre
les analyses in silico et des données expérimentales,
tout en enrichissant le processus d’annotation. Ce
type d’architecture distribuée est robuste vis-a-vis de
I’évolution spécifique de chaque application. Cette
premiere intégration léve donc un verrou
technologique et va permettre d’élaborer des
scénarios incluant des relations plus complexes entre
les trois composants et des ressources externes.
Enfin, nous souhaitons enrichir ce systeme avec
I’intégration d’autres sources données, et plus
particulierement les données de transcriptomique.
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1 Introduction

In bioinformatics it is common to search for a pat-
tern of interest in a potentially large set of rather
short sequences (upstream gene regions, proteins, ex-
ons, etc.). Although many methodological approaches
allow practitioners to compute the distribution of a
pattern count in a random sequence generated by a
Markov source (see [1,2,3] for a review), no specific
developments have taken into account the counting of
occurrences in a set of independent sequences. We
aim to address this problem by deriving efficient ap-
proaches and algorithms to perform these computa-
tions both for low and high complexity patterns in the
framework of homogeneous or heterogeneous Markov
models. This work has been published in AMB.

2 Methods

Model and notations Let (X;);<;</ be an order
d > 0 Markov chain over the finite alphabet A (with
cardinal |A| > 2). Forall 1 < i < j < ¢, we de-
note by X] = X;...X; the subsequence between
positions i and j. For all af = a;...aq € A%,
b€ A and 1 < ¢ < ¢ — d, let us denote by
I (acf) =P (X ¢ = ail) the starting distribution and by
Tiva(ad, b)=P(X;1q = b|XT4 = af) the transi-
tion probability towards X 4.

Let W be a finite set of words over A (for simplifi-
cation purpose, we assume that J contains no word of
length less than d — in the general case, one may have
to count the pattern occurrences already seen in X ¢,
which results in a more complex starting distribution
for our embedding Markov chain). We consider the
random number N, of matching positions of W in X?{
defined by: Np=3"5_) Lryyng X{)#0) Where S(X}) is
the set of all the suffixes of X} and where I 4 is the
indicator function of event A.

Sl

DFA and Markov chain embedding As sug-
gested in [4,5,6,7], we perform an optimal Markov
chain embedding of our pattern problem through a De-
terministic Finite Automaton (DFA). We use here the
notations of [7]. Let (A, Q, o, F, §) be a minimal DFA
that recognizes the language A*)V of all texts over A
ending with an occurrence of . Q is a finite state
space, o € Q is the starting state, 7 C Q is the sub-
set of final states and § : Q@ x A — @ is the tran-
sition function. Without loss of generality, we make
the technical assumption that this automaton is non d-
ambiguous (see [7] for details).

We then consider the random sequence defined over
Q by Xo:O' and Xi:5(XZ'_1, XZ) Vi, 1 S ) g £. One
can prove that this random sequence has two proper-
ties (see [7] for details):

i) (Xj)i>q is a heterogeneous order 1 Markov chain
over Q which starting distribution mg and transi-
tion matrix T;;4(p, ¢) can be expressed directly
from p, 744 and the DFA;

i) WNS(X}) #0 < X; € F which means that
occurrences of W in X{ can be tracked through
occurrence of F in X 5.

MGF for a set of sequences Let us now assume
that we consider a set of r sequences. For any partic-
ular sequence j (with 1 < j < r) we denote by /;
its length, by NNy, its number of pattern occurrences,

and by m), T/, , =P/ _,+ Qg . 4 (this decomposition

+d
store in Qg 4 only transitions towards a final state) its
corresponding Markov chain embedding parameters.
If we denote by Gn(y)=>20P(Ny, + ... +
Ny, = mn)y" the Moment Generating Func-

tion (MGF) of N=N, + ... + N,., we have:
GNn(y) =GN, (y) X ... x G, (y) with Gsz (y) =

mfl (Hfi_ld (Pg+d + ng+d)) 1T. One should note

—123~



NUEL et al.

Présentation courte/poster 17

that the formula is dramatically simplified in the
homogeneous case where one gets G N, (y) =

m/, (P + yQ)éT*d 1T, Efficient algorithms to com-
pute these quantities are given in the AMB paper.

3 Applications

PROSITE signatures We now consider the com-
plete proteome of the bacteria Escherichia coli (File
NC_000913.faa). This data set encompasses a total of
4,131 protein sequences with lengths ranging from 14
to 2, 358 aminoacids. We fit on this data set a homo-
geneous order 1 Markov model which is used to de-
rive over-representation P-values of patterns (see Table
Tab. 1).

PROSITE signature L n exact

PILI_ CHAPERONE 226 103.27x10~%6
SIGMAS54_INTERACT.2 313 12 1.58x10~42
EFACTOR_GTP 320 8 4.43x10720
ALDEHYDE_DEHYDR_CYS|331 115.63x10~?

ADH_ZINC 478 128.93x10716
THIOLASE_I 637 5 5.76x107°

SUGAR_TRANSPORT._1 796 18 3.75%x1078

FGGY _KINASES 2 2668 5 2.14x10~*

PTS_EIIA_TYPE_2_HIS 27588 7.19x10*

MOLYBDOPTERIN_PROK 3|3907 11 2.59x1073°

SUGAR_TRANSPORT 2 6689 10 1.22x107°
Tab. 1. Exact P-values for a selection of PROSITE patterns
of high complexities. n is the number of observed occur-
rence, L is the DFA size.

Regulation motifs We retrieved the sequence of
transcription factor binding sites of Saccharomyces
cerevisiae on the YEASTRACT website and searched
for a subset of these transcription factor binding sites
in the upstream regions of yeast genes, retrieved on
the Regulatory Sequence Analysis Tools website. This
data set comprises a total of 1, 371 upstream sequences
between positions —800 and —1 (the length is hence
¢ = 800 for each sequence).

On these data, we fit an order 1 homogeneous
Markov model as well as a heterogeneous Markov
model of same order fitted using a classical sliding
window approach (window size arbitrary set to 200).
We then derive exact P-values (see Table Tab. 2).

4 Conclusion

The results presented here allow for the first time
to compute exactly the distribution of a pattern in a
set of random sequences by fully taking into account
the fragmented structure of the problem. Thanks to
efficient algorithms, it is possible both to deal with

—124-

DNA pattern| n L homogeneous heterogeneous
CGCACCC*| 28 102.95 x 1073 3.74 x 1073
AAGAAAAA*|427 11 1.31 x 10799 1.29 x 10799
AACAACAAC| 25 101.76 x 1076 1.38 x 1076
TCCGTGGA*| 22 111.12x 1076 1.55 x 106
GCGCGCGC| 18 116.52 x 10710 1.65 x 107°
RTAAAYAA*(391 14 7.70 x 10712 1.68 x 10~12
WWWTTTGCTCR*| 15 17 4.15 x 10~ 4.09 x 10!
A{24}| 42 272.05 x 10723 2.14 x 10722
TAWWWWTAGM*(212 36 3.08 x 107° 3.04 x 10~*
YCCNYTNRRCCGN*| 11 40 3.10 x 1072 3.05 x 1072
GCGCN{6}GCGC| 1106 8.97 x 1071 8.84 x 107!
CGGN{8}CGG"|102 183 1.26 x 10714 1.73 x 10713
GCGCN{10}GCGC| 6 464 2.88 x 1072 2.84 x 1072

Tab. 2. Exact P-values for several DNA patterns (known
transcription factors are marked with a star) in the upstream
region data set using either a homogeneous or heteroge-
neous background model.

high complexity patterns in relatively large dataset
(PROSITE signature) as well as to work with fully het-
erogeneous background models (regulation motifs).
All these methods will be soon implemented in the
SPatt package http://stat.genopole.cnrs.
fr/spatt.
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1 Introduction

L’organisation des génomes présente une tres
grande diversité. D’un c6té, la plupart des génomes
viraux sont trés courts et treés denses, ne contenant
que trés peu de séquences non-codantes. A I’autre
extréme, les génomes eucaryotes multicellulaires, tres
longs, contiennent une grande part de non-codant. Ces
différences s’accompagnent de variations dans 1’or-
ganisation de la transcription : les génomes les plus
courts et les plus denses sont en général transcrits
en de longs ARNs pouvant contenir plusieurs CDS
(opérons) alors que les génomes longs donnent nais-
sance a une pléthore d’ ARNs qui contiennent rarement
plus d’une CDS, la majorité n’en contenant aucun.

Lorigine de ces différences est relativement mal
connue. Parmis les hypotheses existantes pour expli-
quer cette diversité, nous nous intéressons ici a celle
du fardeau mutationnel proposée par M. Lynch [I].
Selon cette hypothese, ’ADN en exces est mutagene
pour les séquences codantes voisines. Ainsi, lorsque le
taux de mutations est fort, seuls les génomes compacts
peuvent étre transmis fidelement. Cependant, 1’étude
expérimentale d’une telle hypothese est difficile étant
donnée la complexité des processus en ceuvre et les
échelles de temps sur lesquelles ils se déroulent. Les
approches de génomiques comparatives permettent de
contourner cette difficulté, cependant, elles sont basées
sur un état figé des séquences et doivent inférer leur
passé évolutif.

Les simulations in silico ont déja montré leur fort
potentiel dans ce type de questionnement, mettant
en évidence des pressions indirecte qu’il aurait été
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difficile d’identifier autrement [2,3]. Elles permettent
d’avoir une vue dynamique du processus évolutif en un
temps raisonnable avec un contrdle fin des parametres.
Nous proposons ici d’explorer les effets des taux de
mutations et de réarrangements sur 1’organisation des
transcrits en utilisant le modele de génétique digitale
Aevol [3,4].

2 Reésultats

Nous avons fait évoluer 147 populations de 1000 in-
dividus dans des environnement identiques et stables.
Les seuls parametres variant d’une simulation a
I’autre sont les taux de mutations ponctuelles et de
réarrangements, les valeurs testées s’étalant de 1.10~6
4 1.10~* par bp (voir Fig. 1 et Fig. 2).

Les individus de la population, initialisée avec
des génomes aléatoires, acquicrent progressivement
de nouveaux geénes et les modifient de sorte que le
protéome répond aux exigences de 1’environnement.
Apres quelques milliers de générations, toutes les po-
pulations se sont adaptées a leur environnement, ce-
pendant, on observe que les stratégies évolutives qui
ont émergé sont tres différentes selon les simula-
tions. On constate en particulier une grande diversité
de tailles de génomes, celles-ci s’étalant de 1000 a
200.000 bp. Cette observation confirme les résultats
obtenus dans [3], montrant une forte corrélation entre
la taille des génomes et les taux de réarrangements
chromosomiques, un fort taux de réarrangements en-
trainant une compaction du génome (et en particu-
lier, des séquences non-codantes) du fait d’une pres-
sion indirecte pour un certain niveau de robustesse. Le
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taux de mutations ponctuelles a une influence beau-
coup plus faible sur la structure des génomes obtenus.

L’étude de la structure des transcrits montre que
ces variations de taille s’accompagnent de profondes
différences dans la fagon dont les génomes sont trans-
crits. En effet, les génomes les plus longs présentent
de trées nombreux ARNs non-codants, leurs ARNs
codants étant courts et ne contenant pour la plupart
qu’une unique CDS. Les génomes courts, quant a eux,
sont généralement transcrits en des ARNs beaucoup
plus longs contenant pour la plupart plusieurs genes,
formant ainsi des opérons (Fig. 1).

150 200
L L

Average RNA size
100
!

Nb of coding sequences per coding RNA
20
h

°

5,000 10,000 15,000 20,000
Generation

(a) Taille des ARNs

°

5,000 10,000 15,000 20,000
Generation

(b) Nombre de genes par ARN

Fig. 1. Evolution de la taille moyenne des ARNs (codants
ou non-codants) et du nombre moyen de genes par ARN
codant (contenant au moins une CDS). Pour des raisons de
lisibilité, les données présentées ici ont été agrégées, chaque
ligne représentant la valeur moyenne des 21 simulations
partageant le méme taux de réarrangement.

La Fig. 1(b) montre que I’apparition d’opérons
n’est présente qu’au dela d’un certain taux de
réarrangements. Cet effet de seuil s’explique par I’ effet
combiné de deux pressions antagonistes. Selon I’hy-
pothese du fardeau mutationnel, seuls les génomes
courts peuvent étre transmis fideélement lorsque le ni-
veau de variations génétiques est élevé. Par ailleurs,
la sélection des individus les plus adaptés a I’environ-
nement tend ici a favoriser ceux ayant beaucoup de
genes. La conjonction de ces deux pressions résulte en
une nouvelle pression sur la densité des génomes.

Lorsque le taux de réarrangements est modéré, la
densité optimale peut &tre obtenue simplement en
réduisant la taille du non-codant. Cependant, au dela
d’un certain seuil, la réduction du non-codant devient
insuffisante et il devient nécessaire de trouver d’autres
moyens de compacter le génome. Dans nos simula-
tions, cela se traduit par I’augmentation de la taille des
transcrits, permettant a plusieurs genes d’étre présents
sur le méme brin d’ARN.

La Fig. 2 permet d’analyser la dynamique qui mene
a cet allongement des ARNs. Seuls les terminateurs
semblent étre éliminés régulierement tout au long de
I’évolution, la densité de promoteurs demeurant stable.
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Or, les terminateurs morcellent le génome, créant
des zones qui ne peuvent pas étre traduites. En se
débarrassant d’une partie de ses terminateurs, un indi-
vidu peut donc optimiser son génome, le rendant plus
compact tout en conservant une quantité¢ de séquences
codantes raisonnable.
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0 5,000 10,000 15,000 20,000
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5,000 10,000 15,000 20,000
Generation

(a) Densité de promoteurs (b) Densité de terminateurs

Fig.2. Evolution de la densité moyenne de promoteurs
(a) et de terminateurs (b) pour les différents taux de
réarrangements.

Nos simulations reproduisent donc fidelement les
différences d’organisation des transcrits observées sur
des organismes réels. La forte dépendance de la struc-
ture des transcrits aux taux de réarrangements est
un argument fort en faveur de I’hypothese du far-
deau mutationnel, les individus soumis a un fort taux
de réarrangements présentant un génome ‘“optimisé¢”
aussi bien sur le plan de la taille que sur 1’organisation
de la transcription. En outre, le modele permet d’ex-
plorer la dynamique de cette optimisation. Ici, c’est le
nombre de séquences terminatrices qui permet cette
optimisation, ce qui engage a rechercher les traces
de ce mécanisme dans les génomes réels. Enfin, cette
premiere expérience nous permet d’envisager de nou-
veaux développements, par exemple en modifiant la
taille de la population, qui est un autre parametre im-
portant dans 1’hypothese du fardeau mutationnel [1].
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METEOR - a plateform for quantitative metagenomic profiling of
complex ecosystems

Nicolas PONS ¢, Jean-Michel BATTO, Sean KENNEDY, Mathieu ALMEIDA, Fouad BOUMEZBEUR,
Bouziane MOUMEN, Pierre LEONARD, Emmanuelle LE CHATELIER, S. Dusko EHRLICH and Pierre
RENAULT

LINSTITUT MICALIS, UMR1319 INRA, Domaine de Vilvert, 78352, Jouy-en-Josas, Cedex, France
nicolas.pons@jouy.inra.fr

The study of complex microbial ecosystems by
a quantitative metagenomic approach has been
made possible by advancements in high-
throughput sequencing technologies. Quantitative
metagenomics relies on deep sequencing to
construct an ecosystem profile using gene and
genome counts. Next generation sequencing
(NGS) technologies such as SOLID or Illumina
produce millions of short sequences (35 to 75bp)
which can be used as tags to establish gene
profiles. This approach requires the use of a
specific reference catalog which should be
composed of genes present in the ecosystem of
interest. The use of classical bioinformatic
methods for the analysis of such large amounts of
data is not feasible as we overpass the expected
dataset size of common tools. We have therefore
developed an integrated metagenomic analysis
pipeline, METEOR, which includes the indexing
of short reads to genomic objects. Data are
indexed in an embedded database around the
iMOMi framework [1] and organized in a
dedicated file system. This optimization facilitates
secondary analysis including  gene/species
abundance evaluation, cross-sample comparison,
ecosystem  metabolism  reconstruction  or
gene/species diversity analysis. The METEOR
pipeline has been implemented for several
metagenomic projects such as MicroObes for
characterizing the human intestinal microbiome of
obese individuals following a restrictive diet or
FoodMicrobiomes for studying the ecosystem of
fermented food like French traditional cheeses.

In MicroObes, we investigate the changes of
gut microbiota in a human model of weight loss
induced by restrictive diet in moderately obese
subjects. DNA isolated from 195 faecal samples
of 49 obese subjects collected at different date
(start of the study, 6 weeks after a restrictive diet
and 12 weeks) have been sequenced with SOLID
technology yielding about 300 gigabases. Short
reads have been indexed against the 3.3 millions
genes of the human gut microbial gene catalog

(MetaHIT consortium [2]). Statistical analysis of
the gene profiles generated indicate significant
variations in gene and genome frequencies during
the first 6 weeks of dieting and a subsequent
stabilization after 12 weeks according to the
observed success of patients dietary.
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Prediction of patterns of interest from protein primary sequence
through structural alphabet
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Abstract The prediction of patterns in proteins that have been identified as interesting (funtional
or turns for example) is really important in the present context of high-throughput sequencing
programs. The proposed method allows to predict such patterns once they have been identified
as structural letter words through a Hidden-Markov model structural alphabet. Once a pattern is
chosen, it can be predicted directly from sequence (depending on a certain sequence dependency)
without knowing anything about 3D structure. It consists in two steps: firstly the dependencies
between structural letters and amino-acids is learnt by Genetic Programming as boolean trees,
secondly, information from the first step as well as from the dependencies between consecutive
structural letters is combined by a Hidden-Markov model which allows to score the probability to
find the target pattern given any amino-acid sequence. The method is illustrated on three different
patterns related to ATP-, SAH/SAM-binding sites and to specific turns.

Keywords sequence-based automatic annotation, hidden Markov models, structural alphabet,

functional patterns.

1 Introduction

Mining data about protein sequences is of prime
importance as sequencing technologies are constantly
providing new amino-acid (AA) sequences with often
few functional knowledge. For example, UniProtKB
(release 201004, Mar 19, 2010, [23]) contains about
516,000 manually annotated and reviewed protein
sequences in the Swiss-Prot section and more than 10
millions of automatically annotated and not reviewed
protein sequences in the TrEMBL section. Hence,
being able to retrieve information about new protein
sequences is a critical problem.

In this context, automatic tools allowing to provide
such information are of big interest. =~ The most
common way to perform such a search is to identify
patterns specific from a given function for example
and to design a prediction method. Information taken

into account can consist in different levels: only
sequence [2,21], sequence and structure [10,16], only
structure [15,12] or use of more general classifications
(SCOP [22], GO [6],...). In this paper, the objective is

to design a prediction method based on sequence only
in order to provide information for only sequenced
proteins.

However, sequence-based methods are likely to be
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limited with regards to structure-based ones as struc-
ture is known to be better conserved than sequence [4].
Hence, the proposed method will use a structure-based
middle step to identify interesting structural patterns.
This step is based upon a Hidden-Markov model
structural alphabet (HMM-SA) [3] which proposes a
discretized conformation space allowing to accurately
describe all possible four residue conformations
using 27 prototypes called structural letters (SL).
This alphabet is known to provide a good description
of all secondary structures and especially of loops
[19]. This is particularly important as loops are very
often implied in interactions [20,1]. In this work,
stress is laid on patterns of interest found in loops.
Those patterns will be defined here as four SL words
encoding seven amino-acid residues. This length has
been chosen to obtain satisfying representativities
[18]. However, the prediction method is independent
on the pattern length and could be applied to any
identified pattern.

This paper will focus on the prediction of a pattern
(once it has been identified in any way) directly
from sequence. One example of pattern identification
method will be really briefly discussed. Our prediction
method will be divided into two steps: first, each four
amino-acid residue will be assigned a profile of possi-

Sl
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ble structural letters thanks to boolean trees aiming at
extracting sequence information. Then, the prediction
of words of successive SLs is then assembled through
a Hidden Markov Model in order to compute a score
for the probability of finding a given functional pattern
behind the considered sequence. The method will be
applied to patterns identified to be related to ATP- and
SAH/SAM-binding sites and to specific turns.

2 Material and Methods

2.1 The initial data

We use 16,995 loops extracted from Protein Data
Base (PDB) with at most 25% of sequence identity.
This sequence identity rate aims at avoiding any bias
in the learning step. The length of loops ranges from
1 to 1,261 SL (hence from 4 to 1,264 AA) with an
average of 116 and a standard deviation of 129. They
are extracted from 7,778 different proteins.

2.2 The transformed: encoding through
HMM-SA

As introduced previously, HMM-SA [3] aims at
discretizing the conformational space of four-residue
fragments into 27 structural states called structural
letters (SLs). It is based on a hidden-Markov mod-
elling allowing to take into account dependencies
between successive letters. Obtained SLs can be
divided into groups: four SLs particularly describe
conformation of a-helices (namely a, A, V and W),
five SLs describe (-sheets (L, M, N, T and X) and
the remaining 18 letters allow the characterization
of loops. This is particularly interesting as loop
variability is very important.

The Markovian aspect of the model is particularly
interesting to study dependencies between succes-
sive fragments. Indeed, it can be shown that some
transitions between certain SLs are favoured: after a
given SL, some SLs will be more probably found than
other ones. It can be really informative in a prediction
objective to take into account such dependencies.
From this alphabet, it is possible to encode any 3D
structure into a 1D string only containing SLs. In
this goal, Viterbi or forward/backward algorithms
can be used to find the most probable sequence of
SLs according to the observed structure. This has
been done on the dataset described in section 2.1. In
the following sections, focus will be put on four SL
words, as illustrated in Fig. 1.

AA, |AA, | AA;|AA, — |slL,
AA, | AA; | AA, | AA; —> | s,
AA, |AA, | AA. | AA, — s,

AA, | AA. | AA,| AA,| —> | SL,

Fig. 1. Illustration of the way of fragment corresponding to
seven AA (AAq,...,AA7)is encoded into a four SL word
(SL1,SLo,SL3,SLy).

From now on, the goal is to be able to model the
link between AA and SL. Indeed, this link is not obvi-
ous at all. It is impossible to find a perfect application
from the set of four AA sequences (20* = 1.6 x 10°
possibilities) onto the 27 possible SLs. Indeed, the
same AA sequence can be encoded into different
SLs and the same SL can be obtained from different
four-A A sequences.

2.3 First step: from four amino-acids to one
structural letter

The goal of the first step is to build classifiers aim-

ing at finding which AA sequence characteristics are
the most relevant to distinguish the different SLs. The
structure of data is quite particular: the combination
of four nominal qualitative variables taken from the
same 20 cardinality alphabet are used to predict an-
other nominal qualitative variable with 27 classes.
In order to simplify the problem, an usual one-versus-
one classification process will be used. In this way,
each classifier has to deal with a simpler problem, opti-
mizing the expectation to finally obtain satisfying pre-
dictions. Hence, a classifier will be built for each pair
of SLs leading to the optimization of 351 ((27 x 26) /2
classifiers).

2.3.1 Structure of a classifier In order to find
robust information about the complex relationship be-
tween AA sequence and SLs and to avoid any kind of
overfitting, a very simple use of information is pro-
posed. Each classifier consists in a series of binary
questions about the presence or absence of one AA at
one position in the sequence (let us remind that four-
residue sequences are considered for one SL). Then,
those questions are combined thanks to AND/OR op-
erators. Actually, a global binary question is obtained
through this combination allowing to classify the ob-
servations into two groups according to the obtained
answer (YES/NO). It is really appropriate to illustrate
such a classifier through a tree-like representation. For
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-G--

X

Fig. 2. Example of classifier used to discriminate between
two letters A and B: if there is G in second position AND
no P in fourth position OR a G in fourth position then the
sequence is affected to A else to B.

instance, Fig. 2 gives an example. Contrary to classi-
cal decision trees, this tree has to be read from leaves
to root: by sequentially answering to each leaf ques-
tion (there is or there is no such letter at such position)
and combining the answers through the AND/OR op-
erators contained in nodes, a global yes/no answer is
obtained allowing to affect the AA sequence to one of
the two SLs compared through this classifier.

A jury of 351 experts is finally obtained providing 351
votes concerning the 27 SLs. Hence, a kind of profile
in SLs is obtained for a four-residue fragment.

2.3.2 Scoring a classifier In order to choose an
appropriate classifier for each pair of SLs, each classi-
fier must be associated with an objective value, called
fitness value, which quantifies its quality with regards
to the classification problem. This value consists in
three parts: a term associated to the entropy gain (di-
rectly linked with discrimination ability), a term to the
tree complexity and a term to the representativeness of
the obtained decision rule.

The entropy (we refer to Shannon entropy [5]) is de-
fined here in the context of information theory. If one
considers several observations of a random variable,
the maximum entropy is obtained if all its possible val-
ues are equiprobable.

In our context, the global entropy associated with a
sample containing the observations of two SLs i and j
(i # jand (i,7) € {1,2,...,27}?) can be defined as:

H(i,j) = — (pg) log(p}})) + pY log(pg))>
== (Pg) log(p.?) + (1 — p{) log(1 — pl(.;)))
where pl(-f) is the proportion of SL k (k € {i,j}) in

the sample containing all the observations of SL ¢ and
all of the SL j (j € {1,2,...,27}) and no other SL.
Then, a perfect classifier would divide such a sample
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into two subsamples, each one containing all the ob-
servations of one SL. This situation would represent
the best possible entropy gain for these two SLs. More
formally, the entropy gain due to the classifier aiming
at classifying SLs 7 and j can be defined as follows:

+m1 (pg?l

+mo (p§;)2

log(p{y) + P2y

log <p§§-?2> + pf-ﬁ,)z

log (1%%?1 ) )
10%(?8?2)) )
where pg)l is the proportion of the SL ¢ in the [-th
(I € {1,2}) subsample of the sample containing all
the observations of SL ¢ and all of the SL j provided by
this classifier, 73 (k € {1,2}) is the proportion of SLs
contained in subsample k (both ¢ and j are taken into
account together). Thus, the entropy gain is the differ-
ence between the global entropy and the weighted sum
of entropies of the two subsamples.

Then, in order to take into account the parsimony of
the model, penalizing the complexity of the tree is a
way to avoid overfitting and loss of generalizability.
We chose to take the number of leaves of a tree as a
quantification of its complexity. In order to normal-
ize the variations of the complexity term in the fitness
function, the following term is used:

2D=1 _nbf

penah == m )

where nbf is the number of leaves in the considered
tree and D is the maximum authorized depth of any
tree.

Finally, another problem may occur which would not
be detected by the former two terms (entropy gain and
first penalty). Hence, if the classifier makes a rela-
tively small subsample but which contains a very im-
portant proportion of only one of the SLs, its entropy
will be really satisfying whereas it is not representative
of either of the two SLs. This kind of behaviour will
be penalized by the following term:
5;)1 B pg;,)l

Pg') pg )

penals =

Indeed, it measures the difference between the propor-
tion of SL 7 and of SL j found in the 15 subsample.
The variation of penals is the same as the variation of
the same term for the 2nd subsample. As the objective
is to obtain two subgroups having a high proportion of
"the instances of one SL and a small proportion of the
other one, the higher this term, the better the classifier.
Finally, the global fitness function can be expressed

as follows:

fit(i,5) = G(i, j) + a(penal; + penals),
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where a allows to balance the entropy gain term and
the penalizations. In our applications, we chose o =
0.05. It is chosen as the quantification of how much
entropy gain we are willing to loose to be able to delete
one leaf in the tree.

2.3.3 Optimization of each classifier The kind
of decision rule chosen to distinguish between two
SLs naturally leads to the use of genetic programming
(GP) [9,11] to optimize each tree. Indeed, the car-
dinality of the set of all possible trees is really huge:
it is easy to see that it is not possible to exhaustively
explore the whole solution space. That is why, a
heuristic method has to be used.

GP is a symbolic approach to computer programs
induction. It is a kind of genetic algorithm [8,17]
where potential solutions are programs defined on a
landscape determined by the objective task. In our
context, a program will be a classifier (that is to say
a tree). Thus, the GP will allow the evolution of a
population of potential classifiers through the use
mutation and cross-over.

2.4 Second step: looking for one specific
functional pattern

Due to the complexity of the prediction problem

(impossibility to build an easy bijection between AAs
and SLs), the first step cannot be sufficient to answer
the problem. Hence, some SLs are easy to discrimi-
nate through their sequence. For example, SLs B and
M are very well discriminated through their classifier:
one out of the two subgroups obtained after applying
the classifier contains 3.2% of the B SLs and 98.0% of
the M. On the other hand, SLs a and M are particularly
difficult to distinguish through their sequence: one out
of the two subgroups obtained after applying the cor-
responding classifier contains all the SLs a and 80.6%
of SLs M, which is a very poor classification. Hence,
further information has to be taken into account to be
able to make decisions about a four-SL word. In this
context, a particularly interesting knowledge is about
dependencies between successive letters. It is the goal
of the second step.
The aim of this step is to decide, given the results of
the first step for four consecutive SLs and through a
scoring function, if the conformation adopted by the
considered seven residue fragment is likely to be en-
coded by a given four SL word identified to be linked
to a functional pattern.

2.4.1 One way of identifying patterns As pre-
viously mentioned, pattern identification is not the

Fig.3. Structure of the HMM used to model the relation-
ship between first step outputs and true SLs for a seven
residue fragment: (X, X5, X3,Xy) are the rrue SLs and
O; = (0},02,...,02%1) is the vector of votes obtained from

[ RS E) )y

step 1 for the four AA fragment encoded by X;.

topic of this paper but here is an exemple of how to
find such motifs. First, after encoding step, loop four
SL words are systematically extracted in a given non-
redundant dataset. Then, the over-representation of
each word is quantified [18] to identify words which
are likely to be of interest. Words with important over-
representation are considered as interesting candidates
to be functional patterns.

Finally, candidate locations are crossed to Swiss-Prot
annotations to see if they are specific of any functional
indication. Examples are given in section 3. It is im-
portant to notice that among identified patterns only
the ones showing sequence specificities will be likely
to be predicted directly from sequences.

2.4.2 Pattern modelling and application to
prediction As emphasized earlier, a real dependency
exists between successive SLs, especially because of
overlaps. Hence, this dependency can be favourably
used to build a model. A Hidden-Markov Model
(HMM) has been chosen to model the link between
first step outputs and a given 4 SL pattern. This HMM
is described in Fig. 3. In this model, hidden states are
the true SLs while observed states are outputs of step
1 for the corresponding sequence. Arrows between X;
and X;y; symbolizes the dependency between suc-
cessive letters called transition probabilities in HMM
context and arrows between X; and O; represent the
link between true SLs and step 1 outputs, namely the
output probabilities.

Thanks to this model, the objective of the second
step is to compute the probability of the four true SLs
being the target functional pattern given the step 1 out-
puts for four successive (and overlapping) four AA
fragments. Hence, we have to compute

P(X1:4|01.4) = P(X1, X2, X3, X4]|01,02,03,04).
()
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High values of this probability will indicate a strong
assumption that the considered fragment is likely to
be encoded into the identified pattern and then to have
the target function.

According to the chosen model,

4
P(X1:4]01.4) = P(X1]01) HP(Xi\Xi—l)P(Xi|Oi)
=2
Now, P(X;|0;) has to be computed. Assuming that
the results of different trees are independent,

351

[ P(xilo]).

Jj=1

351

i

P(X;|0;) = P(X|o}, 02 =

At I

)

, 0

This assumption is wrong for some comparisons (es-
pecially comparisons implying a common SL which is
well predicted) but most of pairs of comparisons can
be considered as independent (results not shown).
Then, by Bayes theorem,

_ P(Og‘Xi)P(Xi) '
P(0]|X;) P(X;) + P(0]|X;) P(X;)

P(X;lo]) =

Finally, P(X;), P(0}|X;) and P(X;|X; 1) are
estimated on the dataset.

3 Applications

3.1 Prediction of an ATP-binding site

specific motif

Previous studies (as described in section 2.4.1)

have shown that fragments encoded into the four SLs
YUOD (see Fig. 4(a)) are very often associated to
ATP/GTP binding sites. Indeed, on our database, 95%
of fragments encoded into YUOD are associated
to this function in SwissProt. Hence, being able to
predict the encoding into YUOD is really useful to
predict this function for a new sequence.
The superposition of several fragments encoded into
YUOD is shown in Fig. 4. Moreover, this structural
word has a high sequence specificity as shown in Fig.
4, especially positions 1, 6 and 7. Thus, this structural
word is a very good candidate for our approach.

In our dataset, YUOD can be found 183 times in
181 proteins (two proteins contain two occurrences).
The model is applied on the whole proteins to study
the ability of the computed probability (Eq. 1) to
discriminate between YUOD and YUOD (not
YUOD). The ROC curve associated to the logarithm
of this probability is shown in Fig. 5. It displays the
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" Fig.4. (a) Representation of several fragments encoded
into YUOD. (b) Weblogo of the AA sequences encoded
into YUOD.
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Fig.5. ROC curve associated with the probability of hav-
ing YUOD for a given seven AA fragment (Se=sensitivity,
Sp=specificity).

sensitivity (ability to retrieve Y UOD) and specificity
(ability to recognize Y UO D) according to the proba-
bility threshold chosen to split the words into YUOD
and YUOD. The AUC (area under curve) associated
to this ROC curve is 0.9866. Hence, the computed
probability is really efficient to identify YUOD
among all other words. Indeed, such a discrimination
quality is particularly valuable because of the ratio
between the two classes: YUOD only represents
0.52% of studied words. Then, according to the appli-
cation requirements, several thresholds can be defined
providing different balances between sensitivity and
specificity. Some interesting threshold values and
their corresponding parameters are enclosed in Tab. 1.
Very high values of specificity have been chosen,
indeed the YUOD class is really large and then only
1% of false positive (YUOD predicted as YUOD)
can be a large number when applied to big proteins or
to several proteins.

An example of YUOD detection is given in Fig. 6.
It concerns the Circadian clock protein kinase kaiC,
chain A (pdb ID: 2gbl_A). It originally contains two
true YUOD occurrences and four have been pre-
dicted through our model. Two out of the four pos-
itives (numbers 1 and 2) are exactly located at co-
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Threshold -4829 -4805 -4732
Specificity 90.02 95.07 99.00
Sensitivity 97.81 93.44 69.95

Tab. 1. Sensitivity and specificity obtained for the identifi-
cation of YUOD according to the chosen log(probability)
threshold.

Fig.6. 3D representation of 2gbl_A co-crystallized with
two ATP molecules (indicated by lettered circles). The frag-
ments identified as Y UOD are indicated with numbered ar-
TOWS.

crystallized ATP binding sites (A and B). Moreover,
among the two false positives, number 3 adopts a 3D
conformation which is really close to the one observed
at ATP binding sites. This example demonstrates the
difficulty of evaluating a prediction method for anno-
tations. The evaluation of true positive and false nega-
tive can be really precise when dealing with manually
annotated and reviewed databases such as SwissProt
but false positives may be true positive that have not
yet been experimentally verified. It is impossible to
make a decision in this case.

3.2 Prediction of a SAH/SAM-binding site
specific motif

S-adenosyl-methionine  (SAH/SAM) and S-
adenosyl-homocysteine are molecules associated
to some methylation processes and are particularly
studied in the context of antiviral drugs research. It
is then interesting to be able to predict their binding
to proteins. The four-SL word RUDO has been
identified to be most of time associated to SAH/SAM
in SwissProt. Moreover, it has a certain sequence
specificity (results not shown).

In our dataset, RUDO is found 39 times in 39

& ‘
Fig.7. 3D representation of 1fp1 (light grey cartoons) co-
\ crystallized with a SAH molecule (indicated by a circle).
" The fragments identified as RU DO are black-coloured.

different proteins. The AUC associated to the ROC
curve corresponding to the log(probability) com-
puted by our method is 0.9606. The specificity and
sensitivity obtained with different thresholds for the
log(probability) are given in Tab. 2. Thus, results are
satisfying and allow to recover more than two thirds
of the RU DO motifs without wrongly assigning more
than 1% of the other words.

Threshold -4903 -4806 -4712
Specificity 90.00 95.00 99.00
Sensitivity 87.18 84.62 69.23

Tab. 2. Sensitivity and specificity obtained for the identifi-
cation of RU DO according to the chosen log(probability)
threshold.

An illustration can be found in Fig.7. It con-
cerns isoloquiritigenin 2’-O-methyltransferase (PDB
ID: 1fp1) which was here co-crystallized with a SAH
molecules. Four words were predicted as RU DO with
a threshold of -4712 whereas only one has been en-
coded as RUDO. However, by looking of the 3D
conformation, it appears that all four identified frag-
ments are really closed to the ligand. Thus, the method
which uses the HMM-SA as a tool to discover pat-
terns, is not limited to the fragments being strictly en-
coded but is also able to discover fragments with close
structures as only sequence is finally taken into ac-
count. Hence, fragments which are likely to adopt a
RU DO-like conformation will be as well identified
by the method.

3.3 Prediction of a specific turn

The prediction of turns is also of special interest
in protein study [7]. The four-SL word H BDS can
be linked to turns: the corresponding fragment con-
formations are shown in Fig. 8. This is a frequent
word, in our database, it was found 1633 times in

-133-



REYNES et al.

Présentation courte/poster 20

Fig.8. Representation of several fragments encoded into
HBDS.

1363 different proteins (there are one to six occur-
rences in those proteins). The AUC associated to
the prediction of HBDS is 0.9359. Tab. 3 indicates
the specificities and sensitivities associated to differ-
ent log(probability) values. The results are a bit less
efficient than previous ones (due to a lower sequence
specificity) but enable to locate 85% of those turns
with a specificity of 90% (knowing this specificity is
likely to be underestimated because of close fragments
which have not been strictly encoded into HBDS).

Threshold -4013 -3844 -3777
Specificity 90.17 95.11 98.88
Sensitivity 84.71 71.07 28.93

Tab. 3. Sensitivity and specificity obtained for the identifi-
cation of HB DS according to the chosen log(probability)
threshold.

4 Conclusion and perspectives

The automatic annotation of simply sequenced
proteins is a very important task in the present context
of high-throughput sequencing programs. The method
proposed in this paper is based on the identification
of patterns of interest directly on structures through
HMM-SA. The input data of the described method
are only sequences and as a consequence, only
patterns having sequence specificities will be likely
to be handled with this method. But for this kind of
motifs, the method is really powerful. One method
([13]) has already been proposed to predict the 3D
structure of small peptides through HMM-SA but the
motif-oriented aspect of the method proposed here
makes it much more precise and time efficient.

As much information as possible is extracted from
data. The dependance between AA sequences and
3D structure is learnt in the first step through the use
of HMM-SA. Then, the second step takes advan-
tage of two different sources by building a hidden
Markov model. Firstly, the strength of dependance
between AAs and SLs is quantified and used through
observation probabilities: some observations will be
really trusted (when a strong link has been found
in the first step) whereas others will be considered
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with care as less reliable. Secondly, the dependance
between successive SLs (some SLs favourably follow
other ones) is also taken into consideration by the
computation of transition probabilities. Finally, a
really complete model is obtained by the addition of
both steps.

Moreover, as HMM-SA is only an intermediate be-
tween sequence and function (or any other interesting
pattern), the method, as shown in some illustrations, is
able to identify fragments as close to the target word
even if this fragment would not be encoded into the
exact target word. Hence, relying on sequences is a
good way to overcome some cases of flexibility: in
the crystallization conditions, the fragment has not
been found in the strict conformation associated to
the target word, but its sequence specifities can be
recognized by the prediction method. Eventually,
HMM-SA encoding and the proposed prediction
method are interestingly complementing each other in
the prediction of patterns of interest.

Furthermore, the important adaptability of the predic-
tion method is of big interest. Indeed, in this paper we
focused on pattern which had been identified directly
through HMM-SA but it is completely possible to
identify 3D motifs as interesting for any reason, to
encode it into HMM-SA and to build the model
on the obtained word. Let us recall here that the
size of considered fragments is not limited. Earlier,
only seven-residue fragments have been considered
but any length would be possible. Furthermore, as
illustrated through the three examples, the size of
the learning dataset can be really variable (from 35
to 1633 occurrences of the pattern) as the model is
always the same. The only variable parameter is
the log(probability) threshold. However, preliminary
studies seem to indicate that this threshold depends
on the strength of the sequence specificity of the
structure. Hence, further work could be able to set
this threshold directly from the quantification of this
dependance.

The limits of the proposed prediction method are in-
terlocked with its strengths. First of all, as previously
indicated, only pattern with sequence specificities
can be predicted. Moreover, a 1D intermediate is
necessary. HMM-SA has been used because of
its very interesting abilities of precise description
especially for loops, but the same methodology could
be applied on other types of alphabets. Finally, the
method is bounded by the function specificity of the
pattern. Indeed, a function might be associated to
different patterns. Thus, our method is able to predict
one type of realization of a given function at a time.
Of course, it is completely possible to learn several
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patterns linked to a function and to give a global
prediction for all of them. But for the moment, this
limit prevents us to compare with prediction methods
for specific function (such as [2]) encoded through
different patterns. This should be quickly possible by
the identification of new patterns which is in progress.
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Abstract The exponential growth of sequence databases challenges the automatic inference of
protein domain families. This growth prohibits the use of traditionally sequential algorithms
like MKDOM?2, the algorithm that was used to construct the PRODOM database. We present
a distributed algorithm for protein domain inference, MPI_MKDOM?2. This algorithm greatly
speeds the processing of large databases, therefore enabling the construction of new versions
of PRODOM, while preserving the structure of protein domain families built by MKDOM?2.

Keywords Sequence clustering, protein domains, distributed computing.

1 Introduction

The PRODOM database is a repository of protein
domain families inferred automatically from homolo-
gies between the protein sequences of the Uniprot
database. Since 1999, PRODOM has been built us-
ing MKDOM?2 [2], a sequential algorithm of quadratic
complexity. Because of its sequential nature, MK-
DoOM?2 can not keep up with the exponential increase
of Uniprot over the years to the point that it is no
longer possible to envision a new release of PRODOM
built using the same method: given past records, run-
ning MKDOM?2 on release 11.1 of Uniprot would last
more than 16 years.

MKDOM?2 is based on a simple assumption: the
shortest sequence of the dataset is the most likely
single-domain sequence of the lot. MKDOM?2 creates
a first family containing segments being found ho-
mologous to the shortest sequence of the set by PSI-
BLAST [1]. The newly defined family is then removed
from the dataset and MKDOM?2 iterates until com-
plete exhaustion of the dataset. MKDOM?2 is sequen-
tial by definition since families must be created one
after the other to follow the heuristic. The PSI-BLAST
searches represent most of the total computation and
yet each individual search is in average too short to
yield good performance when distributed. To create an
efficient distributed algorithm we relaxed the original
heuristic to allow several queries to be ran at once.
This document presents the new parallel algorithm
MPI_MKDOM?2 and outlines its performance as well
as the stability of sequence clustering with respect to
that of the original sequential algorithm.
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2 Parallel execution strategy

MPI_MKDOM?2 is a master-worker algorithm were
the master distributes the query sequences to the work-
ers and gather the results afterwards. Running several
queries in parallel leads to several problems that has
been addressed in MPI_MKDOM?2.

Conflict avoidance. To ensure that results are sim-
ilar to those of mkdom2 with no overlapping fami-
lies, the results of queries are validated sequentially.
If a query result overlaps with a previously defined
family, the result is not taken into account. Conflicts
between query results are wasteful in resource. Ei-
ther the results correspond to a domain family wrong-
fully computed twice, or the results marginally over-
lap with a previous family and will have to be recom-
puted once the database has been updated. In order
to avoid pathological cases of overlaps, we rely on
the results of an all-against-all BLAST search of the
database. Sequences found sharing homology within
this first computation will not be processed in paral-
lel. PSI-BLAST being less stringent than a BLAST this
pre-computation cannot guarantee the absence of con-
flicts. It is however sufficient to maintain occurrences
of such conflicts at a level that does not impede parallel
performance.

Absorption of variations of query running time. In-
stances of PSI-BLAST have large variations in running
time. To level these variations, each worker is alloted
several queries at once. The master will start selecting
new queries once one of the worker has computed half
of its batch. Moreover workers are desynchronized, the
first worker to finish does not have to wait for the last
worker to carry on with new queries.

Skl
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3 Experimental evaluation

In order to assess the performance of the paralleliza-
tion, MPI_MKDOM?2 was used to process a database
(DB) of 556,964 sequences (PRODOM 2003.1 input
data) and a database of 69, 621 sequences (DB/8) cor-
responding to a randomly chosen eighth of DB.

Farallel efficiency. Tab. 1 shows the time required
to process DB/8 with an increasing number of work-
ers. MPI_MKDOM?2 manages to reach a speedup (ac-
celeration factor with respect to the 1-worker case)
of 25 while maintaining a high efficiency (total com-
pute time divided by the total compute time of the 1-
worker case). After a quick initial increase the speedup
reaches a plateau near 33 between 39 and 79 workers,
before collapsing. However, the larger the database,
the larger the speedup. For instance, the processing
time of DB/8 is only divided by 1.11 going from 39
to 79 workers while that of DB is divided by 1.72 .

Number of Wall-clock Total

Speedup Efficiency

workers  duration compute time
1 14h20°32”  14h20°32”

2 7h09’37”  14h19°14” 2.00 1.00

7 2h12°50”  15h29°54” 6.48 0.93

31 O0Oh33’32”  17h19°51”  25.65 0.83

39 0h29°00”  18h51°32”  29.66 0.76

63 0h26°17” 27h36’41”  32.72 0.52

79 0h26°10”  34h28°24”  32.87 0.42

127 0h40°28”  85h40°26”  21.26 0.17

Tab. 1. Summary of parallel performance results for the
processing of the DB/8 database.

Conflict avoidance efficiency. Using the pre-computed
all-against-all result maintains the occurrences of con-
flicts under 6 % of the total number of queries pro-
cessed. Using conflict prevention we obtain a conflict
ratio of 1.59 % and a speedup of almost 30 for 39
workers. In comparison running MPI_MKDOM?2 on
the same database with as many workers but without
conflict prevention leads to more than 25 % of conflicts
for a speedup of only 2.

Number of workers 1 2 7 31 39 63 79 127
% of conflicts 0.37 0.47 0.70 1.35 1.59 3.13 3.75 5.11
Tab. 2. Percentage of queries leading to conflicts as a func-
tion of the number of workers, for the processing of DB/S.

Result stability. To assess the proximity between re-
sults we measured the Wallacel (W1) index [3] be-
tween the results of MKDOM2 and MPI_MKDoOM?2
with a variable number of workers (Fig. 1). The W1
index measures the probability that a pair of residues
clustered in the same family by MKDOM?2 are also
grouped by MPI_MKDOM?2. To compute global in-
dices, W1 was calculated for all families inferred by
MKDoOM?2 and weighed by the numbers of residues
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1
/

w1
/

t—_—
—+
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1
+
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L

0 20 40 60 Sb 160 1é0
Number of workers
Fig. 1. W1 as a function of the number of workers.

per family. The global W1 index decreases follow-
ing the increase in the number of workers used. Yet
it manages to stay above 0.90 as long as fewer than
100 workers are used. Looking at individual W1 index
for each family shows that this degradation does not
depend on the size of families and more than 80 % of
families have a W1 index above 95 %.

4 Conclusion

The distributed algorithm presented here is able
to provide reasonable speed-ups while retaining the
structure of the protein domain families built buy the
sequential algorithm. Even when achieving maximal
speedup the clustering stays consistent with the se-
quential result. The speedup being dependent of the
size of the database processed, this new algorithm will
provide a mean to efficiently construct new releases
of PRODOM while staying consistent with the original
sequential heuristic.
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Abstract In 2004, Condon and coauthors gave a hierarchical classification of exact RNA struc-
ture prediction algorithms according to the generality of structure classes that they handle. We
complete this classification by adding two recent prediction algorithms. More importantly, we pre-
cisely quantify the hierarchy by giving closed or asymptotic formulas for the theoretical number
of structures of given size n in all the classes but one. This allows to assess the tradeoff between
the expressiveness and the computational complexity of RNA structure prediction algorithms.

Keywords RNA structures, pseudoknots, enumeration, asymptotics, algorithmic complexity.

Enumération de structures ARN avec pseudonoeuds

Résumé En 2004, Condon et ses coauteurs ont défini une classification des algorithmes exacts de prédiction
de structure d’ARN, selon le degré de généralité des classes de structures qu’ils sont capables de prédire.
Nous complétons cette classification en y ajoutant deux algorithmes récents. Chose plus importante, nous
quantifions la hiérarchie des algorithmes, en donnant des formules closes ou asymptotiques pour le nombre
théorique de structures de taille donnée n dans chacune des classes, sauf une. Ceci fournit un moyen

d’évaluer, pour chaque algorithme, le compromis entre son degré de généralité et sa complexité.

Mots-clefs Structures d’ARN, pseudonoeuds, asymptotique, complexité algorithmique.

En 2004, Condon et al. publierent une classifica-
tions des algorithmes exacts de prédiction de struc-
ture d’ARN selon le degré de généralité des struc-
tures qu’ils peuvent prédire [3]. Ils considérerent les
classes de structures sans pseudonoeuds [6,10] (PKF)
et les classes suivantes pour les structures avec pseu-
donoeuds : Lyngso et Pedersen (L&P) [5] , Dirks et
Pierce (D&P) [4] , Akutsu et Uemura (A&U) [1,9] ,
et Rivas et Eddy (R&E) [8]. Chacune de ces classes
représente I’ensemble des structures qui peuvent étre
solutions d’un algorithme de prédiction de structure.
La complexité de ces algorithmes s’étend entre O(n?)
pour les structures sans pseudo-noeuds et O(n®) pour
la classe R&E, pour une séquence de longueur n.
Condon et al. prouverent les inclusions suivantes :

PKF C L&P C D&P C A&U C R&E.

Notre but est de quantifier ces relations, et par la
méme occasion d’évaluer le compromis entre com-
plexité en temps et nombre de structures prédictibles
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en théorie pour chaque algorithme. Pour ce faire,
nous donnons des formules asymptotiques pour le
nombre de structures de taille n dans chacune des
classes. De plus, nous ajoutons a notre étude deux
nouvelles classes correspondant a des algorithmes pu-
bliés postérieurement a 2004 : la classe R&G pour
Reeder et Giegerich [7] et la classe C&C pour Cao
et Chen [2]. Les structures que nous considérons sont
“épurées”, dans le sens ou I’on ne considere que les
nucléotides appariés. La taille d’une structure est son
nombre de paires de bases. Pour énumérer la classe
L&P, nous présentons une bijection entre 1’ensemble
des structures L&P de taille n et I’ensemble des cartes
planaires enracinées sans isthme & n arétes et un ou
deux sommets. D’autre part, nous montrons que les
classes L&P, D&P, A&U, R&G, C&C peuvent étre
codées par des langages algébriques non ambigus. A
partir d’une grammaire non ambigué pour chacun des
langages, nous obtenons une équation pour la série

Sl
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génératrice dont nous déduisons en équivalent asymp-
totique pour le nombre de structures de taille n.

Nous établissons que, a I’exception de la classe
L&P dont la formule asymptotique est plus simple,
le nombre de structures de taille n est, asymptotique-
ment, de la forme

«Q n
9 \/7?n3/2w ’
oll o et w sont deux constantes qui dépendent de
la classe considérée. Le tableau suivant présente
nos principaux résultats. Nous indiquons par une
astérisque les classes qui n’avaient pas été dénombrées
jusqu’ici. La classe “Toutes” désigne 1’ensemble des
structures avec pseudonoeuds, en bijection avec les in-
volutions sans points fixes.

Classe asympt. o w | Compl. Remarque

PKF = 373 w™ 2 4 |on3) Nombres de Catalan
27 n3/

L&P * é w™ - 4 1O (n5 ) Formule close

C&C* | ——2—w™ (0,1707(5,857 |O(n%)

2 /7 n3/2

R&G* | —Lmw™ |01521(6.576 o(nt)
D&P * ﬁw" 0,7535(7.314 |O(n®)
ARU* | ——Lmw™ |06585|7.547 O(nb)
R&E ouvert o(n%)
Toutes |v/2 - 2" - (%) " NPC |Involutions sans points fixes

Il est visible que, d’un point de vue strictement
comptable, la multiplication par un facteur n? de la
complexité entre PKF et L&P ne se justifie pas par
le faible gain en nombre de structures possibles. Le
cas est pire encore pour la classe C&C qui présente
une complexité plus forte que R&G alors que sa car-
dinalité est exponentiellement plus faible (on montre
d’ailleurs aisément que C&C C R&G). En revanche,
par exemple, I’augmentation linéaire de complexité
entre D&P et R&G nous semble treés raisonnable en
regard de I’augmentation exponentielle du nombre de
structures possibles.
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Abstract An estimated 3107 Pfam protein families (26% of 11912) do not correspond to any
known functions, even though occasionnaly, a biochemical breakthrough may lead to the func-
tional characterisation of a part of a family. Under the hypothesis of a moderately conserved
enzymatic mechanism or of substrate similarity, the previous discovery becomes a foothold in
the family's functional space, that computational biology methods can help exploit. Here, we
present such a case, along with the phylogenetic and genomic/metabolic context-based strate-
gies used to help explore the family's functional diversity, and to help guide the biochemical as-

says required for experimental validation.

Keywords protein family, enzymatic activity, genomic context.

1 Context

In 2006, a joint work combining a comparative ge-
nomics approach with biochemical experiments led
to the discovery of the coding gene for a previously
orphan enzymatic activity participating in a degrada-
tion pathway of lysine [1]. The corresponding pro-
tein belonged to a known prokaryotic protein family
of unknown function, established by Pfam [2] on the
basis of domain conservation. However, not all or-
ganisms with proteins from this family shared the
other enzymes from the lysine degradation pathway ;
we hypothesised that a yet unknown diversity of
novel but related enzymatic functions was waiting to
be discovered, a family of reactions we have tempo-
rally named BKACE for “beta-keto acid cleaving en-
zyme”.

In order to explore this potential functional diver-
sity, we chose to conduct a bioinformatics analysis
upon the family's proteins, integrating information
from different sources, in order to 1) define function-
al sub-groups in the family to help build a represen-
tative selection of proteins for biochemical testing,
and 2) propose one or several potential novel activi-
ties/substrates per sub-group.
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2 Strategy

Our first objective was allegedly to propose a list
of candidate genes for cloning, that hopefully would
span the family's potential functional and sequence
spaces. In order to do this, we generated several dif-
ferent unsupervised clusterings for the proteins, each
based on different data sources, which we then inte-
grated into a final clustering (defining our sub-
groups) using an ensemble clustering approach [3].

The set of protein sequences from the BKACE
family were first aligned one-to-one using BLASTP.
The log-evalues were used as a similarity measure
and fed to a complete-linkage algorithm, defining a
sequence homology-based clustering.

A multiple sequence alignment (MSA) was made
from the set of sequences using MAFFT [4] before
manual curation. It was then used to build a boot-
strapped phylogenetic tree using quicktree [5], which
served as a basis for the manual creation of a phylo-
genetic clustering. We also used SCI-PHY [6] on the
MSA to build another homology-based clustering.

The most original data source used in our strategy
was BKACE genomic contexts. Here, we define a
genomic context of a BKACE protein as a set of at
least two genes co-localised on one genome with a
BKACE, that are conserved in at least another
genome with a BKACE. Gene gaps of up to three
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genes were allowed. Conserved contexts were calcu-
lated using the in-lab Syntonizer tool [7,8].

With these genomic contexts, it became possible
to define a new measure of similarity between two
BKACE proteins. The simplest measure, implement-
ed here, was to count the number of conserved
genes, for each pair of BKACE proteins. The result-
ing similarities were then processed into a graph, to
which we applied a spectral clustering algorithm [9],
generating a new clustering (hereafter "GC").

Another novel clustering was generated by a 3D
protein modelling method, which specifically identi-
fied the amino acids present in the protein's active
site, and clustered the proteins accordingly [10].

Finally, all these clusterings were combined into a
single clustering (hereafter "MegaClustering") using
hard ensemble clustering, a statistical approach using
partition distance metrics to estimate a partition “as
close as possible to all others” [3].

Additionally, the GC clusters formed the basis of
another analysis. In order to reduce the space of pos-
sible activities of the family, we postulated that all
BKACEs should exhibit a reaction mechanism not
too dissimilar from the known one. Two sources of
information could help guess which similar activities
could exist : overall substrate similarity, and meta-
bolic context. "Metabolic context" refers here to the
sum of enzymatic activities exhibited by all the
genes in the same GC cluster of a studied BKACE.
Potential substrates were manually proposed on the
basis of these metabolic contexts.

3 Results & Discussion

After manual removal of proteins with aberrant se-
quence lengths, start/stop codon problems, and mis-
alignment problems, 725 BKACE protein sequences
were extracted from the Pfam family, spanning 141
prokaryotic genera. Our MegaClustering approach
grouped these proteins into 32 clusters.

Bacterial clone preparation for protein overexpres-
sion being a difficult and empiric science (especially
given the G-C richness of many BKACE proteins),
candidate proteins were chosen manually by the bio-
chemists from each MegaCluster.

Analysis of the pooled metabolic contexts from
each of the GC clusters led to the proposition of 5
potential substrates for BKACE activities. Several
additional substrates were proposed by our partners
on the basis of substrate-similarity searches.

At the time of writing, 54 BKACE proteins (cov-
ering 18 (56%) of MegaClusters) have been cloned

and tested for the proposed BKACE activities. Many
seem to have a wide substrate specificity. It has been
manually observed that activity profiles seem to con-
cord with the MegaClustering; once enough proteins
have been tested, we will carry out statistical analy-
ses in order to verify this preliminary observation.

4 Conclusion

Our analysis of an uncharacterised protein family
has led to a clustering of practical interest for wet-lab
experiments. Furthermore, use of genomic/metabolic
contextual information (i.e., the functional annota-
tions of neighbouring co-conserved genes) led to the
proposal of several potential activities to be tested
for, these propositions having more backing than
those based on substrate similarity alone.

It is our hope that this ongoing work will provide
the proof-of-concept for this particular method, and
that it may be improved and applied to the other pro-
tein families of unknown function(s).
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Abstract Prokaryotes thrive in spite of the vast number and diversity of their viruses. This
partly results from the evolution of mechanisms to inactivate or silence the action of exogenous
DNA. Among these, CRISPR are unique in providing adaptive immunity against elements with
high local resemblance to previously infecting genomes. Here, we analyze the CRISPR loci of
51 complete genomes of Escherichia and Salmonella. Our results match and extend previous
analyses and by using phylogenetic analysis allowed us to propose evolutionary scenario for
these systems. All CRISPR are in two pairs of loci, each pair showing a similar turnover rate,
similar repeats and is associated with the same set of cas genes. Yet, we find evidence that
CRISPR and associated cas genes have different evolutionary histories, with the latter being
frequently changed or lost. One CRISPR pair seems specialized in plasmids often matching
genes coding for the replication, conjugation and antirestriction machinery and, strikingly, the
corresponding cas genes. We suggest that such anti-CRISPR can be used to counteract the
invasion of mobile elements containing CRISPR. Unexpectedly, the number and turnover of
spacers in these genomes seems incompatible with the expected dynamics of an immune
system. Overall, these results suggest that enterobacterial CRISPR have complex roles
providing a limited repertoire of defenses.

Keywords Comparative genomics, phages, plasmids, bacterial immunity, microbial evolution

1 Introduction

Prokaryotic viruses are the most abundant
forms of life on Earth. Nevertheless, microbes
routinely survive and thrive in remarkably phage-
rich environments. This is because they have
developed defense mechanisms that allow them to
withstand viral predation and the constant exposure
to exogenous nucleic acids. Recently, an adaptive
microbial immune system, clustered regularly
interspaced short palindromic repeats (CRISPR) has
been identified that provides acquired immunity
against any foreign DNA by targeting nucleic acid in
a sequence-specific manner (see review [1]).

CRISPR have been identified in most
genomes. CRISPR typically consist of short and
highly conserved direct repeats regularly separated
by stretches of variable sequences called spacers. 12
majors groups of CRISPR were defined based on
sequence similarity of their repeats. CRISPR are
often adjacent to cas (CRISPR-associated) genes.
Cas proteins carry functional domains typical of
nucleases, helicases, and polymerases, involved in
the propagation and functioning of CRISPR. They
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were classified into 8 CRISPR/cas subtypes that
often share gene order as well as content. CRISPR
are typically preceded by an AT-rich non-coding
sequence called leader. A new repeat-spacer (RS)
unit is added to the CRISPR between the previous
unit and the leader, which likely includes a binding
site for the Cas proteins responsible for repeat
duplication and/or spacer acquisition. The leader has
also been proposed to act as a promoter for the
transcription of the CRISPR array into a CRISPR
transcript. A fully functional CRISPR/cas system is
composed of the CRISPR, the Cas proteins and the
leader. Previous studies have reported that many
spacers of CRISPR derive from sub-sequences,
named proto-spacers, of foreign mobile genetic
elements (MGE). It has therefore been hypothesized
that this system might be immunity-like systems.
This role was first proved in 2007 in S
thermophilus: CRISPR-harboring strains became
resistant to infection by phages after the acquisition
of new spacers derived from the virus. It has also
been shown that CRISPR/cas systems can limit
plasmid conjugation in S. epidermidis, demonstrating
a broader role for CRISPR in the prevention of HGT.

Here, we investigate the structure and
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evolution of CRISPR in 51 complete genomes of
Escherichia and Salmonella. These two genera
include important pathogens and model bacteria.
There is also substantial information for MGE in
these genera. Most importantly, we try to understand
the evolutionary history of CRISPR in a
phylogenetic framework [2].

2 Results/Discussion

E. coli CRISPR have been identified before
and the CRISPR1 has been well-described. Here, we
report the characterization of the 3 other CRISPR.
We confirmed several previous observations such
that spacers are taken up randomly and non-
directionally. When present in genomes, the CRISPR
are always located at the same locations despite the
multiple occurrences of cas genes degradation and
cas horizontal transfer. This implies that the process
of replenishing genomes with intact cas loci is
frequent and that horizontally transferred cas genes
are always inserted in the same locations, next to a
given CRISPR. We propose that CRISPR might out-
live the cas genes in the genome, thereby providing
for an integration hotspot. This is most clearly
demonstrated by the observation that sub-clades with
different cas genes contain some similar spacers. We
have shown that CRISPR1 and CRISPR2 on one
hand and CRISPR3 and CRISPR4 on the other are
functionally coupled: these pairs are co-localized in
the genome, they have identical repeats, they are
associated with similar CRISPR/cas genes subtypes,
and tend to show correlated dynamics. CRISPR/cas
subtypes might therefore be specialized and act in
trans on all CRISPR with identical repeat sequences.
Interestingly, the analysis of the spacers strongly
suggests that CRISPR1 and CRIPSR2 target mostly
phages, whereas CRISPR3 and CRISPR4 only target
plasmids. Why and how CRISPR are specialized
remains unknown but one could imagine different
mechanisms aiming at responding to incoming DNA,
dsDNA for phages and ssDNA for conjugative
plasmids.

This study supports the idea that new spacers
are acquired in a polarized fashion. This implies that
spacers are chronological records reflecting previous
encounters with MGE. However, the loss of one or
more RS units has been observed. This suggests that
CRISPR do not grow unchecked. One would assume
that older spacers should be more frequently deleted
because they have been inserted for a longer time.
Surprisingly, some of them are highly persistent.
This might indicate a critical unknown function in
CRISPR/cas system activity. Our results also suggest
that periods of cas-activity in the genome are

associated with increase in CRISPR arrays and that
the remaining periods are associated with the loss of
spacers. Since these genomes contain relatively few
spacers of which several are fairly ancient, and since
CRISPR seem to change in a very irregular temporal
pattern, the relevance of using these particular loci
for typing and epidemiological studies is
questionable.

CRISPR are consistently described as among
the most rapidly evolving genomic loci. In our case,
the CRISPR do not seem so hypervariable. No
analyzed genome has more than 3 CRISPR. The
CRISPR positions are strictly conserved and no
locus has more than 34 RS units. In addition, strains
that have diverged in the last thousand years have
identical CRISPR showing a slow turnover of
spacers relative to the generation time. This low
dynamics of CRISPR in these genomes is puzzling
since many MGE are known for these species.
Despite, the outstanding opportunity provided by the
availability of many sequenced enterophages, unlike
in other clades, only 7% of these elements were
matched by spacers. This means that these strains
remain vulnerable to the vast majority of phages.
This work seriously raises the question of CRISPR
real efficiency in providing wide-range protection
against enterophages.

Our results are consistent with previous
reports on the high transmissibility of CRISPR and
their association with MGE. Why CRISPR exist in
MGE remains unknown but one could imagine their
deleterious effects if they contain spacers matching
the bacterial host. We are inclined to believe that
residual CRISPR may confer selective advantages to
their host cells and, in these cases, stabilizes the loci
against degradation. This suggestion is strongly
supported by the finding of a short CRISPR
containing only spacers matching cas genes of its
own subtype in all genomes devoid of the
corresponding cas genes. We propose that CRISPR
themselves can be used to prevent the invasion of
MGE carrying functional CRISPR/cas system. This
would be the first description of such an anti-
CRISPR system. Our results provide an example of
how evolutionary works using full closely related
genome data might contribute to a comprehensive
understanding of these intriguing elements.
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Abstract The canine species has been domesticated for 15,000 years and is today composed of ~350

distinct breeds that result from intense artificial selection and breeding practices by human during the
last centuries. However, patterns of genetic variation that indicate such recent selection events and the
underlying functional mutations remain unknown. Here, we describe a method that detects differentiation
of allelic frequencies and apply it to a genome-wide scan for signatures of artificial selection using 510
dogs from 31 distinct breeds genotyped with more than 170,000 SNPs. The method based on the variance
of allelic frequency using Wright's Fixation index (Fst) statistic, pinpoints 2500 short genomic regions
(mean 200 kb) that possess a robust genetic signature. Interestingly, we identify several known genes such
as IGF1 involved in breed size differentiation, or HAS2 which is associated to skin-wrinkle Shar-pei phe-
notype and 577 new candidate genes. In a given breed, the signatures span less than 1% of the genome
and localize ~80 candidate genes that will help to understand on which genetic and functional basis size,
coat-type, morphology or behavior have been selected. Our results not only identify individual genes and
short polymorphism targets but also reveals instances of functional categories showing signs of artificial
selection that are distinct from natural selection. We have established a highly resolutive map of recent
signatures of selection of the canine genome that pinpoint new functional candidates to account for most
differentiated phenotypes in purebred dogs.

Keywords Evolution, Selection signatures, Dog, Fst, SNP

L’analyse de la différentiation allélique identifie de courtes régions
génomiques avec signatures de sélection artificielle entre races canines

Résumé L ’espéce canine domestiquée il y a prés de 15000 ans, se compose aujourd 'hui de plus de 350
races qui résultent de la sélection artificielle et des pratiques d’élevage appliquées par I’homme essen-
tiellement ces deniers siecles. Cependant, les patrons de variation génétique qui reflétent ces événements
de sélection récents, et donc les génes sous-jacents et leurs mutations, sont encore largement inconnus.
Dans ce travail, nous décrivons une méthode d’identification de signatures de sélection artificielle basée
sur la difféerentiation allélique entre races. Nous avons appliqué cette méthode sur le génome canin en
analysant 510 chiens de 31 races distinctes génotypés avec plus de 170000 SNP. Cette analyse basée sur
le calcul de la variance des fréquences alléliques par ['index de Fixation de Wright (Fst) localise plus de
2500 courtes régions génomiques (~200kb) qui possédent une signature de sélection robuste. Nous identi-
fions plusieurs genes tel que IGF1 connu pour son implication dans la différentiation de la taille des ra-
ces ou HAS?2 qui est associé au phénotype peau plissé du Shar-pei ainsi que 577 robustes nouveaux can-
didats. Pour une race donnée, [’ensemble des signatures cible moins de 1% du génome et identifie ~80
genes qui permettront d’aider a déterminer les bases génétiques et fonctionnelles de la sélection de phe-
notypes tels que la taille, le pelage, la morphologie ou de comportement. Nos résultats identifient non
seulement des polymorphismes et des genes uniques mais révelent également des catégories fonctionnel-
les candidates qui signent la sélection artificielle bien distinctes des classes fonctionnelles détectées dans
les événements de sélection naturelle. Nous établissons une cartographie trés résolutive des signatures de
sélection artificielle du génome canin, qui identifie de nouveaux candidats fonctionnels pouvant contri-
buer aux phénotypes les plus différentiés entre races et groupe de races chez le chien.

Mots-clés Evolution, Signatures de sélection, Chien, Fst, SNP
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1 Introduction

Dans leur infinie variété, toutes les chiens descen-
dent du loup gris (Canis lupus) domestiqué par
I’homme il y a environ 15000 ans [1, 2, 3], et se
seraient répandus dans toute I'Asie et I'Europe,
avant d’accompagner ’homme dans le nouveau
monde. Le processus de domestication correspond
a un premier goulet d’étranglement de 1’histoire
évolutive du chien et a eu pour conséquence d’in-
tensifier le processus de dérive génétique a partir
d’un pool relativement restreint d’alleles. Un se-
cond goulet d’étranglement coincide avec la créa-
tion de plus de 350 races canines par ’homme au
cours des deux derniers siecles. Les pratiques de
sélection intensive ont été mises en ceuvre par des
générations d’éleveurs qui ont croisé et sélectionné
des animaux avec pour finalité de disposer de races
possédant des morphologies particuliére, des apti-
tudes d’intérét dédiées a la garde ou a la chasse par
exemple. [4].

En conséquence, cette spectaculaire diversité¢ de
I’espéce canine engendrée en quelques siccles sug-
gére une composante génétique forte de la variabili-
té phénotypique. Ainsi, I’homogénéité du phéno-
type d’une race refléte une forte homogénéité géné-
tique alors que la diversité entre races suggeére la
présence de signatures génétiques laissées par la
sélection artificielle. Contrairement a la sélection
naturelle qui agit au cours de I’évolution pendant
des millions d’années, la sélection artificielle telle
qu’elle est pratiquée chez les espéces domestiquées
est un processus rapide qui fagonne 1’architecture
génétique des races créées en fixant des patrons de
polymorphisme. L’identification des événements de
la sélection artificielle repose principalement sur
deux méthodes ; 1- les haplotypes étendus ; un al-
lele sélectionné augmente sa fréquence si rapide-
ment que son association avec les polymorphismes
voisins n’est pas réarrangée par la recombinaison ;
2- les alleles fortement différenciés ; un all¢le sé-
lectionné dans une population cause une plus
grande différence de fréquence entre populations
que pour des alléles sous évolution neutre.

La structuration de I’espéce en races, la disponibili-
té de la séquence compléte de son génome, de 2,5
millions de SNPs [5], et d’outils génomiques tels
que les puces d’expression et de SNPs font du
chien un mode¢le de choix pour la recherche de si-
gnature de sélection artificielle. Paradoxalement,
des études exhaustives et résolutives n’ont pas été
réalisées pour identifier les signatures génétiques,
les patrons de polymorphisme et les variants fonc-
tionnels qui contribuent a la différentiation des ra-

ces. La plupart des études a été guidé par 1’étude
d’un phénotype d’intérét et a porté sur 1’analyse de
geénes isolés. Seuls cing locus impliquant cinq va-
riants fonctionnels ont été associés a la variabilité
entre races pour les phénotypes de taille, de texture
et de longueur du pelage et de morphologie du
squelette [6, 7]. Une étude plus récente [8] a locali-
sé ~150 vaste loci (1 Mb) candidats de sélection
artificielle qui cependant, ne permettent pas de ci-
bler avec précision quels variants fonctionnels et
quels geénes sont réellement impliqués.

Dans cette étude, nous avons analysé I’ensemble du
génome canin par le génotypage de 170 000 SNPs
(1 SNP/15kb) sur 510 chiens appartenant a 31 races
distinctes. Chaque race comprend 16 individus en
moyenne avec un minimum de 10 chiens et un
maximum de 25 et 26 pour 6 races. Nous avons
recherché les régions génomiques qui possedent
des patrons de polymorphismes fortement différen-
ciés entre races et ainsi identifient des signatures de
sélection liées a la création des races canines. Pour
chaque SNP nous avons calculé I’indice de fixation
de Wright ‘Fs” pour chaque paire de race et dérivé
une métrique ‘di’ qui mesure la valeur de la va-
riance des fréquences alléliques de chaque SNP qui
différencie chaque race de toutes les autres.

Plus de 2500 régions d’une taille moyenne de 200
kb, contenant en moyenne deux geénes ont ét¢ iden-
tifiées avec une signature robuste de sélection arti-
ficielle. Nous avons détecté plus de 1800 nouveaux
loci qui identifient une signature de sélection spéci-
fique de races et 676 locus qui identifient une si-
gnature partagée entre groupe de races. Un total de
577 régions localisent un géne unique et ciblent
ainsi un variant fonctionnel candidat unique pour
étre associé a un phénotype fortement différentié
entre races. Nous avons déterminé que pour une
race donnée, I’ensemble des signatures spécifiques
occupe moins de 0.5% du génome et comprend
environ 60 locus qui ciblent avec précision des
candidats fonctionnels contribuant a la différentia-
tion des races.

2 Résultats

Nous avons génotypé plus de 170 000 SNPs auto-
somiques avec la technologie des puces a ADN
[llumina Infinium CanineSNP170 sur une cohorte
de 510 chiens non apparentés de 31 races distinctes
phénotypiquement. Les SNPs sont uniformément
répartis sur I’ensemble du génome, avec une densi-
té moyenne de 1 SNP tous les 15 kb. La qualité du
génotypage a été évaluée par un taux de concor-
dance du ‘call rate’ >99% entre réplicats. La totalité
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des ~87 millions de génotypes a été incluse dans
I’analyse. Les SNP non polymorphes ont été¢ identi-
fiés par le programme Haploview [9] sur I’ensem-
ble des 510 individus de la cohorte et ont été élimi-
nés des analyses ultérieures en raison de leur ab-
sence d’informativité. L’ensemble de ces filtres a
garanti un jeu de données de génotype polymor-
phes de haute qualité.

2.1 Stratégie et validation de I’identification
de signatures de sélection artificielle dans
le génome canin

La stratégie utilisée dans cette étude se base sur une
approche de génétique des populations qui mesure
le niveau de différentiation allélique entre popula-
tions afin de détecter les patrons de polymorphisme
qui signent une population. Pour chaque SNP
(n=170000), nous avons calculé I’indice Fs de fixa-
tion = ([ Jvetween - [ [within)/] [vetween pour chacune des
465 combinaisons de paires de races. Pour compa-
rer chaque valeur de Fs, nous avons déterminé une
valeur statistique dérivée ‘di’ qui est une fonction
des valeurs de Fst par paire entre une race ‘i’ et
I’ensemble des autres races telle que :  di= Yj(Fs-
E(Fs))/sd(Fst) ou E(Fs) et sd(Fs) représentent
respectivement la valeur attendue et 1’écart-type du
Fst entre les races i et j calculée a partir de la totalité
des SNPs. Afin de limiter la variation aléatoire du
polymorphisme allélique d’un seul SNP donc d’une
valeur individuelle de di, nous avons moyenné les
valeurs de di par fenétre de 150 kb glissantes avec
un pas de 25 kb. Une fenétre de 150 kb permet de
considérer en moyenne 10 SNPs (soit 10 valeurs de
di), toutes les fenétres contenant moins de 5 SNPs
ont été écartées de 1’analyse. A partir des valeurs de
di, nous avons définis les fenétres sous sélection
comme étant les valeurs ‘outliers’ de la distribution
des di qui dépassent le 95 percentile de cette dis-
tribution. A partir des 87766 fenétres glissantes
analysées sur I’ensemble du génome, 9234 fenétres
ont été détectées comme ‘outliers’ de la distribution
et ont pu étre regroupées lorsqu’elles étaient che-
vauchantes en 2503 régions génomiques. Plusieurs
controles suggérent la validité des régions identi-
fiées sous sélection. Une précédente étude [8] a
décrit 155 vastes loci génomiques de 1 Mb conte-
nant 1630 génes (~11 génes par locus) candidats a
la sélection artificielle canine. Ces locus sont en
grande majorité (79%) identifiés par notre étude et
60% sont réduits a une région génomique inférieure
4400 kb qui cible 2.8 génes en moyenne en compa-
raison des 11 génes contenu par locus localisés par
Akey et al. Par ailleurs, cinq locus de différentia-
tion de races canines ont été préalablement caracté-
risés et concernent le phénotype ‘petite taille’ asso-
cié¢ au géne IGF1 [10], le phénotype de morpholo-
gie du squelette qui confére des membres trés
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courts et achondrodisplasiques a certaines races
(teckel) pour lequel I’implication d’un rétrogéne de
FGF4 a été démontré [7], deux geénes (RSPO2,
KRT71) impliqués dans la différentiation du pelage
entre races [6] et le phénotype de ‘peau plissée’ du
Shar-pei pour lequel le géne HAS2 a été associé
[8]. Les régions localisées dans notre ¢tude identi-
fient avec précision les cinq locus qui contiennent
les cinq geénes connus pour leur implication dans la
différentiation des races.

2.2 Caractérisation des régions génomi-
ques avec signatures de sélection

Les 2503 régions candidates canine de sélection
artificielle identifiées dans cette étude se répartis-
sent sur ’ensemble du génome et ont une taille de
200 kb en moyenne. La taille cumulée des régions
s’éleve a 479 Mb représentant 19% du génome ca-
nin. Une densité plus élevée en génes codant pour
des protéines a été détectée dans les régions candi-
dates (wilcoxon test , p=0.003) suggérant que la
sélection agit sur les éléments fonctionnels. Afin
d’évaluer leur contenu en éléments fortement con-
servés au cours de I’évolution, nous avons assigné,
pour chacune des 2503 régions un score de conser-
vation de séquence issu de I’alignement multiple de
séquences codant pour des protéines entre homme,
souris, rat et chien calculé par le programme phast-
cons [11]. Nous avons relocalisé les 2503 régions
aléatoirement sur le génome canin, en respectant
leurs tailles originales, et recalculé les scores de
conservations des séquences codantes. La compa-
raison des 2 distributions de scores ne montre pas
de différence significative (t-test p= 0.4156) entre
les régions sous sélection artificielle et les régions
prises aléatoirement dans le génome canin suggé-
rant que la sélection artificielle opérée sur les races
de chien est un processus qui ne se restreint pas aux
séquences fortement conservées au cours de 1’évo-
lution telles que les régions codantes.

A partir des 19014 génes canins codant pour des
protéines annotés par le serveur Ensembl, I’ensem-
ble des régions sous sélection contient 3458 genes.
Un total de 923 génes sont localisés dans une si-
gnature identifiée dans deux races au moins et peu-
vent permettre d’analyser sur quelles bases généti-
ques et fonctionnelles les groupes de races proches,
tels que les retrievers, les petits terriers, les molos-
ses, ont été crées. Les 2535 geénes restants sont lo-
calisés dans des signatures strictement spécifiques
de races et constituent de bons candidats qui con-
tribuent a la spécificité génétique et fonctionnelle
de la race et/ou participer a la restriction de la va-
riabilité du phénotype au sein d’une race.

Plus de la moitié des régions localisées dans notre
¢tude (n=1343) contiennent des génes codant pour
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des protéines alors que plus de 1100 régions sont
dépourvues de geénes annotés. De nombreuses si-
gnatures chez ’homme ont été localisées dans les
régions intergéniques [12], suggérant que les va-
riants sélectionnés peuvent correspondre a des €lé-
ments régulateurs tels que les régions promotrices,
des sites de liaisons aux facteurs de transcription ou
des ARN non codants pour des protéines. Par
ailleurs, 1’absence de génes connus associées aux
signatures de sélections identifie des régions géno-
miques pour lesquelles un effort de réannotation du
génome canin doit étre considéré.

2.3 Signatures de la sélection spécifique
de races et partagées entre races

Parmi les 2503 régions candidates possédant une
signature de la sélection, 73% (n =1827) sont dé-
tectées dans une seule race. Dans ’exemple d’une
région du chromosome 13, I’étude détecte spécifi-
quement dans la race shar-pei un locus de 187 kb
(Fig. 1). Ce locus contient un geéne unique HAS2
qui a été récemment identifié [§] comme associé au

phénotype ‘peau plissée’ présent dans la race Shar-
pei et absent dans 30 autres races de la cohorte.
Dans cet exemple le géne HAS2 fait partie des
meilleurs candidats qui peuvent étre identifié par
une approche qui intégre les données de signatures
spécifiques de la race Shar-pei avec des données de
type géne candidat pour lesquels, une corrélation
entre le phénotype ‘peau plissée’ et une fonction
liée a la physiologie et au métabolisme de la peau
est recherchée.

Au dela de la localisation de patrons de polymor-
phisme isolés et de genes individuels candidats,
notre approche permet d’identifier 1’ensemble des
signatures de sélection spécifique d’une race. Nous
avons déterminé la combinatoire des locus qui con-
tribue pour chaque race a leur différentiation de
I’ensemble des autres races. Pour chaque race, la
combinatoire de locus spécifiques implique en
moyenne 0.4% du génome (~10 Mb) et cible 81
genes codant pour des protéines. Ces genes consti-
tuent des candidats fonctionnels ciblés par la sélec-
tion artificielle et pouvant contribuer aux phénoty-
pes les plus différentiés entre races et groupe de
races chez le chien.
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Fig. 1. Représentation de locus génomique de sélection artificielle : Exemple du chromosome 13

La méthode repose sur I’identification de fenétres glissantes de 150 kb (barres horizontales
grises) par races canine pour lesquelles une valeur seuil de statistique dérivée du Fs est retenue. La réu-
nion des fenétres glissantes chevauchantes en région est illustrée par les barres noires horizontales. La
représentation des fenétres et des régions dans le contexte du serveur UCSC permet de visualiser le con-

tenu en geénes canin et humain pour chaque régions candidates sous sélection artificielle.

Environ 27% (n=676) des signatures de sélection
sont observées entre au moins deux races. De telles
signatures suggérent que ’action d’un géne ou d’un
¢lément fonctionnel réunit des races en groupe de
race et en classe de phénotypes convergeant. Par
exemple une signature détectée dans notre étude
contient le géne IGF1 qui est associé a la taille et
gouverne le phénotype ‘taille miniature’ [10]. Nous

retrouvons la signature dans I’ensemble des races
du groupe ‘toy’ ainsi que d’autres races du groupe
‘géant’ correspondant & des phénotypes trés diffé-
renciés. Pour le phénotype correspondant au pelage
de type ‘fournis’ gouverné par le géne RSPO2 [6],
une signature est identifiée dans les 4 races affi-
chant ce trait et contenant effectivement RSPO2.
Ainsi une signature partagée entre races permet de
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dresser I’inventaire des génes qui peuvent &tre as-
socié a des phénotypes fixés entre groupe de race et
fortement différenciés d’autres groupes de races
comme la morphologie du crane, la musculature ou
associés a des aptitudes fixées dans un groupe de
races telles que la chasse chez les retrievers ou la
course chez les 1évriers.

2.4 Analyse fonctionnelles des génes de
sélection artificielle

Les 2503 régions détectées avec une signature de
sélection contiennent plus de 3400 génes annotés et
prédits pour coder des protéines. Afin de structurer
les relations entre génes et d’identifier les processus
biologiques et les fonctions moléculaires impli-
quées dans les signatures observées, nous avons
analysé leur annotation fonctionnelle par les termes
GO (Gene Ontology) des génes humains ortholo-
gues [13]. Nous avons utilisé les génes (n=294)
ayant une relation d’orthologie de type 1:1 entre
I’homme et le chien, des régions qui détectent un
geéne unique. Pas de biais significatif d'échantillon-
nage li¢ a I’exclusion de famille de génes (Test chi-
deux, p=0.87) ou d’orthologues 1:1 (Test chi-deux,
p=0.37) n’a pu étre détecté. L’analyse GO a permit
d’analyser le plus précisément possible la fonction
ciblée par la sélection artificielle et de la discrimi-
ner du bruit apporté par des génes non directement
ciblés par la sélection dans le cas des loci qui détec-
tent plusieurs geénes. Les catégories fonctionnelles
retrouvées significativement enrichies (p<0.001)
par I’analyse GO appartiennent aux classes de la
prolifération cellulaire, du développement des or-
ganes, de la régulation des processus physiologi-
ques et cellulaires pour les termes de processus bio-
logique et a la classe fonctionnelle des protéines
qui se lient aux facteurs de transcription pour les
termes de fonction moléculaire. Certaines fonctions
moléculaires conservées impliquants les protéines
du cytosquelette et la motilité et la structure de la
cellule ont été identifiées sous faible sélection né-
gative chez I’homme [14]. Cependant les catégories
fonctionnelles identifiées dans ce travail sont en
grande partie distinctes de celles retrouvées classi-
quement liées a sélection naturelle par sélection
positive, telles que les fonctions impliquées dans
I’immunité, la défense de 1’organisme, les proces-
sus biologiques de réponse aux stimulus [15]. Par
exemple, la catégorie enrichie en génes se liant aux
facteurs de transcriptions suggére que la régulation
de I’expression des génes peut étre significative-
ment impliquées dans les phénoménes de sélection
artificielle au méme titre que les génes impliqués
dans la structure des protéines. Parmi les facteurs
de transcription, des génes homéobox ont été iden-
tifiés dont HOX11L2 qui code pour un facteur de
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transcription nucléaire de liaison a I’ADN et TBX5
qui code un facteur de transcription impliqué dans
la régulation des processus du développement. Le
geéne MITF identifié sous sélection régule la diffé-
rentiation et le développement des mélanocytes.

2.5 Discussion

Nous décrivons ici I’identification de régions de
différentiation allélique entre races canines par une
approche statistique basée sur le calcul de la va-
riance des fréquences alléliques par I’index Fst. Le
choix de dériver un index ‘di’ qui somme des va-
leurs centrées réduites nous permet de générer des
valeurs de méme dispersion par race et ainsi de
pouvoir les comparer. L’utilisation d’une fenétre de
8 al0 SNPs a pour but de limiter la détection de
faux-positifs par rapport a une approche qui consi-
dérerait une valeur unique. Il serait utile cependant
de tester la corrélation entre les résultats obtenus
avec les valeurs moyennées par fenétre par rapport
aux valeurs individuelles. Le choix d’un seuil cor-
respondant au 95 éme percentile des distribution de
‘di’ est empirique. La possibilité de réaliser des
tests de permutations en faisant varier les identi-
fiants de races permettra de disposer d’une distribu-
tion théorique des valeurs de Fst, a partir de la-
quelle nous testerons la significativité de la valeur
observée.

Par opposition aux études d’association de type
cas-contréles qui nécessitent la connaissance du
phénotype a tester pour identifier les marqueurs
associés [16], notre approche permet de déterminer
les régions génomiques qui possédent une forte
différence de patrons de polymorphisme sans con-
naissance a priori du phénotype. La connaissance
précise du phénotype pour chaque race serait ce-
pendant trés informative pour tester une corrélation
phénotype-génotype. L’inclusion de paramétres
quantitatifs et qualitatifs d’ordre morphologiques,
physiologiques ou comportementaux pourrait per-
mettre de rechercher une corrélation statistique en-
tre un ou plusieurs parametres et les génes et €lé-
ments fonctionnels identifiés dans les régions.

La possibilité de coupler une étude d’association a
partir des données obtenues par 1’approche Fi; est
une idée qui peut sembler séduisante mais qui souf-
fre de la nécessité de disséquer la variation du phé-
notype et d’attribuer un phénotype aux populations
a tester. Une approche préalable de classification
par clustering hiérarchique des races identifiées par
une signature de sélection peut permettre de distin-
guer les phénotypes auxquelles les statuts cas et
contrdles seront attribués.

L’analyse des haplotypes étendus (EHH) [17] par
laquelle on recherche si un alléle sélectionné va
augmenter sa fréquence assez rapidement pour que
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son association avec les polymorphismes voisins ne
soit pas altérée par la recombinaison, devrait per-
mettre de localiser de manicre indépendante les loci
soumis a un événement de sélection trés récent.
Nous anticipons que ’intégration des résultats de
notre étude avec des données d’analyse d’EHH fa-
cilitera et renforcera la mise en évidence de locus
candidats de sélection artificielle. La meilleure dé-
finition des régions permettra d’extraire de manicre
plus précise les geénes ciblés et ainsi de mener des
analyses fonctionnelles par termes GO sur des ef-
fectifs plus importants.

Le développement de cette approche a permis de
valoriser les données de polymorphisme du génome
canin, de déterminer de nouveaux loci génomiques
et de nouveaux candidats fonctionnels pouvant con-
tribuer aux phénotypes les plus différentiés entre
races et groupe de races chez le chien. A terme,
nous anticipons que la comparaison des mécanis-
mes et des fonctions impliquées dans les événe-
ments de sélection pourront faciliter la compréhen-
sion des processus de sélection naturelle et artifi-
cielle chez le chien et que cette approche pourra
étre appliquée aux autres espeéces domestiquées.
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1 Introduction

Many search tools for large molecular database, like
the BLAST family [3], rely on score-based alignments
due to the existence of fast search heuristics. For a
given query, a list of alignments is reported in descend-
ing order of the significance.

Since score based aligners produce unique align-
ments that maximize the score, they lack in a statistical
analysis of the accuracy of the produced alignment.
So as to address this problem, various probabilistic
alignment methods, such as pair hidden Markov Mod-
els (pair-HMMs), have been developed in the last
decade [8]. They provide a statistical description of
the set of all alignments for a given pair of sequences
including alternative meaningful alignments that may
be hidden behind the optimum.

A classical model, termed “finite-temperature align-
ment”, introduced in 1995, [4,5,9] gives to alignments
the weight of an exponential (or Boltzmann) distribu-
tion. It can readily be applied to any classical scoring
function with one additional parameter, the tempera-
ture T'. For the canonical value 7' = 1, and using an
appropriate scaled score matrix, it approximates more
complex probabilistic models quite well [4,12].

Lunter et. al. [1 1] illustrated the usefulness of prob-
abilistic alignment in detecting regions of low confi-
dence. Especially close to gaps (i. e. insertions or dele-
tions) often many competitive alignments decrease the
accuracy of the maximum score alignment. These bi-
ases have been identified as “gap wander” [6], “gap
attraction” and “gap annihilation” [10]. Gap wan-
der describes the effect that an inferred gap position
is shifted by a few pairs with respect to the “true align-
ment”. Gap attraction occurs when two closely distant
gaps merge into a single gap in the inferred alignment
and the third effect is a cancellation of an insertion and
a deletion.

In this presentation, we show that the software
PPALIGN [12] can be useful in the posterior analy-

Sl

sis of score based alignments. The software can pro-
cess either a single alignment or the entire output of
BLAST.

2 Methods and Results

Pairwise sequence alignment is a method to arrange
letters from a pair of sequence a{ =ay...ap € X°
and 0" = b1...by, € X™ [8] in a way that the
specific order of the sequences is preserved. More
specifically, alignment algorithms aim at identifying
regions of high similarity, because those regions are
most likely related by evolution. Score based methods
determine the optimal alignment 77 by maximizing an
objective function s, ©* = argmax, s(m;af, b]"). The
Needleman-Wunsch or the Smith-Waterman algorithm
[1,2] are commonly used for global or local alignment
respectively.

Probabilistic alignment methods go beyond the op-
timum and consider the set of possible alignments
weighted with the so called posterior distribution

P(H:w‘aﬁ,baﬂ). 1)
In cases where the optimal alignment agrees undoubt-
edly with the true (unknown) alignment, virtually all
weight is put on the optimal alignment. When less
similar sequences are compared to each other there
might be regions of low confidence where letters might
be aligned incorrectly or gaps are misplaced. The pos-
terior distribution Eq. 1 is appropriate to quantify the
degree of confidence for a given alignment.

PPALIGN uses pair-HMM techniques (or alterna-
tively the finite temperature approach) to marginal-
ize the posterior distribution of Eq. 1 and determine
column-wise posterior probabilities [3]. The user may
choose either global or local alignment models.

Let us assume that the optimal alignment relates
position a; in the first sequence to the position b; in
the second sequence. The confidence that this pair is
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Fig. 1. Posterior probabilities of global alignments of sim-
ulated sequence pairs The posterior probabilities are based
on blosum62 with gap open penalty of d = 11 and exten-
sion penalty of e = 1. (a) The optimal alignment (b) Sam-
pled alignment. Note that the aligned pair of Ps at the end
of the low confidence region does not appear in the correct
alignment, even though pairing yields a larger score.

aligned correctly can be assessed by the marginal pos-
terior probability

PP =P (TF : a; and b; paired (a’{, b{”) 2)
Similarly, we may also assign probabilities to gapped

positions.

Example. In Fig. 1 we illustrate a typical example
of the output of ppALIGN, (a) the optimal alignment
and (b) an alignment sampled from the posterior dis-
tribution. The posterior probabilities are indicated by
vertical bars. So as to evaluate the ability of ppALIGN
to identify uncertain regions of global alignments, we
have performed computer simulations which gener-
ated families of random sequences using the ROSE
model of random sequence evolution [7]. The regions
where the alignments in Fig. 1 agree with the “correct”
(typically unkown) alignment are shown in a darker
greyscale. Obviously, the regions of low confidence
(with small posterior probabilities) also agree with the
regions where the optimal alignment fails to predict
the true alignment (see also [12] for a systematic study
of the Receiver Operating Characteristic).

3 Conclusions

The package ppALIGN [12] (including stand-alone
command-line programs and a C++ library) provides
efficient algorithms that compute the posterior prob-
abilities for score-based alignment. One stand-alone
program, ppALIGN, allows the user to provide a sin-
gle alignment and the set of parameters. The other
one, ppBLAST, directly uses the structured output
of BLAST (XML-format). It computes the posterior
probabilities for each alignment. Both programs allow
for a structured output in the XML format, plain text,
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and a more visual HTML page. The flexible library
can be extended towards new decoding algorithms and
other ways of marginalization of the posterior distri-
bution.
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Journées Ouvertesde Biologie,
Informatiqueet Mathématiques

La conférence JOBIM est née il y a 10 ans a Montpellier, ou elle revient
cette année. C’est un lieu de rencontre ouvert a toutes les personnes tra-
vaillant aux frontiéres de la biologie, de lI'informatique, des mathématiques
et de la physique, afin de favoriser les échanges scientifiques et d’encourager
I’expression des jeunes chercheurs. Les grands thémes sont liés a la géno-
mique, la bioinformatique structurale, la biologie des systemes et |'analyse
des données d’'expression, I’évolution et la phylogénie, les bases de données
et de connaissances, |'algorithmique et la modélisation, en particulier issue
des probabilités et des statistiques. Mais la discipline se renouvelle et voit de
nouveaux champs s’ouvrir, par exemple en analyse d'images, en génétique
des populations ou du c6té de I'écoinformatique. Elle bénéficie de don-
nées toujours plus abondantes et diverses, notamment de séquences grace
a I'amélioration spectaculaire des techniques de séquencage. Ces données
a grande échelle permettent de répondre a de nouvelles questions, liées a
I’épigénétique par exemple, mais elles imposent aussi de revoir les méthodes
et les techniques.

Nous avons recu cette année 66 soumissions, 16 ont été retenues pour
des présentations longues et 26 pour des présentations courtes, auxquelles
s’'ajoutent les conférences invitées de Raphaél Guérois, Jean-Christophe
Olivo-Marin, Luis Quintana-Murci, Sven Rahmann, Jorg Stelling et Pierre
Taberlet. Ces actes contiennent les articles associés a I'’ensemble de ces
présentations, ainsi que la liste des quelques 130 posters qui seront affichés
et discutés lors de la conférence.
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