Genetic parameters of rectal temperature in sows in a tropical humid climate

Preliminary results

J.L. Gourdine, N. Mandonnet, M. Naves, J.P. Bidanel, D. Renaudeau

Introduction

- > Tropical conditions : high ambient temperature ± humidity
- > Animal performance are dependent on their ability to tolerate heat
- > References available on genetic variation of thermoregulation traits are scarce in pigs
- > Rectal temperature (RT) : good indicator of inner temperature of homeothermic animals

Herd management

- > INRA Experimental farm Guadeloupe (FWI)
- > Large White lactating sows between 1999 and 2005
- > Lactation length : 4 weeks
- > Lactation diet :
 - formulated to meet requirements for all nutrients sows were fed *ad libitum* from day 6 *post-partum*
- > Litter size : standardized at 10 or 11 piglets

Data collected

- > Sow body weight : the day after farrowing and at weaning
- > Individual piglet liveweight : each week, from birth to weaning
- > Sow daily feed intake
- > Rectal temperature (RT):

 twice daily (0700 and 1200)

 every Monday and Thursday during lactation

Data analysed

- > RT₇: rectal temperature during lactation measured at 0700
- > RT₁₂: rectal temperature during lactation measured at 1200
- $> dRT : RT_{12} RT_{7}$
- > DFI: daily feed intake during ad libitum period in lactation
- > LGR : litter growth rate
- > BWL : sow relative body weight loss during lactation

Statistical analyses

> (Co) variance components by VCE program

(Kovac et al., 2002)

> Univariate animal models :

fixed effects: batch-season-year, parity (1,2,3 and > 3)

stage of lactation for repeated data (RT and DFI)

> Multivariate animal models :

15 successive bivariate analyses

Summary of traits analysed	N. Obs	Mean ± S.D.
Lactating traits DFI, kg/d	7,082	4.7 ± 1.3
LGR, kg/d	356	1.9 ± 0.4
BWL	356	0.07 ± 0.03
Rectal temperature, °C RT ₇	2,647	38.5 ± 0.6
RT ₁₂	1,219	39.6 ± 0.7
dRT	1,219	1.0 ± 0.3

Genetic parameters

Traits analysed	heritability	
RT ₇	0.28 ± 0.03	
(RT ₁₂	$\textbf{0.32} \pm \textbf{0.05}$	
dRT	0.49 ± 0.14	
DFI	0.01 ± 0.03	
LGR	0.00 ± 0.00	
BWL	0.14 ± 0.10	

Genetic parameters

Traits analysed	heritability
RT ₇	0.28 ± 0.03
RT ₁₂	$\textbf{0.32} \pm \textbf{0.05}$
dRT	0.49 ± 0.14
DFI	0.01 ± 0.03
LGR	0.00 ± 0.00
BWL	0.14 ± 0.10

Genetic correlations

- > Caution about interpretation of genetic relationships between RT and performance during lactation : estimations with large standard errors
- > But negative genetic correlations between rectal temperature and litter growth performance

	a •				. 4	
Gen		~ (rr		lat i	\mathbf{n}
OCII	CLIV	- (4	GI	au	

LGR-RT ₇	-0.12	
LGR-RT ₁₂	-0.26	
LGR-dRT	-0.63	

Conclusion

- > Existence of a genetic variability for thermoregulation :
 There is space for breeding methods
- > This is a preliminary study:

Additionnal studies and observations are required

Other thermoregulation traits than RT must be studied

(residual feed intake, respiration rate, ...)

