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Abstract: Species richness is widely used by animal ecologists as a 
biodiversity metric. Modelling landscape variation in species richness is, 
however, subject to strong statistical constraints when reliable richness 
estimates are restricted to few sampling sites. In this study, we assessed 
the efficacy of some richness surrogates whose computation is based on 
the relative abundance of relevant species groups. Available from any 
single sample, abundance estimates are usually adequately modelled as a 
function of landscape configuration, and as such offer considerable 
advantages over the direct modelling of species richness. When applied to 
a complex bat assemblage in a fragmented neotropical rainforest, most 
candidate surrogates were tightly correlated with observed species 
richness (r= 0.71 to 0.88). These surrogates can be used as reliable tools 
to compare the efficiency of different landscape management scenarii or 
landscape restoration priorities with regard to biodiversity. 

Keywords: forest fragmentation; Generalised Linear Model; functional 
diversity; higher taxa diversity; vertebrate communities 

Introduction 
Determining areas of biological interest for protection is one of the key objectives of 
conservationists. This can be achieved either by focusing on areas subject to substantial 
disturbances, by looking for diversity hotspots (Myers et al., 2000), or by prioritizing areas 
that complement the existing reserve network (Justus and Sarkar, 2002). For that purpose, 
conservationists often resort to spatial models of species richness for a wide range of 
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organisms, including plants (Wohlgemuth, 1998; Gould, 2000; Cayuela et al., 2006; Chust 
et al., 2006), invertebrates (Lobo and Martín-Piera, 2002) or vertebrates (Kerr and Packer, 
1997; Rahbek and Graves, 2001; Gorresen and Willig, 2004). The modelling approach 
consists of using environmental factors like topography, climate, or any biotic or abiotic 
variable, as predictors to infer the number of species occurring in a given region. 
More recently, Zipkin et al. (2009) have formalized a hierarchical method based on the 
combination of species-specific predictive models of occurrence. This promising approach 
has the advantage of delivering predictive maps of species richness integrating the specific 
characteristics (response to environment, detectability) of each individual species in an 
assemblage. In some circumstances, however, assemblages are too specious and/or field 
data too scarce to support species-specific modelling. As a consequence, local sampling 
effort must be intensified at the expense of the number of samples, and thus of statistical 
power. 
Alternatively, one can use surrogates of species richness, i.e. statistics that are well 
correlated with species richness but simpler to estimate from field samples. Variation in 
species richness can be revealed by variation in the diversity of higher taxa (families, 
subfamilies, or genera; Mazaris et al., 2008), or in the diversity of a subset of species easy 
to survey (Vellend et al., 2008). 
In this study, we assessed an intermediary approach whereby independent predictive 
models are not computed on a species-specific basis, but after species were pooled into 
larger species groups. Surrogates of species richness were then derived from this series of 
independent models. We tested this approach on a Phyllostomid bat assemblage in a 
fragmented forest of French Guiana (Cosson et al., 1999; Henry et al., 2007), using models 
predicting variation in bat abundance across landscapes. Abundance is often adequately 
modelled by local habitat features and landscape configuration in Neotropical bats 
(Gorresen and Willig, 2004; Gorresen et al., 2005; Meyer and Kalko, 2008; Klingbeil and 
Willig, 2009). Forest fragmentation usually leads to the local decline of some groups of 
bats and sometimes favours the demographic success of others. In particular, large fig-
eating bats of the genus Artibeus may show little variation (Cosson et al., 1999) or even an 
increase in abundance in fragmented areas (Meyer and Kalko, 2008), while small 
understorey frugivores (Henry et al., 2007) and gleaning animalivores are expected to 
decrease in abundance (Medellín et al., 2000; Klingbeil and Willig, 2009). Therefore, we 
expected greater discrepancies in the relative abundance of these species groups would help 
predict the extent of species loss as a result of fragmentation. We tested this hypothesis and 
further assessed whether independent landscape models of bat abundance may be combined 
to produce a single predictive map of spatial variation in species richness (figure 1). 



 

Figure 1. Comparison of the direct modelling approach and the abundance-based approach for 
mapping landscape variations in species richness. In the abundance-based approach, landscape 

models are computed for each species group separately, and ultimately overlaid into a single 
diversity model used as a surrogate of species richness. 
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We compared two species grouping methods, one based on taxonomy, the other on 
functional traits (foraging guilds). These bat species classifications lead to the computation 
of higher taxa diversity and functional diversity, respectively. We addressed here the two 
following questions: (i) are higher taxa diversity and functional diversity effective 
surrogates of bat species richness at the landscape scale? (ii) does the abundance-based 
modelling preserve the surrogate efficacy of higher taxa diversity and functional diversity? 
Due to their high mobility, bats may rapidly adapt their distribution to modifications of 
landscape, and may be able to subsist in moderately fragmented areas. Therefore, we 
expected the models to predict a rapid decrease and stabilization of Phyllostomid bat 
species richness during the few years following fragmentation, and that these changes 
would concern the most fragmented areas. 

1. Methods 

1.1. Bat survey and study design 
Analyses were performed using a bat survey dataset totalling 827 individual bats, belonging 
to 31 species, and captured in 18 sites in a fragmented rainforest in French Guiana, using 
standardised mist-net protocols (Cosson et al., 1999; Henry et al. 2007). Sites included four 
continuous forest plots and 14 fragments ranging in size from 0.8-7.5 ha. The fragmentation 
occurred in 1994 by the completion of a hydroelectric dam. Bats were sampled during two 
time periods, termed the “recent” and “older” fragmentation periods (2-4 yrs and 9-11 yrs, 
respectively, after the fragmentation occurred).  

1.2. Landscape variables and landscape categories 
The local landscape configuration around the 18 sampling sites was described using three 
landscape descriptors known to be relevant for bats (Meyer et al., 2008; Meyer and Kalko, 
2008; Klingbeil and Willig, 2009). One measures the extent of forest cover (%), which is 
the prime habitat of most species in our study. The other two describe the amount and 
complexity of edge habitat, as edge-sensitivity of bat species was recognized to be the 
proximal determinant of their sensitivity to forest fragmentation in another Neotropical 
land-bridge system (Meyer et al., 2008). Edge cover (%) measures the proportion of space 
covered by edge habitat, delineated as a 50-m wide stripe bordering the forest. Fractal 
dimension measures the spatial complexity of edge habitat and was calculated using the 
box-counting method. Forest cover, edge cover, and fractal dimension were calculated 
within square landscape windows centred on sampling sites, and focusing on three different 
spatial scales with particular relevance considering movement abilities of bats: 500 m, 1 km 
and 2 km in width.  
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1.3. Estimators of species richness 
Species richness was measured using the first-order Jackknife richness estimator (Js) and 
the Fisher’s log-series (α). Js gives an estimation of total species richness and has been 
successfully used in many studies (Colwell and Coddington, 1994). The log-series α is the 
parameter of the log-series function used to fit species rank-abundance distributions, and 
indicates the number of species represented by a single individual in the species assemblage 
(Magurran, 2004). We discarded samples with capture numbers smaller than the maximum 
number of species reported in a single site (n=21). Of the 36 bat samples (18 sites × 2 study 
periods) only nine fulfilled this rule (six and three sites in recent and older fragmentation 
periods, respectively). 
To avoid basing the validation of our modelling approach on such a limited portion of the 
initial dataset, we recomputed richness estimates after sampling sites were grouped into 
larger landscape categories. The 18 sampling sites were assigned to consistent categories 
based on the most relevant combinations of landscape variables and spatial scales for bats, 
namely forest cover and edge cover measured at a 2-km scale (see results, section 2.). We 
clustered sites using the K-means splitting method that maximizes between-cluster 
variation and minimizes within-cluster variation. The most parsimonious classification 
clustered sites into six landscape categories that overall delineated a consistent 
fragmentation gradient: (i) undisturbed continuous forest (2 sites), (ii) peninsulas 
surrounded by the aquatic matrix (2 sites), (iii to v) three groups of fragments of different 
combinations of size and isolation degree (2, 5 and 5 sites), and (vi) small, remote, 
fragments (2 sites). After merging bat captures within each landscape category, the capture 
database was reshaped into 12 samples (6 landscape categories × 2 study periods). The 
sampling completeness given by the ratio {observed species richness / species richness 
estimated by Js} was satisfactory (> 93.6% in any case). 

1.4. Diversity surrogates of species richness 
The surrogates of species richness we investigate in this study require we classify species 
into consistent groups. We compared two grouping strategies, one based on taxonomy (n=5 
subfamilies within the family Phyllostomidae), the other based on diet and foraging habits 
(n=8 functional groups defined following Kalko, 1998; Patterson et al., 2003; Delaval et al., 
2005). Functional groups included understory frugivores, large fig-eating bats (body mass 
>36g), small fig-eating bats (body mass <25g), nectarivores, gleaning insectivores, 
omnivores, carnivores and sanguivores.  
The diversity of higher taxa and of functional groups was assessed using three common 
estimators based on relative abundances, namely the Berger-Parker dominance index (d), 
and the Simpson (1/D) and Shannon (H’) indices of evenness (Magurran, 2004). These 
indices were computed after captured individuals were summed within taxonomic groups 
and within functional groups to measure higher taxa diversity and functional diversity, 
respectively.  
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1.5. Modelling bat abundance from landscape descriptors  
We performed a landscape modelling of the abundance of each species group separately, 
and then combined the predictive abundance matrices in order to compute higher taxa 
diversity and functional diversity as described above. Bat abundances were expressed as 
number of captures per 10 capture nights. We then used Generalised Linear Models 
(GLMs) to find the best landscape correlates of abundance values (n=36). Abundance 
values were treated as capture count data and modelled with a negative binomial error 
structure and a log-link function. The negative binomial distribution has been previously 
proposed as an appropriate underlying distribution for modelling biological count data, as 
many biological mechanisms are likely to generate distributions that would be 
overdispersed with respect to the Poisson distribution (White and Bennetts, 1996). 
The explanatory variables considered in GLMs were the three landscape variables and the 
study period (recent vs. older fragmentation period). To assess which combination of one or 
more of these factors best explained variation in bat abundance, we built various models 
and used the AICc (Akaike Information Criterion corrected for small sample size; Anderson 
et al., 2001), to select the minimal adequate model considering fit and complexity. For the 
sake of parsimony, we only computed models that were ecologically sound by using the 
following criteria: (i) we did not include more than one landscape variable at a time into 
models; (ii) the interaction term period×landscape variable was only considered in models 
where the corresponding main terms were also included; (iii) we removed correlations 
linking fractal dimension with forest cover at a given focal scale by using the regression 
residuals instead of the raw fractal values. We found it unnecessary to apply the same 
correction for edge cover because it was not significantly correlated with forest cover at any 
focal scale.  
Overall, 29 models were built and compared for each taxonomic group and each functional 
group, including the null model taking into account the intercept only. Models with the 
lowest AICc receive the greatest statistical support. Models with a difference of AICc < 2 
compared to the lowest AICc were considered as statistically equivalent (Burnham and 
Anderson, 2002).  

1.6. Computing functional and higher taxa diversity from 
predicted abundances 
We used a leave-one-out cross-validation method (Davidson and Hinkley, 1997) to produce 
series of independent predictions of higher taxa diversity and functional diversity. The 
abundance models that received the greatest statistical support were rebuilt 36 times after 
deleting in turn one of the 36 capture samples. Each of these 36 repeated models was used 
to predict the abundance expected for the corresponding excluded sample. The resulting 
abundance predictions for each taxonomic group and functional group were used to 
compute predicted higher taxa diversity and functional diversity, respectively. 
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2. Results 

2.1. Correlations between observed diversity and species 
richness 
At the level of landscape categories, Js ranged from 8.2 to 22.7 and α from 2.7 to 7.6. 
These variations were significantly captured by all indices of higher taxa diversity and 
functional diversity computed from observed bat samples (table 1), with Pearson 
correlation r values mostly ranging from 0.70 to 0.88. 
 

Table 1. Assessment of higher taxa diversity and functional diversity as surrogates of bat species 
richness (α and Js) in a fragmented neotropical rainforest, French Guiana. Surrogate efficacy is 
given as the Pearson correlation coefficient r between species richness and functional and higher 

taxa diversity, either computed from raw abundance data or abundance data predicted by the 
landscape modelling (*** P < 0.001, ** P < 0.01, * P < 0.05, § P < 0.1). 

 

 Higher taxa diversity 
computed... 

 Functional diversity 
computed... 

 

 from raw data from predicted data from raw data from predicted data 

Surrogates of α     

Evenness (H') 0.83** 0.66* 0.82** 0.37 

Evenness (1/D) 0.83** 0.75** 0.72** 0.32 

Dominance (d) -0.82** -0.77** -0.83** -0.36 

Surrogates of Js     

Evenness (H') 0.70* 0.76** 0.66* 0.43 

Evenness (1/D) 0.66* 0.80** 0.70* 0.23 

Dominance (d) -0.74** -0.88*** -0.67* -0.28 

2.2. Abundance-based diversity modelling 
The number of best candidate models for a given species group ranged from two 
(nectarivores) to nine (gleaning insectivores). Fragmentation period was included as an 
important predictor in 50% of the best candidate models, either alone or in combination 
with a landscape descriptor. The most relevant landscape descriptors were forest cover and 
edge cover (53% and 28% of best candidate models, respectively) while fractal dimension 
received little support (8%). About 40% of these models favoured the 2-km scale, while the 
1- and 0.5-km scales were selected in 25% and 32% of the cases.  
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Of the ten selected models (table 2), three suggested an effect of fragmentation period and 
its interaction with a landscape variable, and five others only contained a landscape 
variable. None of the explanatory variables appeared relevant to account for abundance 
variations in omnivores and large fig-eating bats that remained rather ubiquitous and stable 
over time. For these groups, we therefore used mean abundances to compute diversity 
estimates. Likewise, we used abundances averaged by study period for sanguivores. Due to 
an apparent population decline in older fragmentation period, their capture numbers were 
too scarce to compute any predictive model of abundance.  
 
Table 2. Summary of the best candidate models for explaining landscape variations in abundance of 

each taxonomic and functional bat species group. Models were GLMs fitted using the negative 
binomial distribution, and selected according to the AIC corrected for small sample size. Models may 

include a landscape descriptor, the period effect, and their two-way interaction, indicated as “×”. 
Null models were used when none of the tested models explained a significant proportion of total 

deviance (likelihood ratio test). 
 

Level of 
Analysis 

Species group Best candidate model Most appropriate spatial 
scale for landscape effect 

Higher taxa Carolliinae Forest cover (2km) 1 km 
Level Glossophaginae  Period × Forest cover 

(500m) 
250  m 

 Phyllostominae Period × Edge cover 
(500m) 

250  m 

 Stenodermatinae Edge cover (0.5km) 250  m 
Functional  Carnivores Forest cover (2km) 1km 
Level Gleaning 

insectivores 
Period × Edge cover (2km) 1km 

 Large fig-eating 
bats 

Intercept (null model) - 

 Nectarivores Period × Forest cover 
(500m) 

250  m 

 Omnivores Intercept (null model) - 
 Small fig-eating 

bats 
Forest cover (0.5 km) 250  m 

 Understorey 
frugivores 

Forest cover (1 km) 500 m 



2.3. Correlations between predicted diversity and species 
richness 
When computing diversity estimates from predicted abundance data, only higher taxa 
diversity remained significantly or marginally significantly correlated with species richness 
(table 1), while functional diversity did not. In other words, the modelling procedure 
preserved the efficacy of higher taxa diversity as surrogate of species richness, but not that 
of functional diversity.  
The higher taxa Berger-Parker’s d appeared to be the most convenient option (table 1). The 
resulting predictive maps of higher taxa d produced two very different patterns for recent 
and older fragmentation periods (figure 2). While the diversity drop was mostly restricted 
to small, isolated, forest fragments in the recently fragmented system (figure 2A), the 
model predicts a pervasive diversity decrease affecting all forest fragments and gaining a 
vast portion of the continuous forest in older period (figure 2B). The decrease is most 
marked in areas with high edge cover (a nearly -60% decrease, figure 2C). 

A) Recent fragmentation period (2-4 yrs)             B) Older fragmentation period (9-11 yrs) 
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Berger-Parker dominance index (higher taxa level) 
30%  42.5%  55%  67.5%  80% 

 
20.6  17.5  14.3  11.2  8.1 

Species richness equivalent 



 
Figure 2. Spatial model of bat higher taxa diversity in 

the St-Eugène study area, French Guiana.  
A and B: higher taxa diversity was estimated using 
the abundance-based modelling approach . Black 
dots indicate sampling sites. The Berger-Parker d 
was used as diversity indicator. As a dominance 
index, it is inversely correlated (r = -0.88) with 
species richness, as shown by the richness equivalent 
on the scale. The model predicts a pervasive decrease 
in species richness from recent to older 
fragmentation period, affecting a large portion of the 
continuous forest, and more specially the high edge-
density areas.  
C: higher taxa diversity is mapped as relative change 
between recent and older fragmentation periods.

C) Variations from recent to older periods (%) 

 
+6.5%  0         -9.9%        -26.2%     -42.6%    -59% 

 

3. Discussion 

3.1. Higher taxa diversity and functional diversity as 
surrogates of species richness 
Higher taxa diversity and functional diversity provided a straightforward way of appraising 
variation in bat species richness in the St-Eugène fragmented forest. We used here common 
diversity indicators based on relative abundance data. The use of some of these indicators in 
diversity surveys, like the Shannon-Wiener H’, is controversial because they confound two 
aspects of diversity, namely species numbers and evenness (Magurran, 2004), making it 
difficult to isolate the real causes of diversity variation. However, when computed at higher 
taxa or functional levels, the numbers of species groups vary little, and diversity indicators 
mostly reveal variation in numerical evenness. Ecologists reluctant to use H’ may still find 
a valuable alternative with d as a surrogate of species richness. In this context, d refers to 
the relative proportion of the numerically dominant species group in the assemblage, and is 
inversely related to species richness. 

3.2. The abundance-based diversity modelling 
The abundance-based modelling of higher taxa diversity succeeded to predict major 
variation in bat species richness with a satisfactory accuracy (correlation coefficients up to 
r=0.80 to 0.88). This property could stem from two main characteristics of the bat 
assemblages. First, the fragmentation had a marked effect on bat abundances and species 
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composition at the spatial and temporal scale of our study, making it easier for the models 
to detect variation in bat assemblages among sites with contrasted landscape structure. 
Second, the abundance of most taxa could be adequately modelled as a function of 
particular landscape features.  
The fact that the abundance-based modelling of functional diversity did not perform equally 
well does not mean that this approach should be discarded. Indeed, the functional 
classification was well supported from an ecological point of view because functional 
groups are supposed to be independent entities regarding food resources. In other contexts, 
the ecological dimension associated with the functional classification may offer advantages 
over the taxonomic approach. Even though predicted functional diversity is not tightly 
linked with species richness, it may still be correlated with, and used as an indicator of 
other ecological processes, e.g. seed and pollen dispersal by frugivorous and nectarivorous 
bats. 

3.3. Limits and constraints on the abundance-based diversity 
modelling 
In some circumstances, grouping species may be impossible or irrelevant because 
assemblages are species-poor. In this context, however, the usefulness of modelling 
landscape variation in species richness appears less critical. Species-specific modelling 
could be sufficient for most conservation purposes (Zipkin et al., 2009). Conversely, some 
community surveys are not limited by sample sizes (e.g. insects), and then would not gain 
in efficiency by applying the abundance-based diversity modelling. The method as 
developed herein is more appropriate for situations where diversity parameters cannot be 
conveniently estimated in all sampled sites due to small sample sizes, typically in complex 
vertebrate assemblages such as bats, birds, and reptiles. It may also be considered as an 
alternative to species richness when reliable species identification is tedious (e.g. in 
invertebrates or plants; Vellend et al., 2008) or restricted to broad morphological or 
taxonomic categories. 
An important prerequisite for the abundance-based modelling to yield useful richness 
surrogates is that the abundance of the numerically dominant species group(s) should be 
adequately modelled as a function of landscape features or other environmental variables. 
Diversity indicators used in this study are highly sensitive to variations of the most 
abundant species groups. In the present study, the abundance of large fig-eating bats (> 
42% of phyllostomid bat captures) appeared to vary independently from the landscape 
descriptors we used. This may partly explain the failure of functional diversity to withstand 
the modelling step.  
The number of species groups introduced in the abundance-based modelling is another 
critical parameter. Splitting species into more groups reduces group sizes, and hence the 
predictive power of abundance models. Such an over-categorisation of species is another 
possible reason for the failure of functional diversity to withstand the modelling step. Bat 
functional groups are actually refined subsets within taxonomic groups, in that bat species 
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from the same functional group also belong to the same taxonomic group. Therefore, the 
two classification strategies bear similar information, but differ in the number of species 
groups (n = 5 vs. 8). This suggests that parsimony is recommended in terms of group 
numbers, and that an optimal classification must be evaluated a priori from expert 
knowledge. 

Conclusions 
In the neotropical bat assemblage we studied, taxonomic diversity and functional diversity 
were both valuable surrogates of species richness, but only the taxonomic diversity level 
sustained satisfactorily our abundance-based modelling method. The abundance-based 
modelling of higher taxa diversity appears to be a viable alternative to direct species 
richness modelling when the number and size of capture samples are limited, and may be 
used to improve the design of rapid assessment diversity surveys. 
Furthermore, the abundance-based modelling better accounts for the multifaceted nature of 
bat assemblages. It combines different landscape models computed over various spatial 
scales, each model being the most appropriate for one of the various species group. 
Previous studies on bats (Gorresen and Willig, 2004; Gorresen et al., 2005; Meyer and 
Kalko, 2008) have clearly shown that landscape variation in species richness or diversity is 
scale-dependent. The abundance-based modelling method offers a straightforward way to 
account for this scale dependence. It does not completely solve the problem of summarizing 
the ecological complexity of species assemblages into a single metric. It may, however, 
provide a valuable alternative to predict landscape areas subject to substantial species loss 
and to compare the potential outcomes of different forest restoration strategies. 
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