

Influence of crop management and landscape diversity on Meligethes aeneus and its biological control

Adrien Rusch, Muriel Valantin-Morison, Jean-Pierre Sarthou, Jean

Roger-Estrade

► To cite this version:

Adrien Rusch, Muriel Valantin-Morison, Jean-Pierre Sarthou, Jean Roger-Estrade. Influence of crop management and landscape diversity on Meligethes aeneus and its biological control. IOBC-WPRS, Jun 2010, Cambridge, United Kingdom. hal-02752478

HAL Id: hal-02752478 https://hal.inrae.fr/hal-02752478

Submitted on 3 Jun 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of crop management and landscape context on pollen beetle attacks and its biological control

Adrien Rusch, Muriel Valantin-Morison, Jean-Pierre Sarthou, Jean Roger-Estrade

IOBC/WPRS Working Group "Landscape Management for Functional Biodiversity", 29 June 2010, Cambridge, UK.

Context

- Increased proportions of OilSeed Rape (OSR) in Europe
- Resistance to pesticides
- •**7** insect pest pressure
- Pollen beetle: one of the major OSR pest
- Important yield losses
- A will to reduce agrochemical inputs in France and in EU

A need to develop alternative pest management strategies

Pollen beetle life cycle

Crop management and landscape effects

(Nilsson and Andreasson, 1987; Cook et al., 2006; Valantin-Morison et al., 2007; Ulber and Klukowski, 2010; Thies & Tscharntke, 2003)

Objectives

- What about the effect of crop management at the local and the landscape scale ?
- Identify and rank relevant variables for PB abundance, damage and natural regulation according to their relative importance when considering both:
 - Crop management variables at the field scale
 - Crop management at the landscape scale
 - Landscape complexity
- Identify the more important scale of the given predictors

Hypothesis

H3: Efficient in the second se

H2': Sovid stage confect is an energion point and than than that the foots nangerane stitican PB eaters ks

• 42 OSR fields in two sites during two years:

- Landscape complexity
- Distance between fields > 4 km

- Pollen beetle: counted weekly on 50 plants between GS 3,1 and GS 4.0.
- Pollen beetle damage: Podless stalks on 60 plants at GS 6,3

• Crop management measures and questionnaires to farmers: Plant density, Nitrogen Nutrition Index, sowing date, Post harvest soil tillage of previous year OSR fields in the 2000m radius circular sector...

• Parasitism rates: dissecting 150 pollen beetle larvae at L2 stage and identifying parasitoid species based on parasitoid eggs (Osborne, 1960).

- Landscape measures:
 - Field survey / land use cartography
 - Farmer interviews
 - Digitalization with ArcGis
 - Landscape variables in 8 different buffers from 250m to 2000m radius

2km

Statistical analyses:

- Linear mixed-effect models (year and site as random effects)
- MultiModel Inference approach:
 All possible linear combinations between K predictors: 2^K different combinations
- For a given Y to explain we performed MMI on 8 different data sets including:

Local variable + landscape variables computed at one buffer size

• For each data set, models were ranked according to their Akaike weights W_i :

$$W_{i} = \frac{e^{(-0.5(AIC_{i} - AIC_{\min}))}}{\sum_{i=1}^{n} e^{(-0.5(AIC_{i} - AIC_{\min}))}}$$

AICi: model i AIC AICmin: lower AIC among the 2^{κ} models

• W_i is the probability that model *i* would be selected as the best fitting model if the data were collected under identical circumstances (Whittingham et al. 2007)

Statistical analyses:

• For each data set (i.e. containing local predictors + landscape variables at a given scale):

• by summing *w_i* among models were a given predictor appears, we are able to compute the relative importance value of this predictor

- Considering the 8 datasets together:
 - Recalculate the W_i (considering the AICmin among all data sets)
 - Summing *W_i* among models were landscape predictors at a given buffer appear makes it possible to assess the relative importance of that scale.

Results

Pollen beetle abundance: importance of each scale

 Σ Wi for models containing landscape variables computed at scales from 250m to 1250m ≈ 0

 Σ Wi for models containing landscape variables computed at scales from 1500m à 2000m > 0.95

 \Rightarrow Large scales = more important ones

Results

Pollen beetle abundance: importance of variables at the 1750m scale

scale	1750m			
variable	Parameter sign	Relative variable importance		
Sowing date	-	0.20		
NNI	-	0.19		
Plant density	+	0.37		
Posr	+	0.44		
Pforest	+	1.00		
Pgrassland	+	1.00		

 \Rightarrow Importance of semi-natural habitats at large scale

- \Rightarrow Positive correlation between proportions of SNH and pollen beetle abundance
- \Rightarrow No effect of crop management at the local scale

Pollen beetle damage: Importance of each scale

 Σ Wi for models containing landscape variables computed at scales from 250m to 1250m ≈ 0

 Σ Wi for models containing landscape variables computed at scales from 1500m à 2000m > 0.95

 \Rightarrow Large scales = more important ones

Pollen beetle damage: Importance of variables at each scale

scale	1750m			
variable	Parameter sign	Relative variable importance		
Sowing date	-	0.21		
NNI	-	0.64		
Plant density	+	0.20		
Posr	+	0.22		
Pforest	+	1.00		
Pgrassland	+	0.33		

 \Rightarrow Importance of the proportion of forest at large scale

- \Rightarrow Positive correlation between proportions of forest and pollen beetle abundance
- \Rightarrow Negative correlation between NNI and pollen beetle damage

Parasitism rates: importance of each scale

• Two scales seems to be more important than the others: the 250m and the 1500m radius.

Landscape variables computed from 500m and 1250m radius are not important

 \Rightarrow Both fine and large scale seems to be important.

scale	250m			1500m		
variable	parameter sign	Relative variable importance	 9	parameter sign	Relative variable importance	
Field area	+	0.18		-	0.24	
Host abundance	-	0.18			0.22	
Prop CT OSR(n-1)	+	0.17		-	0.62	
Prop forest	+	1.00		+	0.73	
Prop Grassland	+	0.97		+	1.00	
Proximity OSR(n-1)	+	0.74		+	0.38	

 \Rightarrow Importance of semi-natural habitats at both fine and large scale

 \Rightarrow Positive correlation between proportions of SNH and parasitism rates

 \Rightarrow Important positive effect of the proximity to OSR(n-1) at fine scale

 \Rightarrow Negative effect of the proportion of OSR(n-1) under conventionnal profound tillage

Conclusions

PB abundance and damage are mainly determined by SNH at large scales

- Large scales are more important : 1500m to 2000m:
 - pollen beetle dispersal range
- Positive effect of SNH at large scale
 - SNH are used as overwintering sites (Müller 1941; Rusch et al. *subm.*)
- No effect of crop management at the local scale on PB abundance:
 - Host plant quality does not influence abundance of PB at the field scale
- Negative correlation between NNI and PB damage:
 - Importance of crop nitrogen status to compensate PB damage

Conclusions

Biological control of PB: a multi-scale process

- Positive effect of SNH at fine and large scales
 - Alternative hosts, floral ressources ?
 - Small scale: trade-off between host-foraging and food-foraging
 - Large scale: long distance dispersal
- Positive effect of proximity to OSR(n-1)
 - Reduced mortality of parasitoids with proximity to source patches
 - Long distance flights: energetic reserve exhaustion and predation
- Negative effect of conventional soil tillage on OSR(n-1) at large scale
 - high parasitoid mortality: desiccation, exposure to predation, climatic cond.

Conclusions

- High PB infestation where high parasitism rates :
 - What part of pest population is escaping biological control ?
 - Alternative host-plant for PB ?
 - Dispersal range of PB just before overwintering: migrating toward complex landscapes and filling the PB pool in landscapes where PB have been controlled locally ?
- Positive effects of SNH on parasitoid populations:
 - Floral ressources effects on parasitoid:
 OSR Vs non-cultivated floral ressources ?
 - Alternative host for parasitoids ? Other *Meligethes* spp. ?
 - Overwintering sites for parasitoids ?
 - What about polyvoltine species ?

Many thanks to: G. Grandeau, A. Butier, D. Makowski, C. Nilsson, Y. Ballanger

Thank you !

1 Martin

рв	abundance	PE	3 damage		Parasitism rates
 H1 ⇒ Confirm positive effect of SNH at large scale SNH = Overwintering site particularly forest (Muller, 194 Rusch et al. unpubl.) H2 ⇒ No effect of crop management at the local scale NNI = ability of the crop to compensate for PB damage 		H1 ⇒ Positive forest at la	e effect of arge scale	H3 ⇒ Negative effect of conventional soil tillage on OSR(n-1) at large scale	
		wintering sites, est (Muller, 1941; bl.) H2 & H2' \Rightarrow Negative correlation between NNI and PB injuries \Rightarrow SNH effects more important than NNI effects		high parasitoid mortality: desiccation, exposure to predation(Nilsson et al. 1987) H3' \Rightarrow Positive effects of SNH at fine and large scales \Rightarrow More important than soil tillage effects	