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The diameter problem
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Decision problem

We will give lower bounds for the decision problem associated with the diameter problem.

INPUT: a set P of n points in R d .

OUTPUT: YES if diam(P ) < 1 NO if diam(P ) 1
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Finding the antipodal pairs

The rotating calipers technique.
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3D-diameter problem

Randomized O(n log n) time algorithm (Clarkson and Shor, 1988).

Randomized incremental construction of an intersection of balls and decimation. 2000).

Deterministic O(n log n) time algorithm (E. Ramos,
These two algorithms compute the diameter of an n-point set in R 3 .

Can we compute the diameter of a convex 3D-polytope in linear time? No, we give an Ω(n log n) lower bound.
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Model of computation
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Real-RAM

Real Random Access Machine.

Each registers stores a real number.

Access to registers in unit time.

Arithmetic operation (+, -, ×, /) in unit time.
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Algebraic computation tree (ACT)

We say that an ACT decides S ⊂ R n if ∀(x 1 , . . . , x n ) ∈ S, it reaches a leaf labeled YES, and

∀(x 1 , . . . , x n ) / ∈ S, it reaches a leaf labeled NO.
The ACT model is stronger than the real-RAM model.

To get a lower bound on the worst-case running time of a real-RAM that decides S, it suffices to have a lower bound on the depth of all the ACTs that decide S Theorem 1 (Ben-Or) Any ACT that decides S has depth Ω(log(number of connected components of S)).
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Problem statement

We are given a convex 3-polytope P with n vertices.

P is given by the coordinates of its vertices and its combinatorial structure: All the inclusion relations between its vertices, edges and faces.

The cyclic ordering of the edges of each face.

Example: P is given in a doubly-connected edge list.

Problem: we want to decide whether diam(P ) < 1.

We show an Ω(n log n) lower bound. Our approach:

We define a family of convex polytopes.

We show that the sub-family with diameter < 1 has n Ω(n) connected components. We apply Ben-Or's bound. Polytopes P ( β)

The family of polytopes is parametrized by

β ∈ R 2n-1 .
When n is fixed, only the 2n -1 blue points change with β.
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Polytopes P ( β)

The family of polytopes is parametrized by β ∈ R 2n-1 .

When n is fixed, only the 2n -1 blue points change with β.
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Notation

Example where n = 3. 

a 3 c 1 2 c -1 2 c -1 -3 c 1 -3 b 0 b -2 (β -2 ) b 2 (β 2 ) a -3 c -1 -2 c -1 -1 c -1 0 c -1 1 a 2 a 1 a 0 a -1 a -

Notation

ā := (a -n , a -n+1 . . . , a n ).

A := {a -n , a -n+1 , . . . , a n }. β := (β -n+1 , . . . , β n-1 ). Point sets A and C 

B( β) := {b -n+1 (β -n+1 ), . . . , b n-1 (β n-1 )}. b( β) := (b -n+1 (β -n+1 ), . . . , b n-1 (β n-1 )). c := (c -1 -n , c -1 -n+1 , . . . , c -1 n-1 , c 1 -n , c 1 -n+1 , . . . , c 1 n-1 ). C := {c -1 -n , c -1 -n+1 , . . . , c -1 n-1 , c 1 -n , c 1 -n+1 , . . . , c 1 n-1 }. P ( β) := CH(A ∪ B( β) ∪ C).
c -1 -3 c -1 -2 c -1 -1 c -1 0 c -1 1 c 1 -1 c 1 0 c 1 1 c 1 2 c -1 2 c 1 -3 y ψ a -3 a -2 γ a -1 α a 3 a 2 a 1 c 1 -2 2ϕ -ψ x z a 0 = O
Point b j (β j ) z O (1, 0, 0) x y b j (β) β 1 2 jψ (cos(jψ), sin(jψ), 0)
The blue region is parallel to Oxz.

β ∈ [-α, α] Coordinates of points in A, B( β) and C Proof

a i :=    1 2 (1 -cos(iγ)) 0 1 2 sin(iγ)    c s i :=    r cos i + 1 2 ψ r sin i + 1 2 ψ 1 2 sα    b j (β) :=    cos(jψ) -1 2 (1 -cos β) sin(jψ)
Notation: diam(E, F ) := max{d(e, f ) | (e, f ) ∈ E × F }.
Lemma 1 The set

{b j (β) | β ∈ [-α, α] and diam(A, {b j (β)}) < 1}
has at least 2n connected components.

a -3 a 3 a 2 a 1 a 0 b j (β) < 1 < 1 1 a -2 a -1
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Proof

Proof of Lemma 1: Calculations, until the second-order terms.

Lemma 2

The combinatorial structure of

CH(A ∪ B( β) ∪ C) is independent of β.
We denote

P ( β) = CH(A ∪ B( β) ∪ C). Lemma 3 diam(A ∪ B( β) ∪ C) = diam(A, B( β)).
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Proof

Definitions:

S n = {(ā, b( β), c) | β ∈ [-α, α] 2n-1 } E n = {(ā, b( β), c) | β ∈ [-α, α] 2n-1 and diam(P ( β)) < 1} Notice that E n ⊂ S n ⊂ R 24n .
Lemma 4 The set S n can be decided by an ACT with depth O(n).

Lemma 5 Any ACT that decides E n has depth Ω(n log n).

Proof: By lemmas 1 and 3, E n has at least (2n) 2n-1 connected components. Apply Ben-Or's bound (Theorem 1). 

End of the proof

Theorem 2 Assume that an algebraic computation tree T n decides whether the diameter of a 3-polytope is smaller than 1. Then T n has depth Ω(n log n).

Proof: Take as input graph of T n the the graph of 

Hopcroft's problem

P is a set of n points in R 2 .

L is a set of n lines in R 2 .

Problem: decide whether

∃(p, ) ∈ P × L : p ∈ .
An o(n 4/3 log n) algorithm is known. (Matoušek).

No o(n 4/3 ) algorithm is known.

We give a linear-time reduction from Hopcroft's problem to the diameter problem in R 7 .

We first give a reduction to the red-blue diameter problem in R 6 : compute diam(E, F ) when E and F are n-point sets in R 6 .
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For 1 i n p i = (x i , y i , 1) i = (u i , v i , w i ) is the line i : u i x + v i y + w i = 0. Let p i := θ(p i ) and j = θ( j ).

We get 

p i -j 2 = p i 2 + j 2 -2 < p i , j > = 2 -2 < p i ,

Proof

Note that p i ∈ j iff < p i , j >= 0.

Thus, there exists i, j such that p i ∈ j if and only if diam(θ(P ), θ(L)) = 2.

θ(P ) and θ(L) are n-point sets in R 6 .

Similarly, we can get a reduction from Hopcroft's problem to the diameter problem in R 7 , using this linearization:

θ(x, y, z) := 1 x 2 + y 2 + z 2 (x 2 , y 2 , y (2006-03-20 -2006-03-24). Heidelberg, DEU : Springer-Verlag.

Related work

The red-blue diameter in R 4 can be computed in O(n 4/3 polylog n) (Matoušek and Scharzkopf). It would be interesting to get a reduction from Hopcroft's problem.

Erickson gave reduction from Hopfcroft problem to other computational geometry problems.
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P

  lies in the intersection of the two balls with radius d(p, p ) centered at p and p .

α
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Computing the diameter of a 2D-point set

  

	Compute the convex hull CH(P ) of P .
	O(n log n) time.
	Find all the antipodal pairs on CH(P ).
	There are at most n such pairs in non-degenerate
	cases.
	O(n) time using the rotating calipers technique.
	Find the diametral pairs among the antipodal pairs.
	O(n) time by brute force.
	Conclusion:
	The diameter of a 2D-point set can be found in
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	Related work
	(Chazelle) The convex hull of two 3-polytopes can be
	computed in linear time.
	(Chazelle et al.) It is not known whether the convex
	hull of a subset of the vertices of a 3-polytope can be
	computed in linear time.
	(Chazelle et al.) However, we can compute in linear
	time the Delaunay triangulation of a subset of the
	vertices of a Delaunay triangulation.
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  + y 2 + z 2 (x 2 , y 2 , y 2 ,

		Proof				
	θ(x, y, z) :=	1 x 2 √ 2xy,	√	2yz,	√	2zx).
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