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Abstract— Image sequence analysis in video-microscopy for life
sciences now has gained importance since molecular biology is
presently having a profound impact on the way research is being
conducted in medicine. However, image processing techniques
that are currently used for modeling intracellular dynamics are
still relatively crude. Indeed, complex interactions between a
large number of small moving particles in a complex scene
cannot be easily modeled, which limits the performance of
object detection and tracking algorithms. This motivates our
present research effort which is to develop a general estima-
tion/simulation framework able to produce image sequences
showing small moving spots in interaction and with variable
velocities, corresponding to intracellular dynamics and trafficking
in biology. It is now well established that spot trajectories can play
a role in analysis of living cell dynamics and simulate realistic
image sequences is then of major importance. We demonstrate
the potential of the proposed simulation/estimation framework
in experiments, and show that this approach can be also used to
evaluate the performance of object detection/tracking algorithms
in video-microscopy.

I. INTRODUCTION
A. Context in biology

The development of system biology is characterized by the
settlement of new techniques and technologies producing a
vast amount of data of different types or origins. Only auto-
matic approaches for analysis and interpretation of complex
and massive data will allow researchers to face this new
challenge. This is already well established for a number of
biological fields such as DNA sequence analysis, expression
data analysis, DNA micro-arrays analysis, ... Also, in dy-
namical imaging of biological samples substantial amount of
work is necessary to overcome conceptual and technological
obstacles. This motivates our present research effort which
is to develop novel techniques based on recent techniques in
computer vision and signal processing to analyze information
from 4D data related to intracellular dynamics and trafficking.

In video-microscopy, methods that estimate trajectories of
small objects (chromosomes, vesicles, ...) of interest may
encounter difficulties if the number of objects is large and the
signal-to-noise ratio is low. Moreover, the tracked objects are
not always visible in the sequence when tagging molecules
separate suddenly from the target objects. Yet, most of the
time the complexity of the dynamic processes involving many
objects or groups of objects interacting, cannot be easily
modeled. Finally, the corpus of data to be considered for a
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comparative analysis in an experiment, formed by multiple im-
age series acquisitions, is also massive. Nevertheless, it is now
clear that the localization and spatio-temporal conformation
of a large number of molecular constructions within the cell,
their dynamic response to diverse chemical, physical or bio-
molecular perturbations, are key elements for understanding
the basic function mechanisms in life sciences. Typically,
motion information and trajectories have to be extracted in
order to analysis the dynamic response of the cell to the
different perturbations and experimental conditions.

Then, we propose a simulation/estimation framework go-
ing in this research direction, able to model complex data
corresponding to interactions between moving particles/spots
with variable velocities. The idea is to propose parsimonious
models of fluorescence microscopy image sequences, able to
summarize complex data into a low dimensional set of parame-
ters. These models will be exploited to generate artificial image
sequences that mimic dynamics observed in real sequences.

B. Needs for simulation tools

In many application fields such as medical imaging or
astronomy, simulations are required for validating physical
models and understanding recorded data. In this section, we
give the rational behind the idea of simulation methods for
video-microscopy.

First, realistic simulations of dynamical processes usual-
ly give a qualitative representation of the observed spatio-
temporal biological event. Simulation can be then consid-
ered as a computational tool that can help to understand
some mechanisms of internal components within the cell.
By interacting with the control parameters, an expert can
artificially simulate processes close to the reality provided
the dynamical models are known; this philosophy has been
successfully exploited to understand dynamics of microtubule
networks [1], [2]. By minimizing the difference between a
set of descriptors computed from a real image sequence
and the same set of descriptors computed from a simulated
sequence, the parameters of the simulation method can be
tuned to obtain an artificial sequence that reveals the same
dynamical characteristics than the observed sequence. This
set of estimated control parameters can be then considered
a parsimonious representation of the underlying process.

Moreover, dynamical information extraction usually relies
on tasks such as object detection, optical flow estimation or
object tracking [3], [4]. These tasks cannot be done manually,



and they must be fast, reliable and reproducible. Furthermore,
comparing object tracking results to a ground truth is the more
straightforward method to assess performance of the applied
method. Accordingly, simulation of a reliable ground truth is
an important and challenging task especially in biomedical
imaging. We point out that benchmarking data sets are for
instance widely used to compare methods for image restoration
[5] and optical flow estimation [6]. In video-microscopy, the
photometric and dynamic characteristics of benchmarking data
sets actually are not able to describe complex interactions
between objects observed in real image sequences; in the case
of tracking vesicles within the living cell in video-microscopy
image sequences, random walks combined with parametric
models are used for validation [3], which does not completely
describe the movements of real moving objects in videos.

C. Our approach

In this paper, we then propose a powerful benchmarking
method for simulating complex video-microscopy image se-
quences. We propose a realistic image sequence modeling
framework describing the dynamical and photometric contents
of video-microscopy image sequences. Unlike the biophysical
approach which aims at describing the underlying physical
phenomena [1], [2], the proposed approach is only based on
the analysis of original image sequences. While being quite
general, the described method has been designed for analyzing
the role of fluorescence-tagged proteins moving around the
Golgi apparatus and participating to the intra-cellular traffic.
These proteins are embedded into vesicles whose movement
is supposed to be dependent on a microtubule network. These
vesicles propelled by motor proteins move along these po-
larized “cables”. This mechanism explains the observed high
velocities which could not be accounted by basic diffusions.

The remainder of this paper is organized as follows. In
Section 11, we give the properties that a simulation framework
should satisfy to be performant. We adopt a two-step scheme:
in Section Ill, a dynamical background model is described
and a method is proposed to estimate the model parameters; in
Section 1V, a photometric and dynamical model is described to
represent moving spots in video-microscopy image sequences.
In Section V, several experimental results are reported to
demonstrate the potential of the proposed approach.

Il. SIMULATION FRAMEWORK AND PROPERTIES

In this section, we discuss the properties that a simulation

method should respect:

1) Two computational approaches can be proposed for
simulation: data-driven modeling and physically-based
modeling. The physics-based approach exploits the
physical properties of the scene and the optical char-
acteristics of the imaging system for image modeling.
The main advantage is that the model parameters are
given by physics. Moreover, they are easy to interpret
because they directly correspond to the real world. In
return, the complexity of scenes and models is usually an
obstacle to this approach and the inverse problem cannot
be easily solved. The data-driven modeling aims at

describing the image sequence through statistical models
learned from real images [7]. This approach can mimic
dynamical processes but is not always able to describe
physics of real scenes. Data-driven and physically-based
approaches can be also combined to model the main
components of the image. In video-microscopy, these
components are mainly the moving objects, background
and noise.

2) A simulation method must be also controllable [8]. This
means that the representation must be parsimonious,
which can help in the interpretation for an expert.
In most cases, the parameters are related to physical
properties of the system but also to image properties
such as scale or velocity of objects. By using a such
representation, the simulation method becomes more
interactive and allows the expert to bring some a priori
knowledge or to plan a set of experiments by editing
the simulation. For example, an expert can indicate
the locations of source and destination points of the
vesicles, and by varying the positions of these points, we
can observe the evolution of the simulated intra-cellular
traffic. Finally, the expert feedback can be used to set
up a realistic simulation.

In the proposed simulation/estimation framework, we shall see
that these properties are mostly satisfied.

I11. DYNAMICAL BACKGROUND MODEL

In this section, we propose a statistical framework for
dynamical background modeling and estimation.

A. Image model

Large structures within the cell like the Golgi apparatus
appear as nearly static during the observation time interval.
In the case of images showing fluorescently tagged particles,
the global image intensity is proved to vary slowly along time.
This can be due to several physical phenomena such as photo-
bleaching or diffusion of fluorescent proteins within the cell.
Therefore, it is appropriate to propose a model able to describe
the slowly spatially and temporally varying background since
a stationary model would be too restrictive. The modeling of
more complex dynamical small objects with variable velocities
will be discussed in Section IV.

First, we have conducted experiments showing that the
intensity variation with respect to time can be captured by a
linear model for each pixel of the image sequence, mainly
because we are dealing with sequences of limited length.
This crude modeling provides a compact representation of
the background intensity dynamics and the background can
be described by two maps corresponding to the two spatially
varying parameters of the linear model obtained for each pixel.
Nevertheless, the involved parameters are spatially correlated,
which will be taken into account in the estimation process.
Note that the proposed method could be adapted to non-linear
intensity models if required.

Formally, we propose the following image sequence model
for the background

f(z,y,t) = a(z,y) + b(z,y)t + u(z,y,t) + €(z,y,t) (1)
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Fig. 1. Asymmetric Leclerc robust function.

where f(z,y,t) denotes the intensity observed at pixel (z,y)
and time ¢, the two coefficients a(z,y) and b(z, y) varies with
the spatial image position p; = (z,y)7. The function u(x,y, t)
is a positive function that describes the intensity of moving
vesicles if any, and e(z,y,t) is an additive white Gaussian
noise. In the sequel, we will use the subscript ¢ to denote the
spatial position p;, and accordingly (1) can be more compactly
re-written as

fi(t) = a; + bt + u;(t) + €(t). (2

This model is able to describe the background intensity of the
whole image sequence with only two maps {a;} and {b;} with
the same size as an image of the temporal sequence. In the
next section, we propose a method to estimate the maps {a;}
and {b;} that describe the dynamical background model.

B. Pixel-wise estimation of the background model parameters

We first deal with the estimation of parameters a; and
b; for a single temporal 1D signal. Let us point out that
this estimation must be performed several millions of times
(for each image point). Accordingly, the proposed estimation
procedure must be very fast. Besides, in our target application,
vesicles have an erratic behavior and sometimes stop for a long
time. Consequently, prior motion detection cannot be used here
to extract the objects from the background. The estimation
of the dynamical background will be then based on image
intensities. Also, since the background estimation must not be
corrupted by the presence of moving vesicles, we will also
resort to a robust estimation framework.

1) Robust M-estimation: The two parameters a; and b; are
estimated by minimizing a robust error function

n

E(asbs) =Y p(fit) — (ai + bit)), ©)

where n is the number of samples in the 1D signal and p(.) is
a robust function. A local minimum of E(a;, b;) is commonly
obtained by using the iteratively re-weighted least squares
(IRLS) procedure.

Robust regression
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Fig. 2. Regression using an asymmetric and symmetric robust Leclerc
function. The asymmetric estimator (red) fits perfectly the ground truth (green)
while the symmetric function provides biased results (dotted line).

The choice of the robust function p is usually guided by the
noise probability density function [9]. In our case, the overall
noise is the sum of two components w;(t) and €;(t). In order to
take into account that w;(t) usually takes high positive values
(vesicles appear as bright spots in the image), we choose
an asymmetric robust function (Leclerc estimator [10], [11])
plotted in Figure 1 and defined as

22 ,
l—exp| -5 if 2<0,
_ A2o%
p(z) = 22 _

1 —exp <_W> otherwise.

2

(4)

The scale oo factor can be estimated by applying a robust
least-trimmed squares (LTS) estimator to the pseudo-residuals
defined as [12] : si(t) = (fi(t + 1) — fi(t))/v/2, where
the coefficient 1/4/2 ensures that E[(s;(t))2] = E[(f:(t))?].
The scale factor o is estimated by using the variance of
the residuals given by the least-mean squares estimator and
obtained at the initialization. Let us point out that, in regions
where there are no moving vesicles, o1 and o5 are found
almost equal. Finally, X is chosen as usually in the range [1, 3].

As a matter of fact, the proposed estimator is biased [11]
but the bias is small. Simulations proved that the L5 risk of the
estimator is smaller when an asymmetric cost function is used
and when the data are corrupted by an additive positive signal.
Figure 2 shows that the proposed estimator is able to deal
with heavily contaminated data and outperforms the symmetric
Leclerc M-estimator.

2) Confidence matrix: An accurate estimation of the con-
fidence matrix for the estimated parameters is needed for
the subsequent steps described in Section I11-C. We use the
approximation proposed in [9] to compute the estimation
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where r;(t) = fi(t) — (a; + b;t) and the weights are given
by w(z) = p’(z)/z. Unlike the expression given in [13], the
approximation given by (5) is not asymptotic and yields a
better estimation of the covariance matrix when n is small.

C. Spatial coherence for background estimation

We now introduce spatial coherence to regularize the maps
{a;} and {b;}. This can be accomplished by adopting the bias-
variance trade-off framework described in [14], [15], [16],
[17]. Instead of using a single temporal signal for each pixel
p; to estimate a; and b;, a set of temporal 1D signals is
first collected in a spatial neighborhood of the pixel p;. This
collection of signals is then analyzed in order to take into
account the desired spatial coherence of the parameters. In
practice, a set of nested space-time tubes is considered (see
Figure 3) by taking the pixels in a growing spatial square
neighborhood of p;. Each tube 7; ;. at p; can be parametrized
by its diameter ¢; ,, where k € [1, .., K] denotes the iteration:

Tir = {f(x5,95,25) : |2i — 5] + |yi — il < din}.  (6)

In order to select the optimal diameter of the space-time
tube, we propose to minimize the point-wise Lo risk of the
parametric estimator defined as E[(6; — 6;)?] where 6; =
(as, b;) is the true parameter pair and 6; its corresponding
estimator, at position p;. The Ls risk can be decomposed into
two parts: squared bias and variance. As shown in Figure 4,
while the diameter ¢; ; increases with k, the bias increases
too. This can be explained by the fact that, the data cannot
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Fig. 4. Bias-variance trade-off principle. When the diameter of the tube
increases, the bias increases and the variance decreases. The optimum is
achieved when the bias and the variance are of the same order.

be described any longer by a unique model. In contrast, by
taking more and more data points, the variance decreases. This
behavior, also called bias-variance trade-off [14], is exploited
to detect the minimum of the point-wise Lo risk which is
nearly equal to twice the variance (see Fig. 4).

For each diameter ¢; ,, new estimates of the background
model parameters éi,k and the associated covariance matrix
C‘,-,k are computed with the same procedure as the one
described in Section 111-B but using all the data taken in
the considered spatial neighborhood. It can be shown that the
bias-variance trade-off can be expressed with the following
test [17] (here a vectorial version is given):

— R ~ \T . . N
nTiH (9z',k — 9i,k') Cl.jkl, (Oi,k - 9@',1«') <n (7
for all 1 < k' < k. While this inequality is satisfied, the
diameter of the tube is increased and the estimation process
is continued. It can be proved that the threshold n can be
defined as a quantile of a Fisher distribution of parameters 2
andn —2—1.

In this section, we have proposed a spatially and temporally
varying background and a statistical estimation framework
to estimate the involved parameters in the modeling. In the
second part of the paper, we propose a simulation framework
to produce dynamics corresponding to moving small spots in
the image sequences.

IV. SPOT MODEL

In video-microscopy, vesicles appear in many image se-
quences as small bright spots. The object diameters theoret-
ically ranges from 60 nm to 150 nm. The resolution of the
microscope is about 130 x 130 x 300 nm. Then, the diameters
of spots are often below this resolution. However, the point
spread function of the video-microscope make them appear
as larger structures even if a deconvolution process [18] is
applied. Furthermore, when the density of objects increases,
vesicles gather together and constitute small rods.



These vesicles are also known to move along microtubules,
that is along long protein polymers that have an exceptional
bending stiffness and can be easily fit by smooth curves.
Microtubules are conveyor belts inside the cells. They drive
vesicles, granules, organelles like mitochondria, and chromo-
somes via special attachment proteins using molecular motors.
It is also established that molecular motors form a class
of proteins responsible for the intra-cellular transport within
the cells. The dynein and kinein proteins are two classes of
motors associated with microtubules. It has been shown that
the concentration of these molecular motors influences the
structure and the dynamics of the microtubule network. In
stable conditions, the speed of these motors is assumed to be
constant. This explains why the observed velocity of vesicles
is constant if they move along the same microtubule.

In our target application, vesicles move along the micro-
tubule, leaving a donor organelle and reaching an acceptor
organelle, e.g. the Golgi apparatus to the Endoplasmic Retic-
ulum. In the proposed simulation method, we do not simulate
the dynamics of the microtubules like in [2] but we rather
aim at describing video-microscopy image sequences using a
data-driven approach.

A. Photometric model

In most cases, vesicles are represented by anisotropic Gaus-
sian spots with variances related to the spot size ranging from
60 nm to 150 nm. Then, the size of the vesicles in the image is
close to the pixel size. The size of the spots will be estimated
on image sequence as described in the Section IV-C.

Now, the covariance matrix is a function of the velocity
direction in order to get the major axis of the ellipse corre-
sponding to the displacement of the vesicle. The ellipticity is
also a function of the velocity. In Fig. 5, we can see how the
covariance matrix of the Gaussian function allows to modify
the orientation of the spot according to the direction of the
microtubule.

In addition, the spots can merge and split and the ellipticity
of the spots allows to easily simulate rods. These rods are
made of a collection of spots which use the same path. In the
resulting image sequence they seem to describe a single object
since they have the same velocity while they are on the same
microtubule.

B. Dynamical model

1) Network modeling: A physics-based simulation of the
self-organization of the microtubule network can be found
in [19]. It is based on the interaction between the motors (e.g.
kinesine) and microtubules, and explains some characteristic
conformations such as mitotic spindle. It takes into account
the dynamical behavior of the microtubules. However, this
computer simulation only describes the behavior of the mi-
crotubule network in-vitro and is not adapted for the more
complex in-vivo case in which the microtubules interact with
other organelles of the cell. In addition, the observation time
intervals are usually short compared to the dynamics of the
network itself. Accordingly, we propose to adopt a static model
for the network.

direction of displacement
\/
microtubul ell ocation

vesicle

Fig. 5. Gaussian spot oriented in the direction of the microtubule. The
covariance matrix of the Gaussian function is defined as a function of the
velocity of the vesicle and the simulated vesicles are then elongated along
with the motion direction.

In order to produce a synthetic but realistic microtubule
network, we exploit real image sequences as inputs for the
modeling. The network could be tagged with Green Fluo-
rescence Protein (GFP) but this network is too complex and
individual microtubules cannot be easily extracted. However,
the microtubule network can be also crudely computed from a
maximum intensity projection map wrt time, that is from the
paths used by the tagged objects. Figure 6 shows the maximum
intensity projection map of a sequence made of 300 images.
This simple method allows to select a subset of paths mainly
used for the intra-cellular trafficking leading to network with
low complexity; this approach has been successfully used for
the construction of kymograms [20]. However, as shown in
Fig. 6, all the paths are not complete, especially if the sequence
duration is too short. The gaps are then completed by using
a painting software. Furthermore, the positions of the roads
are extracted from the network image using the unbiased line
detection algorithm described in [21]. Finally, each road is
finally described by its length, its width and its source node
and its destination node.

2) Selection of source/destination nodes: In the proposed
simulation, vesicles are going from one point to an other.
Typically, they leave a donor organelle and move toward an
acceptor organelle. Once the network has been computed, the
expert needs to specify the source and destination nodes on
the network. In order to take into account the lack of priori
information on the organelle and their function, a node can be
both a source and a destination while the other nodes represent
the intersection points of the network and are only used for
the routing. Source-destination pairs are important cues for the
simulation and corresponds to a birth/death map as described
in [8]. These labels are actually related to the locations and
relationships of specific organelles within the cell.

In Fig. 7, the source and destination nodes have been manu-
ally selected. The destination nodes labeled in red correspond



Fig. 6.  Maximum intensity projection map computed from an image
sequence. The paths used by the vesicles appear as bright filaments. The
maximum intensity projection map has been simplified using the algorithm
described in [17].

Fig. 7. Representation of a realistic synthetic network. This network is based
on a maximum intensity projection map and has been manually simplified.
This network is composed of 146 nodes and 160 bi-directional links which
correspond to 320 directional edge in the graph associated to the network.

to end-points while the source nodes corresponding to the
membrane of the Golgi apparatus are labeled in green. In
this simulation, vesicles are only going from the Golgi to
the end-points located at the periphery of the cell. Thus, the
retrograde transport from end-point to the Golgi is prohibited
for simplicity.

In our approach, the paths defined as the minimal paths
between the source and the destination nodes are computed by
using the Dijkstra algorithm. In that case, the weight associated
to each edge can be defined as a function of the length of
the corresponding road but it can also take into account other
parameters. Note that the speed associated to edges can be
also used to estimate the shortest path. Finally, as expected,
the vesicles move along the estimated roads with velocities
given by the speed-limits of the roads. At each time step, the
vesicle is then displaced along the microtubule with a distance

which is a proportional to the velocity.

C. Estimation of model parameters and spot detection

Object detection in image sequences is an important task
in video-microscopy but generally ground truth is not always
available. In this section, we propose a method to decide which
pixels belong to the image background. Furthermore, the un-
supervised approach is applied to really and artificially image
sequences obtained from the modeling framework described
in the paper.

In our detection method, a penalized likelihood criterion is
introduced to estimate the mean and the variance of a Gaussian
vector and by assuming some of the components are zero.
We suppose that the number of zero components in the 1D
temporal signal as well and their time positions are unknown.
In our problem, the zero components of the 1D signal for
position p; are associated to the background while the other
components are related to the moving objects (see Fig. 8).
Formally, we define

Z=m+e, ENN(O,E), (8)
where Z is the vector of n residuals given by z(t) =
fi(t) — (a; + b;t), assumed to be independent, and e is a
Gaussian white noise with variance 72I,. The expectation
E[Z] = m = (my,..,m,)T and the variance 72 are unknown.
Moreover, k, components of m are assumed to be non zero.
The data assumed to be independent, are then re-ordered such
that |z;| > |zj+1].- Now, we consider the following model
collection M = {My, ..., My}

Ml = (Zla 07 70)T
M2 = ('Zl) Z2, 07 )O)T (9)
M, = (21, 2, 2 yzn)T.

The selected model corresponding to object/background la-
beling, is the one that minimizes the following penalized
likelihood criterion [22], [23]

(10)

J(M;) = glog(%jz) +n (cl log (%) + cz> ~ ﬁ]k‘j
. n
where 72; = n‘lz 22 is the plugged-in maximum likelihood
k=j
estimator of 7-]?. The two universal constants ¢; and ¢y were
calibrated in [23] and found to be ¢; = 2 and ¢, = 4.

Once a model M, (p;) has been estimated, which amounts
to select an optimal threshold #.,(p;) for each point p; in
the image, a minimal threshold is ¢,,;, calculated in order to
take into account the fact that no object passed through some
points of the image. We decide that these points belong to
the background during the whole image sequence (see Fig.
8). Then, we apply the same thresholding method based on
penalized criterion to the spatial threshold map. Thus, this
method provides a set of points belonging to the background,
and by taking the complementary set, we detect the moving
vesicles.
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Fig. 8. Illustration of the selection model principle applied to a synthetic
signal (n = 1000). The number of samples corresponding to the background
is about 800. The X-axis represents the length of the model M;; the left
ordinate corresponds to the value |z;| associated to the model M labeled in
blue; the right ordinate represents the value of the cost function J(M;).

V. EXPERIMENTS

In this section, we describe two experiments that demon-
strate the potential of the proposed simulation method. First, a
simulation of a synthetic image sequence based on real image
sequence is described. Besides, we describe a synthetic image
sequence whose parameters have been manually determined to
test a denoising procedure as well as the estimation procedure
for the background model described in Section IlI.

A. Realistic image sequence simulation

We first propose to use a real image sequence in order to
simulate a sequence with similar photometric and dynamical
contents. The original sequence is shown in Fig. 9(a) and
represents vesicles moving from the Golgi apparatus to the En-
doplasmic Reticulum. The parameters of the dynamical back-
ground are first estimated as described in Section Ill. The two
maps {a;} and {b;} are respectively shown in Fig. 9(e) and in
Fig. 9(f). Once these parameter maps have been estimated, the
background is subtracted from the original image in order to
obtain the sequence of residuals shown in Fig. 9(g), which is
a noisy representation of the moving spots. The paths mainly
used by vesicles during the 150 frames of the real sequence can
be observed on the maximum intensity projection map in the
time direction, of residuals as shown in Fig. 9(b). We propose
also to enhance the maximum intensity projection map using
optimal steerable filters [24] (see Fig. 9(c)). The unbiased
line detection algorithm [21] is then applied to the enhanced
image in order to estimate the positions of the roads shown in
Fig. 9(d). Finally 150 vesicles are generated and moved along
the estimated network. The velocities of the vesicles are tuned
so that the simulated sequence provides the same visual effect
than the original sequence. It is confirmed by experts that the
proposed simulation method provides a very realistic image
sequence both from the photometric point of view as well as
from the dynamical point of view.

© (d)

(@) (h)

Fig. 9. Simulation of a video-microscopy image sequence from a real image
sequence. (a) one frame of the maximum intensity projection sequence wrt
z axis (depth) computed from an original 3D+time image sequence; (b)
maximum intensity projection 2D map wrt time ¢ ; (c) results of steerable
filtering; (d) results of the un-biaised line detection; (e) map {a;}; (f) map
{bi}; (g) residual map; (h) image reconstruction from estimated parameters.

B. Benchmarks

In order to evaluate the quality of the proposed background
estimation method, we have simulated a 128 x 128 x 150 image
sequence. This simulation is composed of a 20 vesicles moving
along a network shown in Fig. 10(a). The two maps {a;} and
{b;} for the background model are shown in Figs. 10(b)-(c).
By adding to these three images, the photometric characteris-
tics of the spots, we get the set of parameters that controls the
simulation.

To generate the background model, we have manually
designed the shape of the background shown in Fig. 10(b).
Then, we have computed the image shown in Fig. 10(c) for
a duration equal to twice the duration of the simulation, to
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Fig. 10. Simulation of a synthetic video-microscopy image sequence. (a)
network map; (b) map {a;} corresponding to the background; (c) map
{b;} corresponding to the variation of the background; (d,e,f) three frames
extracted from the noise-free synthetic image sequence; (i,j,k) three noisy
frames corresponding to a signal-to-noise ratio of 13.6db.

obtain a uniform background. Three frames of the noise free-
simulated sequence are shown in Fig. 10(d)-(f). A Gaussian
noise of standard deviation o = 9 has been also added to these
frames and the results are shown in Fig. 10(i,j,K). The intensity
of the vesicles are assumed to follow a Gaussian distribution
with mean 30 and standard deviation 3.

Now, we first apply the algorithm described in [25] to de-
noise the image sequence artificially corrupted by a Gaussian
white noise of variance 9 which correspond to a signal-to-
noise of 13.6dB. By using the pointwise adaptive space-based
3D 3 x 3x patch based approach with 6 iterations, the mean
squared error of the recovered image is finally 1.35, which
corresponds to a signal-to-noise ratio of 30.0dB (decibels).
The noise is then drastically reduced (see Fig. 11) and,
visually the sequence looks similar to the original artificial
sequence and no vesicle has disappeared. Note that denoising
algorithms are commonly applied to image sequences in video-
microscopy as a pre-processing step in practical imaging.

In order to estimate the performance of the proposed
estimation method for the dynamical background model, we
have applied the estimation procedure in order to recover the
simulation parameters. The two estimated maps {a;} and {b;}
are shown in Fig. 11. The mean squared error between the
original map {a?} and the estimated map {a;} is 1.50 and
the signal to noise ratio is 31.44dB. The signal-to-noise ratio
calculated from the original map {b¢} and the estimated map
{b;} is 32.70dB.
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Fig. 11.

Estimation of a synthetic video-microscopy image sequence.
(a,b,c) three frames of the denoised image sequence; (d) maximum intensity
projection map; (e) estimated map {a;}; (f) the estimated map {b;}; (g,h,i)
residual maps after background subtraction; (j,k,I) detection maps using the
described method.

V1. CONCLUSION

In video-microscopy, tracking methods that estimate trajec-
tories of small objects (particles) may encounter difficulties
if the number of objects is large and the signal-to-noise
ratio is low. Moreover, the tracked objects are not always
visible in the sequence and data association is problematic. To
evaluate the performance of the object tracking algorithms in
video-microscopy, we have presented a simulation/estimation
framework to artificially produce image sequences that can
mimic mostly moving spots observed in video-microscopy.
This new computational tool can be also used by an expert
for inspecting real image data. In that case, the user adapts the
simulation parameters to the observed data, and then selects a
set of parameters that can be considered as a parsimonious
representation of the image sequence contents. For future
works, we plan to better validate this approach in collaboration
with expert-biologists.
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