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Abstract— The forests are in fact ecological systems of great complexity which present interaction phenomena associated with the
competition between individuals of the same species but also between individuals of different species. This competition is about access
to resources (light, water, nutrients,...). The scales of forest ecosystems are very long. For this reason we wish to use in this work
Markov modeling of the spatial distribution of individuals in the form of an individual-based model through the stochastic branching
process.
Keywords— Forests dynamics, Branching stochastic process, interaction, competition, individual-based model (IBM).

I. INTRODUCTION

This work does not pretend to offer a faithful model of forest ecological systems, but to propose a individual-centered model
taking into account two key features:

(i) Birth and Dispersal: each individual is capable of give birth to a new tree located in the vicinity of the parent tree (Disper-
sal).

(ii) Death: the death is due to natural causes or to competition for access to natural resources.

The growth will not be discussed in this work.

Markov models of particles interacting in continuous time and space, branching (birth/death), are particularly adapted to this
situation. We are particularly interested to a model developed by Méléard–Fournier [1]. This model had originally been proposed
by Bolker, Pacala [2]. The treatments in these two items were different.

Bolker, Pacala [2] describe the Bolker equation, called the Kolmogorov equation, which describes the evolution of the law of
the ecosystem process. This equation is complex and ”live” in a large space. The authors then propose an approximation method
of moments approximation allows to find the first two moments of the exact solution.

Méléard–Fournier [1] used this model and provides a rigorous mathematical formulation. They also describe the Markov
process underlying with a form of Monte Carlo algorithms.

We present the model in the simple form and we studied the numerical simulation tests. The numerical simulations were
made in MatLab.

II. A MODEL FOR FOREST DYNAMICS

II.1. Modeling forest dynamics
We Consider the forest:

X = [x1
min, x1

max]× [x2
min, x2

max] ⊂ R2

for simplicity, we use one hectare of the forest (100 square meters of hand). We would propose a simple model of forest dynamics:
it will consist of a single species and we only consider the location of trees (individuals). For every time t, the forest will be
represented by

νt
def= {xi

t ; i = 1 · · ·Nt} ⊂ X
Each individual i will be represented by its position xi

t and Nt = |νt| (cardinal of νt) means the population size at time t.
The forest will be subject to ponctuels mechanisms. Starting from a forest ν and individual x ∈ ν
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Fig. 1 : Figure illustrating the parameters of the function of competition.

(i) The individual x can die a natural death with a rate λm and then:

ν 7→ ν \ {x}

(the forest loses the individual x).

(ii) The individual x can give birth to a new individual with a rate λn, position x′ of this new individual is determined by a
dispersal kernel D(dx) and then:

ν 7→ ν ∪ {x′}

(the forest earns new individual x′).

(iii) The individual x can die due to competition modeled by a rate λc(x, ν) which depends on x and ν, then:

ν 7→ ν \ {x}

(the forest loses the individual x).

Assume again that these basic mechanisms are independent. We can consider more complex models where the rate may
depend on the position in space. We may also consider a growth model: in addition to his position, each individual is also
characterized by a size. We here prefer to keep the simple model.

II.2. Dispersal kernel

For the dispersal kernel we consider a Gaussian kernel D(dx′) = N (0, σ2 I). To easily manage the boundary conditions we
assume that X is a torus.

II.3. competition kernel

For competition rates, we consider:
λc(x, ν) =

∑
y∈ν

u(x, y)

where

u(x, y) =

{
Cmax

(
1− 1

rmax
||x− y||

)+ if x 6= y ,

0 else.

This interaction kernel means that: more the individual x is surrounded by neighbors more it is subject of disappears (see Figure
1).

III. NUMERICAL SIMULATIONS

Let the last event Tk−1 and the corresponding forest νTk−1 , we simulate tk and νtk
as follows: calculates ”global clock”

events given by
mk = mn

k + mm
k + mc

k
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with

mn
k = λn |νTk−1 | , mm

k = λm |νTk−1 | , mc
k = Cmax |νTk−1 |2.

we set Tk = Tk−1 + Sk with Sk ∼ Exp(mk), and νt = νTk−1 for t ∈ [Tk−1, Tk[.
We calculate the probabilities:

αn
k = mn

k/mk , αm
k = mm

k /mk , αn
k = mc

k/mk

We draw the event as follows:

• with probability αn
k: Birth. We draw the individual i in {1, . . . , |νTk−1 |}. We draw z ∈ Rd with dispersal kernel D(dz). It

adds a new individual to the position x′ = xi
νTk−1

+ z and we set:

νTk
= ννTk−1

∪ {x′} .

• with probability αm
k : natural death. We draw the individual i in {1, . . . , |νTk−1 |} and we set:

νTk
= ννTk−1

\ {xi
νTk−1

} .

• with probability αc
k: death due to competition. We draw two individuals i and j in {1, . . . , |νTk−1 |}. It rejects the event of

death due to competition with probability 1− (u(xi
νTk−1

, xj
νTk−1

)/Cmax), otherwise it removes the individual i and we set

νTk
= ννTk−1

\ {xi
νTk−1

} .

III.1. Test 1: High dispersion
The forest of high dispersion of individuals in the forest X̄ has been simulated using these parameters:

Parameters: λn λm Cmax rmax σ

Values: 2 1 2.5 10−3 100
√

5

After their births, the dispersion of new trees is even stronger than the standard deviation of Gaussian kernel is high.

III.2. Test 2: Low dispersion
The forest shows clusters in the forest X̄ has been simulated using these parameters:

Parameters: λn λm Cmax rmax σ

Values: 2 1 2.5 10−3 100
√

0.01

So when the standard deviation of Gaussian kernel is small, the dynamics of the forest evolves through a process of clustering.

III.3. Test 3: High competition
The forest of low density was simulated using these parameters:

Parameters: λn λm Cmax rmax σ
Values: 2 1 3 10−3 100 1

So, if competition is strong, we get a phenomenon of desertification of the forest, which prevents the growth of the tree density
in X̄ .

III.4. Test 4: Low competition
The forest of high density was simulated using these parameters:

Parameters: λn λm Cmax rmax σ
Values: 2 1 3 10−4 100 1

So, if competition is low, while the forest invaded the field X̄ which leads to strong growth in tree density.
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draw ν0 and set T0 = 0
for k = 1, 2, . . . do

N ← |νTk−1 |
% setting clocks
mn ← λn N
mm ← λm N
mc ← Cmax N2

m← mn + mm + mc

% new instant event
S ∼ Exp(m)
Tk ← Tk−1 + S

u ∼ U [0, 1]
i ∼ U{1, . . . , N}
if u ≤ mn/m then

z ∼ D(dz)
νTk
← νTk−1 ∪ {xi

νTk−1
+ z} % birth

else if u ≤ (mn + mm)/m then

νTk
← νTk−1 \ {xi

νTk−1
} % naturel death

else

j ∼ U{1, . . . , N}
β ∼ U [0, 1]
if β ≤ u(xi

νTk−1
, xj

νTk−1
)/Cmax then

νTk
← νTk−1 \ {xi

νTk−1
} % death by competition

end if

end if

end for

Alg. 1: Simulation algorithm of the forest.
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(a) Dynamics of individuals number in time.
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(b) Final state of forest dynamics simulation.

Fig. 2 : Test 1: High dispersion (dynamics of individuals number in time and spatial distribution of forest).
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(a) Dynamics of individuals number in time.
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(b) Final state of forest dynamics simulation.

Fig. 3 : Test 1: Low dispersion (dynamics of individuals number in time and spatial distribution of forest).

0 5 10 15 20 25
40

50

60

70

80

90

100

110

120

130

140

(a) Dynamics of individuals number in time.

72 74 76 78 80 82 84 86
4

6

8

10

12

14

16

18

20

22

24

(b) Final state of forest dynamics simulation.

Fig. 4 : Test 1: High competition (dynamics of individuals number in time and spatial distribution of forest).
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(a) Dynamics of individuals number in time.
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(b) Final state of forest dynamics simulation.

Fig. 5 : Test 1: Low competition (dynamics of individuals number in time and spatial distribution of forest).
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IV. PARAMETER ESTIMATION BY STOCHASTIC GRADIENT

Although we had data from the UMR ”Dynamics of Natural Forests” of CIRAD we preferred–before addressing the statistical
problems - check to what extent the kind of model proposed here is ”controllable” or not.

To do this, we set a target characteristic such as population size N∗. The problem is whether it is possible to estimate a
parameter, like the birth rate λn, and find empirical population average of N∗. The aim is obviously to do that automatically.

We use a stochastic gradient algorithm, particularly as it called Kiefer-Wolfowitz. The algorithms combine the stochastic
gradient optimization method of the gradient and the Monte Carlo method to optimize a criterion written in the expectancy form.

Here we wish to minimize, for k large, the criterion:

J(λn) = Eλn(|νTk
| −N∗)2.

ATTENTION: here |νTk
| is the cardinal of the set νTk

. Eλn means that the process is generated by the value of λn.
To be more rigorous, it must be understood for ”k large” in a sense ergodic: the rigorous criterion would limT↑∞

1
T

∫ T

0
(|νt|−

N∗)2 dt.

The stochastic gradient algorithm is written:

λn
k+1 ← λn

k − ak
Ĵ(λn

k + ck)− Ĵ(λn
k − ck)

2 ck
, (1)

with

(i) Ĵ(λn
k±ck) is the empirical approximation J(λn

k±ck) calculated by simulating a forest setting λn
k±ck and using a moving

average;

(ii) parameters ak and ck are chosen such that:∑
k

ak ck <∞ and
∑

k

a2
k/c2

k <∞ .

In practice it is advisable to take ak = a× k−1 and ck = c× k−1/6 with a and c two positive constants [3].

(iii) In (1) it is necessary to project at each iteration the estimate in a given interval [λn
min, λn

max].

The suites ak and ck depend repeatedly of k. The choice of the constants a and c is crucial for the speed of convergence of
the algorithm. Indeed, if we use two small values of a and c at the start then, as shown in Figure ??, we obtain a convergence
with low speed. Similarly, if we use two values higher or lower of a and c, we obtain convergence with fast speed as seen in
Figure ?? for the size of the forest and also for parameter in this example is the birth rate λn.

choose λn
0

for k = 1, 2, . . . do

ak = a/k
ck = c/k1/6

% simulation of forest (see. Alg. 1):
simulate T±k with the parameter λn

k ± ck

Tk ← T+
k ∧ T−k

simulate two forests: ν
λn

k±ck

Tk

% population sizes empirical:

N̂± ← 1
L

∑k
`=k−L |ν

λn
` ±c`

T`
|

% iteration of Kiefer-Wolfowitz:
λn

k+1 ← λn
k + ak

(N̂+−N∗)2−(N̂−−N∗)2

2 ck

end for

Alg. 2: Kiefer-Wolfowitz Algorithm.
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Fig. 6 : Optimization birth rate: slow convergence.
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Fig. 7 : Optimization birth rate: speed convergence.

V. CONCLUSION

We applied the classical results on ponctuel processes and Markov processes of pure jump model for forest dynamics in the
simple form. This approach is individual-centered: each tree (individual) is explicitly represented within a population. The basic
mechanisms (birth, dispersal, natural death, death by competition) are explicitly described. Including the level of competition is
explained as a death rate of λc(x, ν) which describes the competition exerted by the individual x from the forest ν.

Although very simple, the resulting model presents very interesting features. It helps to account for different behaviors (low
or high dispersion, low or high competition).

In a numerical simulation, we describe a Monte Carlo algorithm in continuous time and continuous space. We found that,
despite its simplicity, this model can account for a large variety of aggregations.

To fitting the model to data, we are interested in a stochastic gradient method which allows to ”solve” a setting to achieve a
given target feature. Here we have optimized the birth rate λn to reach a target population size N∗ given.

Finally, it would be interesting: (i) taking into account the growth of individuals, (ii) treat the case of two or a few species.
Before getting down to the use of such a model, it would be interesting to continue testing optimization of parameters by
stochastic gradient technique. It would be conceivable to use such models in landscape ecology research and making decision in
forest management.
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