
HAL Id: hal-02754114
https://hal.inrae.fr/hal-02754114v1

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal soft arc consistency
Martin Cooper, Simon de Givry, Thomas Schiex

To cite this version:
Martin Cooper, Simon de Givry, Thomas Schiex. Optimal soft arc consistency. 20th International
Joint Conference on Artificial Intelligence - IJCAI 2007, Jan 2007, Hyderabad, India. pp.6. �hal-
02754114�

https://hal.inrae.fr/hal-02754114v1
https://hal.archives-ouvertes.fr

Optimal Soft Arc Consistency

M.C. Cooper

IRIT, Univ. Toulouse III, France

cooper@irit.fr

S. de Givry and T. Schiex

INRA, Applied Math. & CS Dept., France

{degivry,tschiex}@toulouse.inra.fr

Abstract

The Valued (VCSP) framework is a generic opti-
mization framework with a wide range of applica-
tions. Soft arc consistency operations transform
a VCSP into an equivalent problem by shifting
weights between cost functions. The principal aim
is to produce a good lower bound on the cost of
solutions, an essential ingredient of a branch and
bound search.

But soft AC is much more complex than tradi-
tional AC: there may be several closures (fixpoints)
and finding the closure with a maximum lower
bound has been shown to be NP-hard for integer
costs [Cooper and Schiex, 2004].

We introduce a relaxed variant of soft arc consis-
tency using rational costs. In this case, an optimal
closure can be found in polynomial time. Further-
more, for finite rational costs, the associated lower
bound is shown to provide an optimal arc consistent
reformulation of the initial problem.

Preliminary experiments on random and structured
problems are reported, showing the strength of the
lower bound produced.

1 Introduction

The Valued Constraint Satisfaction Problem [Schiex et al.,
1995] is a generic cost function optimization framework with
many applications. A VCSP is defined by a set of variables
with finite domains and a set of local cost functions (soft con-
straints) which associate costs to tuples. The goal is then to
find an assignment to all variables with a minimum com-
bined cost. Costs from different constraints are combined
with a domain dependent operator⊕. In this paper, we focus
on Weighted CSP (WCSP) where costs are natural numbers,
combined by addition. This VCSP sub-case has been shown
to capture the essential complexity of non-idempotent VCSP
in [Cooper, 2005] and has a lot of direct applications in do-
mains such as resource allocation, combinatorial auctions,
bioinformatics, probabilistic reasoning, graph theory...

Following the initial definition of arc consistency for non
idempotent operators in [Schiex, 2000], local consistency
is now considered as a crucial mechanism for solving WC-
SPs. Based on iterated integer cost movements between cost

functions of different arities which preserve problem equiva-
lence, local consistency offers all the services of local con-
sistency in classical CSP. It is specifically capable of pro-
ducing strong incrementally maintained lower bounds which
are crucial for efficient branch and bound search. It is how-
ever plagued by the absence of uniqueness of the fixpoint
(so-called arc consistent closure) and by the fact that finding
a closure which maximizes the lower bound is an NP-hard
problem [Cooper and Schiex, 2004]. This has led to the def-
inition of a large number of variants of arc consistency (di-
rectional [Cooper, 2003], existential [Larrosa et al., 2005],
cyclic [Cooper, 2004]...), each using different strategies to try
to get closer to an optimal closure.

In this paper, we show that by relaxing the condition that
costs be integers and by allowing simultaneous cost move-
ments between cost functions, it is possible to define a new
class of local consistency such that finding an optimal closure
is a polynomial time problem. On a large class of problems,
we show that the lower bound produced is always better than
the previous integer arc consistency variants and provides an
optimal reformulation of the initial problem.

Beyond a better understanding of local consistency in WC-
SPs, preliminary experiments of Optimal Soft Arc Consis-
tency on random and structured WCSPs show that it may also
be used in practice as a preprocessing algorithm.

2 Preliminaries

Valued CSP extends the CSP framework by associating costs
to tuples [Schiex et al., 1995]. In general, costs are specified
by means of a so-called valuation structure defined as a triple
S = (E,⊕,�), where E is the set of costs totally ordered
by �. The maximum and a minimum costs are noted � and
⊥, respectively. ⊕ is a commutative, associative and mono-
tonic operation on E used to combine costs. ⊥ is the identity
element and� is absorbing.

Weighted CSPs (WCSP) form a specific subclass of valued
CSP that relies on a specific valuation structure S(k).

Definition 2.1 S(k) is a triple ({0, 1, . . . , k},⊕,≥) where,

• k ∈ {1, . . . ,∞}.

• ⊕ is defined as a⊕ b = min{k, a + b}

• ≥ is the standard order among numbers.

IJCAI-07
68

Observe that in S(k), we have 0 = ⊥ and k = �. k may be
either finite or infinite.

A WCSP P is defined by P = (X, D, C, k). The valu-
ation structure is S(k). X and D are sets of variables and
domains, as in a standard CSP. For a set of variables S ⊂ X ,
we note �(S) the set of tuples over S. C is a set of cost func-
tions. Each cost function (or soft constraint) cS in C is de-
fined on a set of variables S called its scope. A cost func-
tion cS assigns costs to assignments of the variables in S i.e.:
cS : �(S) → {0, . . . , k}. For simplicity, we assume that ev-
ery constraint has a different scope. For binary and unary
constraints, we use simplified notations: a binary soft con-
straint between variables i and j is denoted cij . A unary con-
straint on variable i is denoted ci. We assume the existence
of a unary constraint ci for every variable, and a zero-arity
constraint, noted c∅ (if no such constraint is defined, we can
always define dummy ones ci(a) = 0, ∀a ∈ Di and c∅ = 0).

When a constraint cS assigns cost � = k to a tuple t, it
means that cS forbids t, otherwise t is permitted by cS with
the corresponding cost. The cost of a complete tuple t in a
WCSP P , noted VP (t), is the sum of all costs:

VP (t) =
∑

cS∈C

cS(t[S])

where t[S] denotes the usual projection of a tuple on the
set of variables S. A complete assignment is feasible if it has
a cost less than k and optimal if there are no complete assign-
ment with a lower cost. The problem is to find a complete
optimal assignment (NP-hard).

We say that two WCSPs P and P ′ defined over the same
variables are equivalent if they define the same global cost
function, i.e. VP and VP ′ are identical.

3 Node and arc consistencies

Local consistency algorithms are characterized by the fact
that they reason at a subproblem level and that they preserve
equivalence. This is captured by the following notion:

Definition 3.1 For a valued CSP with a set of variables X ,
an equivalence preserving transformation (EPT) on W ⊆ X
is an operation which transforms cost functions whose scope
is included in W to produce an equivalent valued CSP.

In WCSP, basic EPT move costs between cost functions in
order to preserve the equivalence of the problem. To move
costs, it is necessary to be able to subtract costs from its ori-
gin. This is done using the operation defined as:

a b =

{
a− b : a �= k

k : a = k

Although we restrict our presentation to WCSPs for the
sake of simplicity, we remind the reader that such a pseudo-
difference operator exists in a large class of VCSPs (fair
VCSP [Cooper and Schiex, 2004]).

Algorithm 1 gives two elementary EPT. Project works in
the scope of a single constraint cS . It moves an amount of
cost α from cS to a unary cost function ci, i ∈ S, for a
value a ∈ di. If the cost α is negative, cost moves from

Figure 1: A simple WCSP and two arc consistent closures.

the unary cost function ci to the cost function cS . To guaran-
tee that the problem obtained after each application is valid,
one must guarantee that its cost functions remain in the val-
uation structure. To avoid negative costs, one must have
−ci(a) ≤ α ≤ mint∈�(S),t[{i}]=a{cS(t)}. Similarly, Projec-
tUnary works on a subproblem defined just by one variable
i ∈ X . It moves a cost α from the unary cost function ci to the
nullary cost function c∅ (with −c∅ ≤ α ≤ mina∈di

{ci(a)}
in order to get a valid WCSP).

Algorithm 1: Project and UnaryProject for soft arc and
node consistency enforcing

Procedure Project(cS , i, a, α)
ci(a)← ci(a)⊕ α;
foreach (t ∈ �(S) such that t[{i}] = a) do

cS(t)← cS(t) α;

Procedure UnaryProject(i, α)
c∅ ← c∅ ⊕ α;
foreach (a ∈ di) do

ci(a)← ci(a) α;

A variable i is said to be node consistent [Larrosa, 2002]

if 1) for all values a ∈ di, ci(a) ⊕ c∅ �= k, 2) there exists a
value b ∈ di such that ci(b) = 0. A WCSP is node consistent
(NC) if every variable is node consistent.

Stronger arc level consistencies rely on the notion of sup-
port. For simplicity, we introduce these notions for binary
WCSP but most have been generalized to arbitrary arities
(see [Cooper and Schiex, 2004]). A value b ∈ dj is a sup-
port for a value a ∈ di along cij if cij(a, b) = 0.

Variable i is arc consistent if every value a ∈ di has a sup-
port in every constraint cij ∈ C. A WCSP is arc consistent
(AC) if every variable is arc and node consistent.

When a value (i, a) has no support on a constraint, one
can create one using the Project operation. This is exempli-
fied in Figure 1a. This WCSP has two variables with 2 val-
ues a and b. Vertices, representing values, can be weighted
by unary costs. An edge connecting two values represents a
cost of 1. If two values are not connected, it means that the
corresponding cost is 0. Notice that value (1, b) has no sup-
port on variable 2. We can apply Project(c12, 1, b, 1). This
creates a unary cost of 1 for (1, b) which is now AC. Apply-
ing UnaryProject(1, 1) on the resulting WCSP (Figure 1b)
makes the problem AC and increases c∅ by 1.

But a different sequencing may lead to a different result. If
we first note that value (2, a) has no support on c12 and apply
Project(c12, 2, a, 1), we get the problem in Figure 1c. It is
now AC, but the lower bound c∅ is 0.

IJCAI-07
69

Given an initial WCSP P , any WCSP obtained from P
by iterated applications of Project and UnaryProject with
a positive integer α until a fixpoint is reached is called an
arc consistent closure of P . An AC closure of a WCSP P is
optimal if it has the maximum lower bound c∅ among all AC
closures of P . [Cooper and Schiex, 2004] showed that finding
an optimal AC closure for a WCSP is an NP-hard problem.

Alternative definitions of AC have therefore been pro-
posed. They exploit the notion of full support. b is a full
support for a on cij if cij(a, b) ⊕ cj(b) = 0. Replacing the
notion of support by the stronger notion of full supports in
AC is attractive but the corresponding property cannot be en-
forced [Schiex, 2000]. Restricted versions must be used.

Given a variable ordering <, variable i is directional arc
consistent (DAC) if every value a ∈ di has a full support
in every constraint cij ∈ C such that j > i. A WCSP
is DAC if every variable is DAC and node consistent. It is
full directional arc consistent (FDAC) if it is AC and DAC.
Several heuristics for ordering variables in FDAC have been
tried [Heras and Larrosa, 2006a].

Variable i is existential arc consistent [Larrosa et al., 2005]

if there exists a ∈ di such that ci(a) = 0 and a has a full
support on every constraint cij . A WCSP is existential arc
consistent (EAC) if every variable is EAC and node consis-
tent. It is existential directional arc consistent (EDAC) if it
is EAC, and FDAC. All these definitions can be seen as well
defined polynomial time heuristics trying to get closer to the
optimal closure, but without any guarantee.

4 Optimal arc consistency

From now on, we relax the definition of WCSP by allowing
rational costs. This mean we use the new valuation structure
SQ(k) = ([0, k],⊕,≥) where [0, k] denotes the set of rational
numbers (elements of Q) between (and including) 0 and k.

Definition 4.1 Given a WCSP P , a Soft Arc Consistent (SAC)
Transformation is a set of soft arc consistency operations
Project and UnaryProject which, when applied simultane-
ously, transform P into a valid WCSP.

Note that in this definition there is no precondition on the
costs moved individually by each EPT application. We just
want the final equivalent WCSP to be valid (with positive ra-
tional costs): this also guarantees that c∅ is a lower bound of
the optimal cost. Previously, [Affane and Bennaceur, 1998]

proposed to split integer costs by propagating a fraction wij

of the binary constraint cij towards variable i and the remain-
ing fraction 1 − wij towards j (where 0 ≤ wij ≤ 1), sug-

gested determining optimal wij but just used wij = 1
2 . [Ben-

naceur and Osamni, 2003] further suggested to use different
weights wiajb for every pair of values (a, b) ∈ di × dj . It
turns out that using one weight for each triple (i, j, a) where
a ∈ di, allows us to find optimal weights in polynomial time.

Theorem 4.2 If the valuation structure SQ(∞) is used, then
it is possible to find in polynomial time a SAC transformation
of P which maximizes the lower bound c∅ provided the arity
of the constraints in P is bounded.

Proof: Assume first as in [Cooper, 2003] that all infi-
nite costs have been propagated using standard generalized

AC [Mohr and Masini, 1988]. Then only finite costs can be
further propagated by Project and UnaryProject. We then
want to determine a set of SAC operations which, when ap-
plied simultaneously, maximize the increase in c∅. For each
cS ∈ C with |S| > 1, and for every variable i ∈ S, let pS

i,a

be the amount of cost projected from cS to ci(a) (remember
that costs moved from ci(a) to cS are counted as negative in
Project). Let ui ≥ 0 be the amount of cost projected by
UnaryProject from ci to c∅. Thus the problem is to maxi-
mize

∑
i ui while keeping the WCSP valid (no negative cost

appears) i.e.:

∀i ∈ X, ∀a ∈ di, ci(a)− ui +
∑

(cS∈C),(i∈S)

pS
i,a ≥ 0

∀cS ∈ C, |S| > 1, ∀t ∈ �(S) cS(t)−
∑
i∈S

pS
i,t[{i}] ≥ 0

All inequalities for which ci(a) = � =∞ or cS(t) = � can
be ignored since they are necessarily satisfied. The remain-
ing inequalities define a linear programming problem over Q
with O(ed + n) variables which can be solved in polynomial
time [Karmarkar, 1984].

A local version of the above theorem, limited to subprob-
lems of 3 variables, is actually the basis of the algorithm en-
forcing 3-cyclic consistency [Cooper, 2004]. In our case, a
problem will be called Optimal Soft Arc Consistent (OSAC)
when c∅ cannot be improved as above. Obviously, in SQ(∞),
OSAC is stronger than AC, DAC, FDAC or EDAC.

Note that if k < ∞, things get more involved since an in-
crease in c∅ can, through node consistency, lead to the dele-
tion of values, thus requiring a new optimization. Because
value deletion cannot occur more than nd times, this is still
polynomial time but the proof of optimality of the final clo-
sure is an open question.

To better understand how
OSAC works, consider the 4-
variable WCSP on the left.
All unary costs are equal to
0. All edges represent a unit
cost, omitted for clarity. c∅

is assumed to be 0. None of
the basic EPTs can transform
the problem into a valid one.
However, we may simultane-
ously perform the following
operations:

1. Project(c23, 2, c,−1): we move (a virtual) cost of 1
from value (2, c) to 3 pairs inside c23.

2. Project(c23, 3, a, 1), Project(c23, 3, b, 1): this moves
two unary costs of 1 to (3, a) and (3, b).

3. Project(c34, 3, a,−1), Project(c31, 3, b,−1): these two
unary costs are moved inside c34 and c31 respectively.

4. Project(c34, 4, c, 1): this moves a unary cost of 1 to
(4, c).

5. Project(c31, 1, a, 1), Project(c31, 1, c, 1): this moves
two unary costs of 1 to (1, c) and (1, a).

IJCAI-07
70

6. Project(c12, 1, a,−1), Project(c12, 2, c, 1): we reim-
burse our initial loan on value (c, 2).

7. Project(c14, 1, c,−1), Project(c14, 4, a, 1): we send a
unary cost to value (4, a).

Finally, the application of UnaryProject(4, 1) yields the
problem above with a lower bound c∅ = 1. This set of EPT
corresponds to a solution of the previous linear programming
problem where p23

2c = p34
3a = p31

3b = p12
1a = p14

1c = −1 and
p23
3a = p23

3b = p34
4c = p31

1a = p31
1c = p12

2c = p14
4a = u4 = 1 (all

other variables being equal to 0).

5 Properties

Theorem 4.2 shows that on SQ(∞), OSAC always provides
an optimal lower bound using only a set of arc level preserv-
ing operations. Actually, one can prove that for a large class
of WCSP the final problem obtained is an optimal reformula-
tion of the problem using the initial set of scopes.

Definition 5.1 A WCSP P is in-scope c∅-irreducible if there
is no equivalent WCSP Q with the same set of constraint

scopes as P and such that c
Q
∅ > cP

∅ (where cP
∅, c

Q
∅ are the

nullary constraints in P , Q).

Theorem 5.2 Let P be a WCSP over SQ(∞) using only fi-
nite costs. If no SAC transformation applied to P produces a

WCSP Q with c
Q
∅ > cP

∅, then P is in-scope c∅-irreducible.

Proof: This is a direct consequence of Lemma 5.2
in [Cooper, 2004].

Thus, for finite rational costs, OSAC can be used to estab-
lish in-scope c∅-irreducibility. This naturally does not work
when infinite costs (hard constraints) exist. The 3-clique 2-
coloring problem is inconsistent and is therefore equivalent
to the same problem with just c∅ set to � but no SAC trans-
formation can be applied to this WCSP.

Naturally, higher-order consistencies which may change
scopes could provide possibly stronger lower bounds: soft
3-consistency [Cooper, 2005] or soft path inverse consis-
tency [Heras and Larrosa, 2006b] applied to the previous 2-
coloring problem would detect infeasibility.

6 Experiments

We applied OSAC during preprocessing. The linear pro-
gramming problem defined by OSAC was solved using ILOG
CPLEX version 9.1.3 (using the barrier algorithm). The lower

bound produced is then compared to the lower bound pro-
duced by EDAC.

The first set of instances processed are random Max-CSP
created by the random vcsp generator1 using the usual four
parameters model. The aim here is to find an assignment that
minimizes the number of violated constraints. Four differ-
ent categories of problems with domain size 10 were gener-
ated following the same protocol as in [Larrosa et al., 2005]:
sparse loose (SL, 40 var.), sparse tight (ST, 25 var.), dense
loose (DL, 30 var.) and dense tight (DT, 25 var.) (see the
Benchmarks section of [de Givry et al., 2006b]).

SL ST DL DT

Optimum 2.84 19.68 2.22 29.62
EDAC lb. 0 4.26 0 9.96
OSAC lb. 0 12.30 0 19.80

Samples have 50 instances. The table above shows re-
spectively the average optimum value, the average values of
the EDAC lower bound and the average value of the OSAC
lower bound. On loose problems, OSAC and EDAC leave the
lower bound unchanged. This shows that higher level local
consistencies are required here. However for tight problems,
OSAC is extremely powerful, providing lower bounds which
are sometime three times better than EDAC.

The second set of benchmarks is defined by open
instances of the Radio Link Frequency Assign-
ment Problem of the CELAR [Cabon et al., 1999].2

These problems have been extensively studied (see
http://www.zib.de/fap/problems/CALMA) but the gap
between the best upper bound (computed by local search
methods) and the best lower bound (computed by ex-
ponential time algorithms) is not closed. The problem
considered are the scen0{7,8}reduc.wcsp and
graph1{1,3}reducmore.wcsp which have already
been through different strong preprocessing (see the Bench-
marks section in [de Givry et al., 2006b]).

scen07 scen08 graph11 graph13

Total # of values 4824 14194 5747 13153
Best known ub 343592 262 3080 10110
Best known lb 300000 216 3016 9925
EDAC lb 10000 6 2710 8722
OSAC lb 31453.1 48 2957 9797.5
Cpu-time 3530” 6718” 492” 6254”

As the table above shows, OSAC offers substantial im-
provements over EDAC, especially on the graph11 and
graph13 instances. For these instances, the optimality gap
UB−OSAC

UB
is reduced to 4% and 3% respectively. The poly-

nomial time lower bounds obtained by OSAC are actually
close to the best known (exponential time) lower bounds. The
cpu-time show the cpu-time for computing the OSAC lower
bound.

To actually assess the practical interest of OSAC for pre-
processing, we tried to solve problems where OSAC was ef-
fective: tight problems. The difficulty here lies in the fact

1www.inra.fr/mia/T/VCSP
2We would like to thank the french Centre Electronique de

l’Armement for making these instances available.

IJCAI-07
71

that CPLEX is a floating point solver while the open source
WCSP solver used (toolbar, section Algorithms in [de Givry
et al., 2006b]) deals with integer costs. To address this is-
sue, we use “fixed point” costs: for all WCSP considered, we
first multiply all costs by a large integer constant λ = 1, 000,
and then solve the linear programming problem defined by
OSAC using integer variables (instead of floating point). The
first integer solution found is used. The resulting problem
has integer costs and can be tackled by toolbar3. This means
that we shift from a polynomial problem to an NP-hard one.
In practice, we found that the problems obtained have a very
good linear continuous relaxation and are not too expensive
to solve as integer problems. Using a polytime rational LP
solver would allow time complexity to remain polynomial.

The Figure above reports cpu-time (up) and size of the tree
search (down) for dense tight problems of increasing size.
The time limit was set to 1800”. Four cpu-times are reported:
(1) OSAC LP: time taken by CPLEX to solve the first lin-
ear relaxation (2) OSAC MIP: time taken to get the first in-
teger solution, (3) MEDAC: time taken to solve the original
problem by maintaining EDAC [Larrosa et al., 2005] in tool-
bar with default parameters and a good initial upper bound,
(4) OSAC+MEDAC is the sum of OSAC MIP with the time
needed by toolbar to solve the OSAC problem (with the same
default parameters and upper bound).

Clearly, for small problems (with less than 29 variables),
OSAC is more expensive than the resolution itself. But as the
problem size increases, OSAC becomes effective and for 33
variables, it divides the overall cpu-time by roughly 2. The
number of nodes explored by toolbar in both cases shows the

3The code of toolbar has been modified accordingly: if a solution
of cost 2λ is known for example and if the current lb. is 1.1λ then
backtrack occurs since all global costs in the original problem are
integer and the first integer above 1.1 is 2, the upper bound.

strength of OSAC used as a preprocessing technique (remem-
ber that EDAC is maintained during search).

The strength of OSAC compared to local consistencies us-
ing full supports such as DAC is that is does not require an
initial variable ordering. Indeed, DAC directly solves tree-
structured problems but only if the variable ordering used for
DAC enforcing is a topological ordering of the tree. To eval-
uate to what extent OSAC can overcome these limitations,
we used random problems structured as binary clique trees as
in [de Givry et al., 2006a]. Each clique contains 6 variables
with domain size 5, each sharing 2 variables with its parent
clique. The overall tree height is 4 leading to a total number
of 62 variables, with a graph density of 11%.

The figure above uses a logarithmic scale for cpu-time for
different constraint tightnesses (below 40%, problems are sat-
isfiable). On these tree-like problems, two DAC ordering
were used. One is compatible with a topological ordering
of the binary tree (and should give good lower bounds), the
inverse order can be considered as pathological. The cpu-
times for MEDAC alone (default toolbar parameters and up-
per bound) and OSAC+MEDAC (as previously) are shown in
each case. Clearly, OSAC leads to drastic (up to 20 fold) im-
provements when a bad DAC ordering is used. Being used
just during preprocessing, it does not totally compensate for
the bad ordering. But, even when a good DAC ordering is
used, OSAC still allows impressive (up to 4 fold) speedups,
especially on tight problems.

Finally, we also tried to solve the challenging open CELAR
instances after OSAC preprocessing. Despite the strength of
OSAC, all problems remained unsolvable. Simultaneously
taking into account the strong structure of the problems as
in [de Givry et al., 2006a] is an attractive direction here.

7 Related work

As a reviewer pointed out, the LP program optimized for
OSAC is the dual of the relaxation of the 01-linear formu-
lation proposed in [Koster, 1999]. The LP formulation of
OSAC was also found in the image processing community
[Schlesinger, 1976; Werner, 2005].

If all constraints are binary over boolean domains, WCSP
reduces to weighted MAX-2SAT. A direct encoding of
MAX-2SAT to quadratic pseudo-boolean function optimiza-
tion [Boros and Hammer, 2002] exists: using 0 and 1 to repre-
sent respectively true and false,× for disjunction, (1−x) for

IJCAI-07
72

negation and + for combination of costs, a set of weighted
2-clauses can be transformed into a quadratic function. For
example, the clauses {a∨b, a∨ b̄}with weights 3 and 5 trans-
lates to the function f(a, b) = 3ab + 5a(1− b).

The problem of producing a so-called “equivalent
quadratic posiform representation” with a high constant term
(the equivalent of c∅) has been shown to reduce to the com-
putation of a maximum flow [Goldberg and Tarjan, 1988] in
an appropriately defined network [Boros and Hammer, 2002].
Given the close connection between maximum flow and lin-
ear programming, a fine comparison of the lower bound pro-
duced by OSAC on MAX-2SAT problems and by the max-
flow formulation of [Boros and Hammer, 2002] would be in-
teresting.

8 Conclusion

OSAC provides a polynomial time optimal arc consistent clo-
sure in a large class of WCSPs. Despite very preliminary test-
ing and comparatively high computational cost to enforce it,
OSAC already shows its usefulness as a preprocessing algo-
rithm for sufficiently large and tight problems.

Beyond this practical usefulness, we think that OSAC
brings to light the fact that, in order to increase their strength,
new soft local consistency algorithms should probably not be
restricted to the mechanical application of elementary oper-
ations but should instead try to identify worthy set of equiv-
alence preserving operations that should be simultaneously
applied. If maintaining OSAC during search is an obvious
but challenging next step, the construction of simpler limited
versions of OSAC should also be considered.

This approach is radically different from the ongoing trend
of using higher level consistencies (such as path [Cooper,
2005] or path inverse consistency [Heras and Larrosa,
2006b]). The extension of OSAC to such higher level con-
sistencies is also an open question.

References

[Affane and Bennaceur, 1998] M. S. Affane and H. Ben-
naceur. A weighted arc consistency technique for Max-
CSP. In Proc. of the 13th ECAI, pages 209–213, Brighton,
United Kingdom, 1998.

[Bennaceur and Osamni, 2003] H. Bennaceur and A. Os-
amni. Computing lower bounds for Max-CSP problems.
In Proc. 16th International IEA/AIE conference, 2003.

[Boros and Hammer, 2002] E. Boros and P. Hammer.
Pseudo-Boolean Optimization. Discrete Appl. Math.,
123:155–225, 2002.

[Cabon et al., 1999] B. Cabon, S. de Givry, L. Lobjois,
T. Schiex, and J.P. Warners. Radio link frequency assign-
ment. Constraints, 4:79–89, 1999.

[Cooper and Schiex, 2004] M. Cooper and T. Schiex. Arc
consistency for soft constraints. Artificial Intelligence,
154(1-2):199–227, 2004.

[Cooper, 2003] Martin C. Cooper. Reduction operations in
fuzzy or valued constraint satisfaction. Fuzzy Sets and Sys-
tems, 134(3), 2003.

[Cooper, 2004] M. Cooper. Cyclic consistency: a local re-
duction operation for binary valued constraints. Artificial
Intelligence, 155(1-2):69–92, 2004.

[Cooper, 2005] M. Cooper. High-order consistency in Val-
ued Constraint Satisfaction. Constraints, 10:283–305,
2005.

[de Givry et al., 2006b] S. de Givry, F. Heras, J. Lar-
rosa, E. Rollon, and T. Schiex. The SoftCSP
and Max-SAT benchmarks and algorithms web site.
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softcsp.

[de Givry et al., 2006a] S. de Givry, T. Schiex, and G. Ver-
faillie. Exploiting Tree Decomposition and Soft Local
Consistency in Weighted CSP. In Proc. of AAAI, 2006.

[Goldberg and Tarjan, 1988] A. Goldberg and R.E. Tarjan. A
new approach to the maximum flow problem. Journal of
the ACM, 35:921–940, 1988.

[Heras and Larrosa, 2006a] F. Heras and J. Larrosa. Intel-
ligent variable orderings and re-orderings in DAC-based
solvers for WCSP. Journal of Heuristics, 12(4-5):287 –
306, September 2006.

[Heras and Larrosa, 2006b] F. Heras and J. Larrosa. New In-
ference Rules for Efficient Max-SAT Solving. In Proc. of
AAAI, 2006.

[Karmarkar, 1984] N. Karmarkar. A new polynomial time
algorithm for linear programming. Combinatorica, 4:373–
395, 1984.

[Koster, 1999] A.M.C.A. Koster. Frequency Assignment—
Models and Algorithms. PhD. Thesis. UM (Maastricht,
The Netherlands), 1999.

[Larrosa et al., 2005] J. Larrosa, S. de Givry, F. Heras, and
M. Zytnicki. Existential arc consistency: getting closer to
full arc consistency in weighted CSPs. In Proc. of the 19th

IJCAI, Edinburgh, Scotland, August 2005.

[Larrosa, 2002] J. Larrosa. On arc and node consistency in
weighted CSP. In Proc. of AAAI, pages 48–53, Edmonton,
(CA), 2002.

[Mohr and Masini, 1988] R. Mohr and G. Masini. Good old
discrete relaxation. In Proc. of the 8th ECAI, pages 651–
656, Munchen FRG, 1988.

[Schiex et al., 1995] T. Schiex, H. Fargier, and G. Verfail-
lie. Valued constraint satisfaction problems: hard and easy
problems. In Proc. of the 14th IJCAI, pages 631–637,
Montréal, Canada, August 1995.

[Schiex, 2000] T. Schiex. Arc consistency for soft con-
straints. In Proc. of CP’2000, volume 1894 of LNCS,
pages 411–424, Singapore, September 2000.

[Schlesinger, 1976] M.I. Schlesinger. Syntactic analysis of
two-dimensional visual signals in noisy conditions. Kiber-
netika, 4:113–130, 1976. In Russian.

[Werner, 2005] T. Werner. A Linear Programming Ap-
proach to Max-sum Problem: A Review. Technical report
CTU-CMP-2005-25. Czech Technical University, 2005.
http://cmp.felk.cvut.cz/cmp/software/maxsum/

IJCAI-07
73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

