Tropical plants of constructed wetlands for wastewater treatment on looking at human and social sciences
Franz Fardin, Annick Hollé, A. da Lage, Pascal Molle, Jacques Haury

To cite this version:
Franz Fardin, Annick Hollé, A. da Lage, Pascal Molle, Jacques Haury. Tropical plants of constructed wetlands for wastewater treatment on looking at human and social sciences. 12. International Conference on Wetland Systems for Water Pollution Control, Oct 2010, Venise, Italy. hal-02754159

HAL Id: hal-02754159
https://hal.inrae.fr/hal-02754159
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tropical plants of constructed wetlands for wastewater treatment on looking at human and social sciences


* Social Sciences department, French Institute of Pondicherry (Umifre 21 – CNRS/MAEE), 10 Saint Louis Street, B.P.33, Pondicherry, 605001, India
** Laboratory of Social Dynamics and Spatial Recomposition (CNRS/UMR 7533), Geography Department, University Paris 8, 2 rue de la Liberté, 93526, Saint-Denis Cedex, France
(E-mail: franz.fardin@ifpindia.org; annick.holle@free.fr)
*** Geography Department, University Paris 8 and Laboratory of Physical Geography (CNRS/UMR 8591), 1 place Aristide Briand, 92195, Meudon Cedex, France
(E-mail: Emmanuèle.Gautier@crs-bellevue.fr)
**** Spaces, Nature and Culture (CNRS/UMR 8185), Geography Department, University Paris 8, 2 rue de la Liberté, 93526, Saint-Denis Cedex, France
(E-mail: dir.ufr.tes@univ-paris8.fr)
***** Cemagref, Water Quality And Pollution Prevention Research Unit, 3bis quai Chauveau - CP 220, 69336, Lyon Cedex 09, France
(E-mail: pascal.molle@cemagref.fr)
****** Laboratory of Ecology and PhytoSanitary Sciences, Agrocampus Rennes, 65 rue de Saint Brieuc, 35000, Rennes, France
(E-mail: jacques.haury@agrocampus-ouest.fr)

Keywords Biodiversity; constructed wetland; cultural geography; ethnobotany; macrophytes; tropical area

INTRODUCTION

We propose a synthesis of the plant taxa experimented in constructed wetlands (CWs), bringing to the fore their complementary values and the cultural and social importance of the choice of plant species. A geohistorical analysis of archaeological and historical data reveals the antiquity of the use of wetland plants, especially in tropical and subtropical areas (Nicholas, 1998). The development of some civilisations at the beginning of history was based on some macrophytes. Nowadays, the use of tropical wetland plants has evolved in line with the cultural, social and economic dynamics, especially following globalization. According to the United Nations Development Programme, “in dryland India, biodiversity related products usually account for about 20% of the incomes of poor rural people. But during droughts they account for more than 40% because cultivated crops fail” (UNDP, 2003: 124). With regards to cultural geography and ethnobotany, the role of spontaneous flora can be looked at as determining the social and cultural integration of such ecotechnologies for wastewater treatment. This characteristic implies to advocate taking biodiversity into account in order to respect the whole values devolved upon the macrophytic plants. Macrophytes diversity is rarely considered in the development of CWs techniques, whereas it has been demonstrated that macrophytes diversity improves the functioning and services provided by wetlands (Engelhardt and Ritchie, 2001). It has even been pointed out that plant diversity can improve CWs efficiency (Zhanga et al., 2010). But the choice of macrophytes species for CWs is linked to the type of system, and so to the quality of the effluents which have to be treated (Vymazal, 2007). In the previous decade, the number of taxa experimented in CWs has been on the constant increase, answering a request of adaptation related to the geographical spread of that technology.

RESULTS AND DISCUSSION

According to 77 references, 226 planted or spontaneous taxa appeared in CWs of different parts of the world. Four species are more used and so more studied than any others: *Eichhonia crassipes*
There are 400 different uses. From a scientific viewpoint, vegetal matter is considered as potential energy and bio-fertilizer resource. Moreover, woody species of wetlands seem not to be widely used in CWs, whereas many are a key-resource. A single example, the palm tree Borassus flabellifer L., commonly found in and around south-eastern India’s natural and manmade wetlands, is considered to have more than 400 different uses.

CONCLUSION

Thus, choosing to plant local macrophytes species in CWs can be considered as an asset for the development of CWs, since it can be a part of global development projects which integrate cultural, social and economic characteristics. But, because of the ability of some macrophytes to accumulate toxic elements, human utilisation of CWs macrophytes has to be managed considering health damage potentiality. Spontaneous macrophytes diversity has to be appreciated for its key-role in the development of CWs in developing countries, not only from an ecological point of view, but also from cultural, social, sanitary and economic views.

REFERENCES


