Global warming potential from French grassland / livestock systems
Anne-Isabelle Graux, Romain Lardy, Gianni Bellocci, Jean-François Soussana

To cite this version:
Anne-Isabelle Graux, Romain Lardy, Gianni Bellocci, Jean-François Soussana. Global warming potential from French grassland / livestock systems. Colloque ACCAE - Adaptation au Changement Climatique de l’Agriculture et des Ecosystèmes, Institut National de Recherche Agronomique (INRA). UR Unité de recherche sur l’Ecosystème Prairial (0874)., Oct 2010, Clermont-Ferrand, France. hal-02754299

HAL Id: hal-02754299
https://hal.inrae.fr/hal-02754299
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Global warming potential from French grassland / livestock systems

Anne-Isabelle Graux
Romain Lardy, Gianni Bellocchi, Jean-François Soussana
(INRA - French National Institute for Agricultural Research)

Clermont-Ferrand (France), October 2010, 20-22
Global warming potential (GWP) is a measure of how much a given mass of greenhouse gas (GHG) contributes to global warming. Equal to 1 for CO\textsubscript{2}, GWP is calculated by adding CH\textsubscript{4} and N\textsubscript{2}O emissions to the net ecosystem exchange (NEE) values (IPCC, 2007a):

\[GWP = k_{N_2O} \cdot N_2O + k_{CH_4} \cdot CH_4 - NEE \]

- A positive GWP indicates a net source of GHG to the atmosphere and conversely
- Of the three GHG exchanged by grasslands, CO\textsubscript{2} is exchanged with soil and vegetation, N\textsubscript{2}O is emitted by soils, and CH\textsubscript{4} is emitted by livestock at grazing
Grassland / livestock systems & Global warming / 2

Grassland / livestock systems differ for their impact on the magnitude of GHG fluxes and their GWP (FAO, 2006)

- Livestock systems generate 18% of global GHG emissions, with considerable variability depending on both the animal (breed, age, kind of production, physiological stage, etc.) and the diet (level of intake, forage / concentrate proportion, feed processing, etc.)
- Combined effects of elevated CO$_2$ and climate change may enhance net primary production and carbon (C) stocks, reducing GHG emissions by sequestering C in the soils

A model-based study was employed to simulate prospective changes and feedbacks between grassland / animal performances and GWP in France
An array of scenarios was sketched to represent climate-soil-plant-management interactions under climate changes and CO₂ enrichment in France.

<table>
<thead>
<tr>
<th>Management</th>
<th>Sown Irrigated (SI)</th>
<th>Rainfed (S)</th>
<th>Permanent Intensive (PI)</th>
<th>Extensive (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>monoculture 100% Lolium perenne L.</td>
<td>320</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>multispecies 20% Trifolium repens L.</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fertilization (kg N ha⁻¹)</td>
<td></td>
<td>April 15</td>
<td>April 15</td>
<td></td>
</tr>
<tr>
<td>Irrigation (% of needs)</td>
<td></td>
<td>June 30</td>
<td>June 01</td>
<td></td>
</tr>
<tr>
<td>Cutting dates</td>
<td></td>
<td>August 15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Grazing periods</td>
<td></td>
<td>October 15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stocking density (Livestock unit ha⁻¹)</td>
<td></td>
<td>-</td>
<td>July 20 to August 05</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>October 15 to November 01</td>
<td>0.8</td>
</tr>
</tbody>
</table>
The simulation study / 2

Projections of climate conditions of near future (2020-2049) and far future (2070-2099) were generated from the Special Report on Emission Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC)...

<table>
<thead>
<tr>
<th>SRES</th>
<th>GCM</th>
<th>Institute</th>
<th>Downscaling method</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>Variable corrections (VC)</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>Anomalies</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>VC</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>Statistical disaggregation (SD) 1</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>SD</td>
<td>2</td>
</tr>
<tr>
<td>A1B</td>
<td>CGCM 3.1 T63</td>
<td>CCCMA</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>NASA/GISS AOM</td>
<td>GISS</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>CGCM 2.3.a</td>
<td>MRI</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>A1B</td>
<td>CCSM 3.0</td>
<td>NCAR</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>ARPEGE</td>
<td>CNRM</td>
<td>VC</td>
<td></td>
</tr>
</tbody>
</table>

... crossing a range of global circulation models (GCM), downscaling methods / initializations in order to encompass the whole range of uncertainty associated with current climate modelling
The Pasture Simulation Model (PASIM) was employed to generate a variety of outputs related to GWP under future (2020-2049, 2070-2099) and near past (1970-1999) climate conditions.

INPUT

- **Climate**
 - Radiation
 - Precipitation
 - Temperature
 - Vapor pressure
 - Wind speed
 - CO₂
 - NH₃

- **Soil**
 - Texture
 - SWC
 - Conductivity
 - Density
 - Depth

- **Vegetation**
 - Multi or monospecies
 - With or without legumes

- **Herbivores**
 - Type (heifers, suckler or dairy cows, sheeps)
 - LW, BCS, age, MP\textsubscript{pot,max}, at turnout to grass

- **Management**
 - Mowing
 - N fertilization
 - Grazing
 - Tillage

OUTPUT

- **Fluxes**
 - GHG (CO₂, N₂O, CH₄)
 - C, N, H₂O & energy fluxes ...

- **States**
 - Forage provision
 - MP, LW and BCS
 - SOM
 - SWC ...

- **Optimized management**
 - Mowing
 - N fertilization
 - Grazing
 - Irrigation

https://www1.clermont.inra.fr/urep/modeles/pasim.htm
Changes in rainfall and air temperatures: SRES A2, ARPEGE model, variable correction downscaling

Avignon Mirecourt
Changes in the GWP:
irrigated temporary grassland, shallow soil

Avignon

Mirecourt
Changes in the NEE:
irrigated temporary grassland, shallow soil

Avignon

Mirecourt
Changes in the N_2O: irrigated temporary grassland, shallow soil

Avignon

Mirecourt
Overall findings

- While there are site-to-site and climate-to-climate variations, a conclusion is that the GWP may decrease in the future as result of increased soil dryness and C storage

- All systems were observed to be net sinks of C, with temporary irrigated grasslands offering the greatest potential to mitigate GHG in the future thanks to higher NEE

- Strategies to enhance fertilizer use efficiency, animal feed and return of animal waste could be explored as adaptation & mitigation measures
Thank you for your attention!!!

Research supported by the Auvergne Region of France and by the ANR CLIMATOR project