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Calibrating Mathematical Programming Spatial Models1 
 

Quirino Paris (University of California, Davis, USA), Sophie Drogué (INRA-
AgroParisTech, France) and Giovanni Anania (University of Calabria, Italy) 

 
 
 

1. Introduction  
 

In the area of trade, modelers have a wide variety of tools at their disposal: spatial and 
non spatial partial equilibrium models, computable general equilibrium models. There is 
no superiority between them but rather a better adequacy or efficiency to deal with the 
specific issue at hand. Pros and cons of the different classes of models are addressed, 
among the others, in Anania (2001), Bouët (2008), Francois and Reinert (1997), and van 
Tongeren, van Meijl and Surry (2001). Partial equilibrium models tend to better 
accommodate explicit representations of complex policy instruments, allow for a more 
detailed representation of markets and require less restrictive assumptions. Computable 
general equilibrium models can deal with interdependence among sectors and income and 
employment effects.  

In this paper we deal with spatial partial equilibrium models, e.g. with partial equilibrium 
models which are “naturally” able to reproduce bilateral trade flows without having to 
resort to the Armington assumption (Armington, 1969). These models are particularly 
useful when the market, or the markets, considered are relatively small with respect to the 
countries’ overall economy and relevant trade policies include discriminatory ones, i.e. 
policies which discriminate by country of origin (destination) of imports (exports), such 
as preferential tariffs, country specific tariff rate quotas or embargos. In particular, the 
focus is on mathematical programming spatial partial equilibrium models.     

Empirical models of international trade are subject to a common pitfall that is represented 
by the discrepancy between actual and optimal trade flows, that is, between realized 
commodity flows in a given year and the import-export patterns generated by the model 
solution for the same year. In fact, mathematical programming models tend to suffer from 
an “overspecialization” of the optimal solution with respect to observed trade flows. The 
main reason for this discrepancy often originates with the transaction costs per unit of 
commodity bilaterally traded between two countries; generally this piece of crucial 
information is measured with a degree of imprecision which is well above that of other 
parameters in the model. When this event occurs, a calibration of the trade model for the 
given base year allows for more effective policy simulations. Different approaches have 
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research project funded by the European Commission and by the “European Union policies, economic and 
trade integration processes and WTO negotiations” research project funded by the Italian Ministry of 
Education, University and Research (Scientific Research Programs of National Relevance 2007) is 
gratefully acknowledged. The views expressed in this paper are the sole responsibility of the authors and do 
not necessarily reflect those of the European Commission. 
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been used in the past to calibrate mathematical programming trade models, mostly based 
on including in the model additional constraints limiting the space of feasible solutions. 
The original calibration procedure proposed in this paper follows the approach used in 
Positive Mathematical Programming (PMP) (Howitt, 1995a and 1995b).  

The paper is structured in two parts. The first part discusses the proposed calibration 
procedure with reference to a variety of mathematical programming spatial transportation 
and trade models; the second part provides numerical examples of the implementation of 
the calibration procedure proposed for models discussed in the first part. 
 
2. Calibrating Mathematical Programming Spatial Trade Models 
 
2.1 The Classical Transportation Model 
 
We begin with a simple transportation model involving J importing and I exporting 
countries. We assume a single homogeneous commodity whose quantities consumed by 
the j-th destination, x j

D , and supplied by the i-th origin, xi
S , are known together with the 

realized trade flow, xij , and the fixed accounting transaction cost per unit of commodity, 

tcij , transported between country pairs. In all statements, indexes range as 

i  1,..., I  and j  1,..., J .   

This simple model can be stated as follows: 

                                      minTTC  tcij
j1

J


i1

I

 xij              (1) 

                Dual 
              variables 

subject to   
1

I
D
j ij

i

x x


     pj
D           (2) 

 

    xij
j1

J

  xi
S    pi

S          (3) 

 
and xij  0 . The interpretation of the dual variables pj

D  and  pi
S  corresponds, 

respectively, to commodity prices at destination and at origin. 

In general, transaction costs are estimated imprecisely, often extending the same unit cost 
to routes for which a direct figure is not available. An initial goal of the proposed 
calibration procedure, therefore, is to obtain a correct marginal transaction cost by means 
of a dual parameter, say ij , that is consistent with the structure of the transportation 

model and the knowledge of realized trade flows. Thus, the corresponding linear 
programming model minimizes the total transaction cost, TTC, subject to conventional 
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demand and supply constraints together with calibration constraints as in the following 
primal specification: 

   minTTC  tcij
j1

J


i1

I

 xij             (4) 

                Dual 
              variables 

subject to   
1

I
D
j ij

i

x x


     pj
D           (5) 

 

    xij
j1

J

  xi
S    pi

S          (6) 

 
       xij  xij    ij           (7) 

 
and xij  0 . ij expresses the difference between the accounting and the effective 

transaction cost per unit of bilaterally traded commodity. While dual variables pj
D  and 

pi
S  are nonnegative by virtue of the specified direction of the associated constraints, 

nothing can be said a priori about the sign of dual variables ij  associated with 

calibration constraints (7). In fact, differently from the traditional PMP approach (Howitt, 
1995a and 1995b), in this paper the calibrating constraints are stated as a set of equations, 
rather than inequalities. This means that either a reduction or an increase of the 
accounting – and, often, poorly measured – transaction cost is admissible. The 
specification of the calibration constraints admits the common event of “self-selection” 
that occurs when the realized trade between a given pair of countries is null. The 
economic justification for this occurrence is attributed to the “fact” that the marginal cost 
of trade is strictly greater than the associated marginal revenue.  

The dual specification of the transportation model (4)-(7) is stated as the maximization of 
the net value added, NVA, of the transportation industry subject to the economic 
equilibrium constraints according to which its marginal cost per unit of commodity 
exchanged between a given pair of countries must be greater than or equal to its marginal 
revenue, that is 

   max NVA  pj
D

j1

J

 x j
D  pi

Sxi
S

i1

I

  ij xij
j1

J


i1

I

         (8) 

         Dual 
         variables 
subject to     pj

D  pi
S  (tcij  ij )         xij        (9) 

 
and pj

D  0,  pi
S  0,  ij  free variable.  The term (tcij  ij )  constitutes the effective 

transaction cost per unit of commodity transported from the i-th to the j-th countries.  The 
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supporting idea is that information about transaction costs is more difficult to obtain than 
information on trade flows.  Hence, the utilization of all the available information –
whether the accounting and, admittedly, imprecise transaction costs and the more 
accurate trade data – should provide a better specification of the international trade 
model. The level and the sign of the dual variable ij  resulted from the solution of model 

(4)-(7) will determine whether the accounting transaction cost tcij  was originally either 

over- or under-estimated. The crucial realization, therefore, is that a solution of either the 
primal or the dual models defined above should not be regarded as a tautological 
statement but as a way to elicit the complete and more accurate marginal transaction costs 
to be used in subsequent analyses. 

With knowledge of the dual variables ij  obtained from the solution of LP model (4)-(7), 

say ij
* , a second phase LP model can be stated as follows: 

   minTTC  (tcij  ij
* )

j1

J


i1

I

 xij                         (10) 

        Dual 
        variables 

subject to   
1

I
D
j ij

i

x x


        pj
D                    (11) 

 

    
1

J
S

ij i
j

x x


       pi
S                    (12) 

 
with xij  0 , i  1,..., I  and j  1,..., J .  

Classical PMP modifies a linear objective function by adding a quadratic function which 
accounts for additional costs inferred based on the difference between the observed 
realization and the solution from the uncalibrated model. The calibration procedure 
proposed in this paper does not alter the objective function, but only “corrects” one set of 
its parameters (bilateral transaction costs). The classical PMP approach assumes that 
costs in the uncalibrated model can be only underestimated, while the approach proposed 
assumes that transaction costs can be either underestimated or overestimated (ij

*  are 

unrestricted). Classical PMP and the calibration procedure proposed here both assume the 
model is well specified in all its parts but in the parameters being subject to the 
calibration; this means, for example, that if the model is ill-designed with respect to the 
representation of existing policies, these errors will be captured by the ij

*  and subsequent 

policy simulations will yield distorted results.  

The empirical solution of model (10)-(12)  should be carried out using all the available 
information, that includes the realized levels of activities. When the initial values of the  
trade flow variables are set equal to the realized level of trade  flows, model (10)-(12) 
calibrates perfectly all its components. If initial values are set at levels different from the 
realized ones there is the possibility that the empirical model will detect alternative 
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optimal trade flow matrices (Dantzig, 1951; Koopmans, 1947; Paris, 1981). However, the 
optimal solution always reproduces quantities consumed and produced in each country as 
well as demand and supply prices; this occurs because the structure of the objective 
functions at the optimum and that of the constraints is identical. To illustrate this 
assertion it is sufficient to specify the dual of model (10)-(12), that is    

   max NVA  pj
D

j1

J

 x j
D  pi

S

i1

I

 xi
S          (13) 

        Dual 
        variables 
subject to    pj

D  pi
S  (tcij  ij

* )      xij          (14) 

 
with pj

D  0,  pi
S  0 .  Constraints (5), (6) and (9) in the model with calibrating 

constraints are identical to constraints (11), (12) and (14) in the model without calibrating 
constraints. Furthermore, at the optimal solution the primal and dual objective functions 
in the two models are equal. This establishes the equivalence of the two specifications. 

A more informative discussion about the correct adjustment appearing in the objective 
function of the calibrating model (10)-(12) involves the Lagrangean function of model 
(4)-(7): 

        L  tcij xij
j1

J


i1

I

  pj
D (x j

D  xij
i1

I


j1

J

 )  pi
S ( xij

j1

J


i1

I

  xi
S )  ij

j1

J

 (xij  xij
i1

I

 )      (15) 

 
with derivatives 
 

L
xij

 tcij  pj
D  pi

S  ij  0 , 1,..., ; 1,...,i I j J  ,             (16) 

 
which indicate the correct adjustment of the per-unit transaction costs in the form 
of pj

D  (tcij  ij )  pi
S , as given in constraints (9) and (14). Hence – because x j

D  and 

xi
S are exogenously determined and the trade flows xij are the only variables – the 

objective function (10) expresses the desired and required parameterization for obtaining 
a set of multiple optimal solutions which contains the one that mimics the realized trade 
pattern. 

The stylized nature of the above LP structures may be enriched with a more appropriate 
specification of an international trade model involving the paraphernalia of tariffs, 
subsidies, quotas, penalties, preferential trade treatments, exchange rates, etc. Hence, 
within reasonable parameter intervals, models (10)-(12) and (13)-(14) – augmented of the 
appropriate constraints – can be used to evaluate the likely effects of changes in policy 
interventions regarding tariffs, subsidies and other control parameters of interest. 
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2.2 A Samuelson-Takayama-Judge Model of International Trade with One 
Commodity 

 
Analogous discussion may take place when explicit total supply and total demand 
functions for each country are available. In this case, the grouping between importing and 
exporting countries cannot be done in advance of solving the problem. Let us, therefore, 
define an index that covers all the regions (countries) without distinction between 
importers and exporters, , 1,...,i j R . The known inverse demand function of the single 

commodity for the j-th country is assumed as D D
j j j jp a D x  , while the known inverse 

supply function for the same homogeneous commodity is assumed as S S
i i i ip b S x  . The 

coefficients , ,j j ia D S  are known positive scalars. Parameter ib  is also known but may be 

either positive or negative.  In this specification, the quantities D
jx  and S

ix are no longer 

fixed, as in the previous section, and must be determined as part of the solution together 
with the trade flows ijx . We assume the availability of information concerning realized 

trade flows, ijx , and – as a consequence – knowledge of total quantities demanded, D
jx , 

and supplied, S
ix , in each country.   

The Samuelson-Takayama-Judge (STJ) model (Samuelson, 1952; Takayama and Judge, 
1971) exhibits an objective function that maximizes a quasi-welfare function (QWF) 
given by the difference between the areas below the demand and above the supply 
functions which is netted out of total transaction costs. This specification corresponds to 
the maximization of the sum of consumer and producer surpluses netted out of total 
transaction costs.  

The two elements of the QWF function – the demand and supply functions, on one side, 
and the total transaction costs, on the other side – may be subject to imprecise 
measurements. We assume that only transaction costs are measured with imprecision. In 
fact, this is the crucial source for the discrepancy between realized and optimal traded 
quantities and total quantities demanded and supplied in each country, obtained from the 
solution of the STJ model.2  

When information about the realized trade pattern, ijx  , is available, the specification of 

the primal model is as follows: 

   
1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QWF a D x x b S x x tc x
   

             (17) 

         
               Dual 
            variables 

                                                 
2 Jansson and Heckelei (2009) propose a calibration procedure for mathematical programming spatial 
equilibrium models based on the estimation of transportation costs and prices, assumed to be stochastic, 
with measurement errors independent and identically distributed with known variances. 
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subject to        
1

R
D
j ij

i

x x


     D
jp                               (18) 

1

 
R

S
ij i

j

x x


     S
ip           (19) 

   ij ijx x     ij           (20) 

 
and all nonnegative variables, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  . 

 
The dual of model (17)-(20) may be stated as follows 
 

            
1 1 1 1 1 1

min / 2 / 2
R R R R R R

D D S S
j j j i j i ij ij ij ij

j i i j i j

TCMO x D x x S x x tc x
     

                     (21) 

        
 
                 Dual  
             Variables 
subject to  D D

j j j jp a D x    D
jx              (22) 

 
   S S

i i i ib S x p     S
ix              (23) 

 
   ( )S D

i ij ij jp tc p      ijx              (24) 

 
and 0, 0, 0D S

j i ijx x x   ; ij  a free variable, ( , 1, 2, , )i j R  . The economic 

interpretation of the objective function is given by the minimization of the total cost of 
market options and of the differential total transaction costs. When interpreting a dual 
model it is convenient to suppose that a second economic agent – external to the primal 
problem – desires to “take over the enterprise” of the primal economic agent. In this case, 
the dual agent will have to quote prices and quantities that will reimburse the primal 
agent of its “potential profit” (consumer and producer surpluses) plus the differential total 
transaction costs.  The dual constraints express the demand and supply functions as well 
as the condition that “marginal transaction cost” of the traded commodity between each 
pair of countries is greater than or equal to its “marginal revenue.”  

The solution of model (17)-(20) provides an estimate of the dual variables associated 
with the calibration constraints, *

ij , that can be utilized for adjusting the transaction costs 

as in the following calibrating model:  

1 1 1 1

max ( / 2) ( / 2) ( )
R R R R

D D S S
j j j j i i i i ij ij ij

j i i j

QWF a D x x b S x x tc x

   

       
         (25) 
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        Dual 
        variables 

subject to       
1

R
D
j ij

i

x x


                   D
jp                    (26) 

       
1

R
S

ij i
j

x x


                  S
ip         (27) 

 
and, 0, 0, 0D S

j i ijx x x   ; ( , 1, 2, , )i j R  .  

The adjustment of the per-unit transaction costs follows the same justification as 
presented in the previous section. 
 
The Lagrangean function of problem (17)-(20) is: 
 

   

1 1 1 1

1 1 1 1 1 1

( / 2) ( / 2)

( ) ( ) ( )

R R R R
D D S S

j j j j i i i i ij ij
j i i j

R R R R R R
D D S S
j ij j i i ij ij ij ij

j i i j i j

L a D x x b S x x tc x

p x x p x x x x

   

     

    

     

  

            (28) 

with relevant conditions: 
 

0D S
j i ij ij

ij

L
p p tc

x


    


, and  0ij

ij

L
x

x





 .                         (29) 

 
This implies model (25)-(27) calibrates total quantities demanded and supplied in each 
country. When the available information is fully exploited and the solution is searched 
providing observed trade flows as initial values of the trade flow variables, the model 
calibrates perfectly. However, in general, the calibrated model may show multiple 
optimal solutions, i.e. solutions where different sets of trade flows are associated to the 
same quantities produced and consumed in each country, the same total incurred adjusted 
transaction costs (calculated over all trade flows), and, as a result, the same value of the 
objective function. The possibility of multiple optimal solutions in terms of trade flows 
being associated to the unique optimal solution in terms of countries’ net imports and 
exports does not come as a surprise because this is a common feature of this class of 
models (Takayama and Judge, 1971; Paris, 1983), and the proposed calibration procedure 
only modifies the parameters in the model without altering its structure. 

Let us assume now that only information about total demand, xr '
D , and total supply, xr

S , 
is available. The STJ model assumes the following specification: 
 

 
1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QSW a D x x b S x x tc x
   

              (30) 
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                Dual 
             Variables 

subject to        
1

R
D
j ij

i

x x


    D
jp              (31) 

       
1

R
S

ij i
j

x x


    S
ip               (32)  

         D D
j jx x    D

j               (33) 

 
          S S

i ix x    S
i               (34) 

 
and, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  .  

 
The solution of model (30)-(34) provides an estimate of the dual variables associated 
with the calibration constraints, * *and D S

j i  , that can be utilized for adjusting the trade 

transaction costs as in the following calibrated model: 
 

  * *

1 1 1 1

max ( / 2) ( / 2) ( )
R R R R

D D S S S D
j j j j i i i i ij i j ij

j i i j

QWF a D x x b S x x tc x 
   

               (35) 

 
                 Dual 
             Variables 

subject to        
R

D
j ij

i

x x    D
jp               (36) 

       
1

R
S

ij i
j

x x


    S
ip               (37)  

 
and, 0, 0, 0D S

j i ijx x x   , ( , 1, 2, , )i j R  .  

The solution of model (35)-(37) calibrates total demanded and supplied quantities. 

In order to justify the adjustments of the transaction costs in equations (35), the 
Lagrangean function of model (30)-(34) comes to the rescue: 
 

                           

1 1 1 1

1 1 1 1

1 1

( / 2) ( / 2)

( ) ( )

( ) ( )

R R R R
D D S S

j j j j i i i i ij ij
j i i j

R R R R
D D S S
j ij j i i ij

j i i j

R R
S S S D D D
i i i j j j

i j

L a D x x b S x x tc x

p x x p x x

x x x x 

   

   

 

    

   

   

  

   

 

                (38) 

with relevant conditions 
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0D S S D
ij j i i j

ij

L
tc p p

x
 

      


,  or    D S S D
j i ij i jp p tc       ,     (39)  

and      0ij

ij

L
x

x





                             (40) 

       
  
These conditions define the adjusted per-unit transaction cost ( S D

ij i jtc     ) needed for 

the model to calibrate observed demanded and supplied quantities.3 
 
 
2.3  A Multi-Commodity Samuelson-Takayama-Judge Model of International Trade  

The extension of international trade models to multi-commodity exchanges does not 
require any substantial adjustment to the structure of the mathematical programming 
models discussed above. It requires, however, a considerably larger quantity of 
information that, if and when available, imposes the need of a careful management.  The 
major shift from previous models is constituted by the specification of systems of 
demand and supply functions for each country. It follows that a properly defined system 
of demand and supply functions – for each country involved in the commodity exchange 
– ought to exhibit full matrices of demand and supply cross-price elasticities. This is a 
formidable information requirement that, when overcome, may produce adequate 
empirical results as well as sensible policy analyses. 

We assume K homogeneous commodities. Each country owns a system of K inverse 
demand functions, D D

j j j j p a D x , j = 1,…, R , and an inverse system of K supply 

functions, S S
j j j j p b S x , 1,...,j R . The matrix of nominal per-unit transaction costs is 

defined in three dimensions as ij   T tc , , 1,...,i j R , where tcij is the vector of per unit 

transaction costs from country i to country j for the K commodities and tcrr is the vector 
of domestic transaction costs in country r. We assume that information about the trade 
pattern for all commodities, ijx , and, hence, total demands, D

jx , and total supplies, D
ix , is 

available for a given base year.  

A special comment regards matrices jD  and jS  , the matrices of cross-derivatives of the 

j-th country system of demand and supply functions. In principle, demand and production 
theory requires neither the symmetry nor the positive semidefinitess of such matrices. 
However, the statement of the STJ problem in the form of maximizing a QWF objective 
function that assumes a quadratic structure imposes the requirement that the matrices jD  

and jS  be symmetric and positive semidefinite; this is quite a strong assumption, since 

there is no reason why jD  and jS  should satisfy these conditions.  In section 2.4 this 

                                                 
3 Based on (39), an alternative interpretation of the role played by the and S D

i j  parameters could be in 

terms of adjustments of the intercepts of supply and demand functions.  
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requirement will be relaxed and the appropriate mathematical programming problem will 
be specified. 

2.3.1 Case 1: demand and supply functions are well measured at different market levels 

We will consider two different cases. The first one is when demand and supply functions 
are measured at different levels, e.g. the supply function at the farm gate and the demand 
function at retail, and the only information in the model which is measured with 
imprecision are transaction costs.  

Except for the dimensionality of the price, quantity and transaction cost vectors, the 
corresponding STJ model exhibits a structure that is similar to that of model (17)-(20): 
 

1 1 1 1

max ( / 2) ( / 2)
R R R R

D D S S
j j j j i i i i ij ij

j i i j

QWF
   

        a D x x b S x x tc x                    (41) 

       Dual 
       variables 

subject to   
1

R
D
j ij

i

 x x       D
jp          (42) 

 

   
1

R
S

ij i
j

x x       S
ip          (43) 

 
     ij ijx x        ij          (44) 

 
with all nonnegative variables. The dual of model (41)-(44) is obtained in the usual 
fashion, by formulating the associated Lagrangean function, deriving the Karush-Kuhn-
Tucker (KKT) conditions and, furthermore, by simplifying the Lagrangean function, 
which assumes the role of objective function in the dual problem.  
 

 
1 1 1 1

min / 2 / 2
R R R R

D D S S
j j j i i i ij ij

j i i j

TCMO
   

      x D x x S x x             (45) 

        
                Dual 
            Variables 
subject to  D D

j j j j p a D x   D
jx          (46) 

 
   S S

i i i i b S x p               S
ix          (47) 

 
   ( )S D

i ij ij j  p tc p   ijx          (48) 
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and all nonnegative variables except ij  which is regarded as a vector of free K variables. 

The economic interpretation of model (45)-(48) is similar to that one given for dual 
model (21)-(24). 

The solution of model (41)-(44) provides estimates of dual variables ij , say *
ij , that 

can be used to define effective transaction costs along the line of the PMP methodology 
proposed above.4 Hence, the calibrating STJ model for this more general international 
trade specification can be assembled as in the following structure 
 

 
1 1

*

1 1

max ( / 2) ( / 2)

                    ( )

R R
D D S S

j j j j i i i i
j i

R R

ij ij ij
i j

QSW
 

 

    

 

 



a D x x b S x x

tc x
            (49)  

        Dual 
                 variables 

subject to                 
1

R
D

ij j
i

x x       D
jp          (50) 

 

   
1

R
S

ij i
j

x x       S
ip          (51) 

 
with all nonnegative variables. The solution of model (49)-(51) will calibrate precisely 
the realized demanded and supplied quantities.    

Extension 1:  Estimation of Systems of Demand and Supply Functions 
 
When information about the vectors of total demand quantities, D

jtx , and supply 

quantities, S
itx , is available for a number of T years – together with the corresponding 

demand prices, D
jtp , and supply prices, S

itp , t  1,...,T , it is possible to estimate systems 

of demand and supply functions for each country. This estimation is performed in the 
same spirit of PMP; it attempts to utilize – and exploit in a logical and consistent way – 
all the available information. 
 
Demand Functions 
A least-squares approach is proposed for estimating the system of demand functions. In 
order to satisfy the integrability condition – which admits the definition of the proper 

                                                 
4 Bauer and Kasnakoglu (1990) used the PMP approach to calibrate a quadratic programming model of 
Turkish agriculture with endogenous supply functions. Bouamra-Mechemache et al. (2002) calibrated a 
model similar to the one considered here by applying the classical PMP procedure (i.e. using inequality 

constraints to obtain the *
ij and adding a quadratic cost function to the objective function); however, they 

found the calibrated solution not satisfactory and introduced further adjustments in the model.  
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objective function for the STJ model – the estimation is subject to the symmetry of the 
matrix of cross-derivatives, jD , as well as to its positive semidefiniteness. Hence, 

    
1

min ( )
T

D D
jt jt

t

 u u          (52) 

    
subject to    D D D

jt j j jt jt  p a D x u          (53) 

 
    j j j jD L L           (54) 

 

    
1

T
D
jt

t

u 0           (55) 

 
with , , 0j k k  . Constraint (53) specifies the system of demand functions. Constraint (54) 

defines the Cholesky factorization that generates the symmetry and the positive 
semidefiniteness of the jD  matrix. The matrix jL  is a unit lower triangular matrix while 

the matrix j  is a diagonal matrix with all nonnegative elements that guarantee the 

positive semidefiniteness of the jD  matrix. Constraint (55) guarantees that all the year 

deviations add up to zero.  

The interpretation of the term D
jtu  deserves a special comment. Within the context of a 

calibrating PMP approach, and under the assumption that only information for a very 
limited number of years is available, it is convenient to interpret this term as a yearly 
deviation from the average system of demand functions rather than as either an “error” or 
a “disturbance term.” In other words, the yearly realization of the demand prices in the r-
th region would deviate from the average prices by the amount D

rtu . Knowledge of this 

deviation, therefore, is crucial for assuring the calibration of the model over every region 
and every year.  

An analogous approach may be used to estimate the system of supply functions. 

Extension 2: A Multi-Year STJ Model of International Trade 
 
With the estimation of the demand and supply systems, a PMP model may be specified 
over T years along the lines presented in equations (52)-(55). Thus, assuming that 
information about the trade flows in each year, ijtx , is available: 

 
1 1

1 1 1 1 1

ˆˆ ˆmax ( / 2 )

ˆˆ ˆ                ( / 2 )

T R
D D D

j j jt jt jt
t j

T R T R R
S S S

i i it it it ijt ijt
t i t i j

QWF
 

    

  

    



 

a D x u x

b S x u x tc x

                     (56) 
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        Dual 
               variables 

subject to   
1

R
D

ijt jt
i

x x       D
jtp          (57) 

 

   
1

R
S

ijt it
j

x x       S
itp          (58) 

 
   ijt ijtx x        ijt                     (59) 

 
with all nonnegative variables, but ijt which is unrestricted.  This first phase model 

provides the essential estimates of the dual variables ijt , say *
ijt . Therefore, the 

calibrating PMP model can be specified as follows 
 
   

1 1

*

1 1 1 1 1

ˆˆ ˆmax ( / 2 )

ˆˆ ˆ                ( / 2 ) ( )

T R
D D D

j j jt jt jt
t j

T R T R R
S S S

i i it it it ijt ijt ijt
t i t i j

QWF
 

    

  

     



 

a D x u x

b S x u x tc x
                 (60) 

 
        Dual 
                variables 

subject to   
1

R
D

ijt jt
i

x x       D
jtp          (61) 

 

   
1

R
S

ijt it
j

x x       S
itp          (62) 

 
with all nonnegative variables. The above model calibrates the quantity demanded and 
supplied by each country. 
 
2.3.2  Case 2: demand and supply functions are measured with imprecision at the same 

market level 

We consider a second case where demand and supply functions are measured at the same 
market level - the retail one - and transaction costs as well as demand and supply 
functions are measured with imprecision. This means that tcrr , the vector of domestic 
transaction costs in country r, is the null vector and D

rp = S
rp  , for all r =1, 2, …, R . 

Essentially this is the case where the calibration procedure, not only makes the model 
reproduce observed trade patterns, but, at the same time, adjusts parameters of the 
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demand and supply functions to make these and observed trade flows, ijx , consistent with 

the condition D
rp = S

rp . 

In this case in phase I, a least-squares approach is proposed to estimate simultaneously 
the adjustments of transaction costs and those of demand and supply functions needed for 
the model to calibrate observed trade patterns and comply with the condition that supply 
prices equal demand prices. In order to satisfy the conditions needed for the definition of 
the proper objective function for the STJ model, the estimation takes into account the 
need to assure the symmetry and positive semidefiniteness of the adjusted matrices of 
cross-derivatives. 

The objective function is composed of the Sum of Squared Residuals of the intercepts 
and slopes of the demand and supply functions, plus a primal-dual component that 
represents the combination of the dual objective function of the problem minus the primal 
objective function. At the optimum this primal-dual portion of the objective function 
should achieve the value of zero. The constraints combine primal and dual constraints.  

Using the familiar notation the model can be specified as follows  
 

1 1 1 1

1 1 1 1

1 1

min / 2 / 2 ( ) / 2 ( ) / 2

    { [ (( ) ( ) ) (( ) ( ) )

    ]}

R R R R

j j i i j j i i
j i j i

R R R R
D D S S

ij ij j j j j j j i i i i i i
j i j i

R R

ij ij
i j

LS trace trace
   

   

 

       

        



   

  



u u v v W W Y Y

x a u D W x x b v S Y x x

tc x

        (63) 

 
subject to 

        
1

R
D

ij j
i

x x             (64) 

   
1

R
S

ij i
j

x x             (65) 

   ij ijx x             (66) 

 j j j jW L L             (67) 

 'i i i iY M Φ M            (68) 

   ( ) ( )D D
j j j j j j   p a u D W x           (69) 

   ( ) ( ) S S
i i i i i i   b v S Y x p           (70) 

   ( )S D
i ij ij j  p tc p            (71) 

   
  
p

j
S  p

j
D             (72) 

 
with , , 0j k k  , , , 0i k k  . The matrices jL  and  Mi are unit lower triangular matrices, 

while matrices jΘ  and iΦ are diagonal matrices with all nonnegative elements 
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Constraints (67) and (68) define the Cholesky factorization that generates the symmetry 
and positive semidefiniteness of the Wj and Yi matrices, a sufficient, although not 
necessary, condition for the symmetry and semidefiniteness of the matrices of the 
adjusted slopes, (Dj + Wj) and (Si + Yi), in the systems of demand and supply functions.  

The phase II calibrating model takes on the familiar maximization structure: 
 

1 1

1 1

ˆ ˆˆ ˆmax (( ) ( ) / 2) (( ) ( ) / 2)

ˆ                   ( )

R R
D D S S

j j j j j j i i i i i i
j i

R R

ij ij ij
i j

QWF
 

 

        

 

 



a u D W x x b v S Y x x

tc x
      (73) 

subject to 

   
1

R
D

ij j
i

x x             (74) 

   
1

R
S

ij i
j

x x             (75) 

where ˆˆ ˆˆ ˆ, , ,  and j i j i iju v W Y   are the least-squares estimates obtained in phase I of the 

corresponding parameters. 
 
This model calibrates produced and consumed quantities and yields in each region 
demand prices equal to supply prices. As usual, prices correspond to the dual variables of 
the primal constraints. 
 
2.4 The Equilibrium Problem 
 
When the jD  and the Sj matrices are not symmetric, the system of demand and supply 

functions cannot be integrated and no suitable objective function exists for the STJ 
model.  In this case, the appropriate mathematical programming structure is given by the 
Equilibrium Problem.  
 
Definition 
Let us consider the demand (Dem) and supply (Sup) of a commodity with quantity (Q), 
price (P) and marginal cost (MC). Then, the Equilibrium Problem is jointly defined by 
the following two sets of relations: 
 

Primal: 0,          , ( ) 0 (76)

Dual: ,  0   ,     ( ) 0             (77)

P Dem Sup Sup Dem P

Dem Sup MC P MC P Q

   
    

 

 
Hence, the calibrated Equilibrium Problem with a system of demand and supply 
functions whose matrices jD  and Si  are not symmetric is specified as follows: 
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Primal relations: D
j p 0 ,       

1

R
D
j ij

i

 x x ,   
1

( )
R

D D
ij j j

i

 x x p 0          (78)  

   S
i p 0 ,      

1

R
S

ij i
j

x x ,   
1

( )
R

S S
i ij i

j

 x x p 0           (79) 

    free,ij        ij ijx x ,               ( )ij ij ij x x 0        (80) 

 
 
Dual relations:  D

j x 0  ,     D D
j j j j a D x p ,     ( )D D D

j j j j j  p a D x x 0       (81) 

 
   S

i x 0 ,     S S
i i i i p b S x ,      ( )S S S

i i i i i  b S x p x 0       (82) 

 

ij x 0 ,   ( )D S
j i ij ij  p p tc  ,      [ ( ) ]S D

i ij ij j ij   p tc p x 0 .           (83) 

 
The fact that the jD  and Si matrices are not symmetric causes neither theoretical nor 

computational difficulties since the system of demand and supply functions appears 
directly into the dual constraints (81) and (82) without the need for passing through the 
integral of the system – that does not exist, in this case – and the corresponding (not 
existent) primal objective function.  

2.4.1 Case 1: demand and supply functions are well measured at different market levels 
As we did for the STJ model in section 2.3, for the Equilibrium Problem too we consider 
two different cases. Again, the first one is when demand and supply functions are 
measured at different levels and the only information in the model which is measured 
with imprecision are transaction costs.  

The solution of Equilibrium Problem (78)-(83) can be obtained by introducing primal and 
dual slack variables into the structural constraints and exploiting the complementary 
slackness conditions – that add up to zero – in the form of an auxiliary objective function 
that should be minimized, since each term is nonnegative.  Thus, using nonnegative slack 
variables 1 2 1 2 3, , , ,jP iP jD iD ijDz z z z z , (where the subscript of 1 2,jP iPz z  stands for primal 

constraints 1 and 2 and the subscript of 1 2 3, ,jD iD ijDz z z  stands for dual constraints 1, 2 and 

3) the solution of the calibrated Equilibrium Problem can be obtained by solving the 
following Phase I specification: 
 
               1 2 1 2 3min{ [ ]}D S D S

jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x                      (84) 

 
        Dual 
        variables 

subject to        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0                    (85) 
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   2
1

R
S

ij iP i
i

 x z x ,   S
i p 0              (86) 

   ij ijx x ,                freeij                             (87) 

  
       1

D D
j j j jD j  a D x z p ,  D

j x 0         (88) 

 
   2

S S
i iD i i i  p z b S x ,   S

i x 0         (89) 

 
      3 ( )D S

j ijD i ij ij   p z p tc  ,  ij x 0 .            (90) 

 
With all nonnegative variables, but ij  which are unrestricted. One advantage of this 

mathematical programming specification is that the optimal value of the objective 
function is known and it is equal to zero.  
 
Once again, the crucial task of the Equilibrium Problem that is represented by relations 
(84)-(90) is to obtain consistent estimates of the dual variables ij  associated to the 

calibrating constraint (87), say *
ij .  With such estimates, a calibrating Equilibrium 

Problem can be stated as the following Phase II specification: 
 

  1 2 1 2 3min{ }D S D S
jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x                  (91) 

 
        Dual 
        variables 

subject to,        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0             (92) 

   2
1

R
S

ij iP i
j

 x z x ,   S
i p 0                    (93) 

      1
D D

j j j jD j  a D x z p ,  D
j x 0          (94) 

 
   2

S S
i iD i i i  p z b S x ,   S

i x 0         (95) 

 
                  *

3 ( )D S
j ijD i ij ij   p z p tc  ,  ij x 0 .       (96) 

 
This calibrating model can now be used to estimate the response to changes in specific 
policy measures. 

2.4.2  Case 2: demand and supply functions are measured with imprecision at the same 
market level 

The second case we consider is when demand and supply functions are measured at the 
same market level and they are inconsistent with observed trade flows, ijx , and with the 
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condition that D
rp = S

rp , for all r =1, 2, …, R. The assumption is that when this happens 

demand and supply functions, as well as transaction costs, are measured with 
imprecision.  

In phase I the same least-squares approach proposed for the analogous situation for the 
STJ modeling framework is used. Adjustments of transaction costs and of demand and 
supply functions needed for the model to calibrate observed trade patterns and produce 
the equality between supply and demand prices in each country are jointly estimated. 
However, in contrast with the STJ modeling framework, in this case we do not need to 
impose the symmetry of the adjusted matrices of cross-derivatives; only their positive 
semidefiniteness is needed.  

The phase I model can be specified as follows  

1 1 1 1

1 1 1

1 1 1

min / 2 / 2 ( ) / 2 ( ) / 2

               { [ (( ) ( ) )

                (( ) ( ) ) ]}

R R R R

j j i i j j i i
j i j i

R R R
D D

ij ij j j j j j j
j i j

R R
S S

i i i i i i ij ij
i i j

LS trace trace
   

  

  

       

    

    

   

 

 

u u v v W W Y Y

x a u D W x x

b v S Y x x tc x



R



         (97) 

 
subject to 

        
1

R
D

ij j
i

x x             (98) 

   
1

R
S

ij i
j

x x             (99) 

   ij ijx x           (100) 

 j j j jW G Η T            

(101) 
 j j G G I           (102) 

 j j T T I           (103) 

 i i i iY M K N                      (104) 

 i i M M I           (105) 

 i i N N I           (106) 

 ( ) ( )D D
j j j j j j   p a u D W x        (107) 

   ( ) ( ) S S
i i i i i i   b v S Y x p         (108) 

   ( )S D
i ij ij j  p tc p          (109) 

   
  
p

j
S  p

j
D           (110) 
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with Hj and Ki diagonal matrices and , , 0j k kh  , , , 0i k kk  . Constraints (101)-(106) give  

Singular Value Decompositions of matrices Wj and Yi , which assure their positive 
semidefiniteness without imposing symmetry. This is a sufficient, although not 
necessary, condition for the matrices of the adjusted slopes of the demand and supply 
functions, (Dj + Wj) and (Si + Yi), to be positive semidefinite.  

The phase II calibrated model includes the estimates of the adjustment coefficients 

obtained in phase I ˆˆ ˆˆ ˆ(  ,  ,  ,  , and  )j i j i iju v W Y λ in the minimization structure of the 

Equilibrium Problem proposed above for case 1: 
 

  1 2 1 2 3min{ }D S D S
jP j iP i jD j iD i ijD ijij
        z p z p z x z x z x              (111) 

 
        Dual 
        variables 

subject to,        1
1

R
D
j jP ij

i

 x z x ,   D
j p 0           (112) 

   2
1

R
S

ij iP i
j

 x z x ,   S
i p 0                  (113) 

      1
ˆˆ( ) ( ) D D

j j j j j jD j    a u D W x z p , D
j x 0        (114) 

 

   2
ˆˆ( ) ( )S S

i iD i i i i i    p z b v S Y x , S
i x 0       (115) 

 

                  3
ˆ( )D S

j ijD i ij ij   p z p tc  ,  ij x 0 .     (116) 

 

3. Numerical Examples and Empirical Implementation 
 
A series of numerical examples of increasing complexity will illustrate the application of 
the PMP methodology to mathematical programming spatial trade models. The list of 
models developed is given as follows: 

1.  four exporting countries and four distinct importing countries of a single 
commodity; 

2.  four countries that are potentially export or import traders of a single commodity; 

3.  four countries that are potentially export or import traders of three commodities, 
diagonal demand and supply matrices; 

4. four countries that are potentially export or import traders of three commodities, 
full, symmetric positive semidefinite demand and supply slope matrices; 

5. four countries that are potentially export or import traders of three commodities, 
full, symmetric positive semidefinite demand and supply slope matrices, demand 
and supply functions are measured at the same market level; 
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6. four countries that are potentially export or import traders of three commodities, 
full, asymmetric positive semidefinite demand and supply slope matrices; 

7. four countries that are potentially export or import traders of three commodities, 
full, asymmetric positive semidefinite demand and supply slope matrices, demand 
and supply functions are measured at the same market level. 

The matrix of transaction costs may be regarded as the array of effective marginal 
transaction costs between trading countries with the following structure 
 

    *
ij ijtc    TC         (117) 

 
where ijtc  is the accounting transaction cost generally measured rather imprecisely, and 

*
ij  is the differential between the effective and the accounting marginal transaction cost 

implied by the observed trade flows. As discussed above, in this paper, and contrary to 
the traditional PMP literature, the calibrating constraints are stated as a set of equalities, 
rather than inequalities, with the consequence that the sign of *

ij is a priori undetermined. 

This choice is based on the consideration that, if the accounting transaction costs are 
measured incorrectly, than they may be either over or under estimated.  Thus, the value 
and sign of the estimated *

ij  will determine the effective marginal transaction costs that 

will produce a calibrated solution of the quantities produced and consumed in each 
country. 

In general, a meaningful effective transaction cost will be nonnegative. However, when 
trade policies are not explicitly modeled, effective transaction costs will include their 
effects; when export subsidies are larger than the sum of the other transaction costs, the 
overall effective transaction cost will be negative. 

Example 1:  Four exporting countries and four distinct importing countries of a 
single commodity 

The inverse demand and supply functions of the two sets of distinct countries are given 
below.  

Exporting countries are given by I  A, B,U,E ; importing countries by  
J  DA, DB, DU, DE . 
 
Inverse demand functions: 

 
DA    30.0  

DB    22.0  
             

DU    25.0  

DE    29.0  

 
 
 
 
 
 

a ,       D 

0.55
0.37

0.42
0.49



















 ; 

 
inverse supply functions: 
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A    0.4  

B    0.2  
             

U    0.6  

E    0.5  

 
 
 
 
 
 

b ,               S 

1.4
2.4

1.9
0.6



















 . 

 
  
Matrix of accounting transaction costs: 

                DA DB DU DE

TC 

A
B
U
E

1.2 1.5 1.0 0.1
1.0 1.0 0.4 0.5
2.0 0.5 1.5 2.1
3.0 1.2 2.0 1.0



















 . 

  
The optimal solution obtained without calibrating the model is as shown below:  
 
optimal trade flow matrix:  

*

                  
               

13.394

  3.318                    4.662

  0.832       8.511

                               7.836     20.916

DA DB DU DE

A

B

U

E

 
 
 
 
 
 

X
 

 
total supply quantities:  

 *

                
13.394, 7.980,  9.343,  28.752

                              

S

A B U E
x  

 
total demand quantities:  

 *

                
17.543, 8.511,  12.497,  20.916

                               

D

A B U E
x  

 
corresponding supply prices:  

 * 19.151,  19.351,  18.351,  17.751
                                                    

S

A B U E
p  

 
and corresponding demand prices:  

 *

                
20.351,  18.851,  19.751,  18.751

                          

D

DA DB DU DE
p  . 

 
Let’s now consider the matrix of realized trade flows: 
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11.500                  2.000

  2.500                  3.500

  2.000    7.000

                             6.000    22.500

   DA DB DU DE

A

B

U

E

 
 
 
 
 
 

X
 

 
and the corresponding value of realized produced and consumed quantities in the eight 
countries considered: 
 

 
              

13.500,  6.000,  9.000,  28.500
                              

S

A B U E
x  

 

 
              

16.000,  7.000,  11.500,  22.500
                        

D

DA DB DU DE
x  

 
When the calibrating constraints are included in the model, the matrix of dual variables, 
 , associated with these constraints is:   

*

              
                     

0.700                      -0.130

5.600       3.810       5.170       2.875

1.500       1.210       0.970

0.600       0.610       0.570      -0.625

DA DB DU DE

A

B

U

E

















. 

 
Some of its elements are negative. However, all elements of the matrix of total effective 
transaction costs,TC  * , are positive: 
 

*

                  
                            

1.900       1.500       0.870       0.100

6.600       4.810       5.570       3.375

3.500       1.710       2.470       2.100

3.600       

DA DB DU DE

A

B

U

E

 TC 

1.810       2.570       0.375

 
 
 
 
 
 

. 

 
The optimal solution obtained using the PMP approach, i.e. after replacing the original 
transaction costs with TC + * is as shown below:  
 
total supply quantities:  

 *

                
13.500,  6.000,  9.000,  28.500

                              

S

A B U E
x  

 
total demand quantities:  
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 *

                
16.000,  7.000,  11.500,  22.500

                     

D

DA DB DU DE
x  

 
with the corresponding supply prices:  

 *

                
19.300,  14.600,  17.700,   17.600

                                 

S

A B U E
p  

 
and demand prices: 

 *

                
21.200,  19.410,  20.170,  17.975

                        

D

DA DB DU DE
p . 

 
The model calibrates exactly each country’s total production and consumption. However, 
multiple sets of optimal trade flows are associated to this calibration. Three examples of 
matrices of optimal trade flows associated to the same optimal solution (quantities 
consumed and produced in each country) are provided below. These optimal sets of trade 
flows have been obtained by providing the solver with different starting points for its 
search of the optimal solution. 
 
Matrix of trade flows 1: 
 

1

11.500                 2.000 13.500

  2.500                 3.500 6.000

  2.000    7.000 9.000

                             6.000   22.500 28.500

16.000 7.000 11.500 22

   DA DB DU DE

A

B

U

E



   
   
   
   
   
   

X

 .500

 

 
This optimal solution calibrates realized trade flows; it has been obtained by using the 
latter as initial values in the optimization procedure. 
 
Matrix of trade flows 2: 

 

2

2.000                 11.500 13.500

6.000 6.000

8.000     1.000 9.000

              6.000                  22.500 28.500

16.000 7.000 11.500 22.500

  DA DB DU DE

A

B

U

E



   
   
   
   
   
   

X  

 
Matrix of trade flows 3: 
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3

11.000                  2.500 13.500

                                          6.000 6.000

                             9.000 9.000

 5.000    7.000                  16.500 28.5

  DA DB DU DE

A

B

U

E



 
 
 
 
 
 

X

 
00

16.000 7.000 11.500 22.500

 
 
 
 
 
 

 

 
 

The value of total transaction costs (e.g. *

1 1

( )
R R

ij ij ij
i j 

 tc x  ) is the same in all three cases 

and is equal to 102.412. 
 
Example 2:  Four countries that are potentially export or import traders of a single 

commodity 

 
Four countries, R  A, B,U,E , can potentially either export or import a single 
homogeneous commodity. Each country supplies and demands that commodity. The 
required information is as follows: 
 
inverse demand functions: 

   35.0  

   59.0  
             

   36.0  

   38.0  

A

B

U

E

 
 
 
 
 
 

a ,       D 

1.2
1.4

1.1
0.9



















 . 

 
inverse supply functions: 

   0.4  

   0.2  
             

   0.6  

   0.5  

A

B

U

E

 
 
 
 
 
 

b ,               S 

1.4
2.4

1.9
0.6



















 . 

 
matrix of accounting transaction costs: 

                
                  

0.10      4.50     7.50     9.00

4.50      0.10     7.50   12.00

7.50      7.50     0.10     7.50

9.00     12.00     7.50     0.10

A B U E

A

B

U

E

 
 
 
 
 
 

TC
. 
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Without calibrating constraints – that is without using the PMP approach – the optimal 
solution is as shown below:  
 
optimal trade flow matrix: 

*

           

9.179       7.596

              11.702

                              11.767

                2.570                  23.905

A B U E

A

B

U

E

 
 
 
 
 
 

X
; 

 
total supply quantities:  

 *

                
16.775,  11.702,  11.767,  26.475

                                  

S

A B U E
x ; 

 
total demand quantities:  

    *

                  
9.179,  21.868,  11.767,  23.905

                              

D

A B U E
x ; 

 
corresponding supply prices:    

        *      
                 

23.885,  28.285,  22.957,  16.385
                                 

S

A B U E
p  ; 

 
and corresponding demand prices:  

   *

                  
23.985,  28.385,  23.057,  16.485

                                   

D

A B U E
p   . 

 
Let’s now consider the matrix of realized trade flows: 

             
                             

9.000        6.000

                 9.000       1.000

                 1.000       8.500      0.500

1.000        3.000                     21.000

A B U E

A

B

U

E








X






 


 , 

 
and the corresponding values of realized produced and consumed quantities in the four 
countries considered: 
 

 
              

15.000,  10.000,  10.000,  25.000
                                  

S

A B U E
x  , 

 

 
              

10.000,  19.000,  9.500,  21.500
                                

D

A B U E
x  . 

 



 27

 
The matrix of dual variables,  , associated with the calibrating constraints is: 
 

*

                   
                     

 1.500      6.500

                8.100      -6.150

                5.300       5.850      -8.450

-1.500      4.900       2.550       3.050

A B U E

A

B

U

E

 
 
 
 
 
 


 , 

 
 
And the matrix of total effective transaction costs,TC  * : 

*

                   
                                     

1.600      11.000       7.500       9.000

4.500        8.200       1.350     12.000

7.500      12.800       5.950      -0.950

7.500  

A B U E

A

B

U

E

 TC 

   16.900     10.050       3.150

 
 
 
 
 
 

 . 

 
With the calibrating constraints – that is using the PMP approach – the optimal solution is 
as shown below:  
 
total supply quantities:  

 *

               
15.000,  10.000,  10.000,  25.000

                                  

S

A B U E
x  ; 

 
total demand quantities:  

 * 10.000,  19.000,  9.500,  21.500
                                            

D

A B U E
x  ; 

 
supply prices:  

 *

               
21.400,  24.200,  19.600,  15.500

                                  

S

A B U E
p  ; and 

 
demand prices: 

 *

               
23.000,  32.400,  25.550,  18.650

                                   

D

A B U E
p  . 

 
As previously, the model calibrates exactly each country’s total production and 
consumption. Multiple sets of optimal trade flows are associated to this calibration. When 
realized trade flows are used as initial values in the optimization procedure the optimal 
solution calibrates them as well (matrix 1 below). 

Three examples of matrices of optimal trade flows are provided: 
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Matrix of trade flows 1: 
 

1

 9.000       6.000 15.000

                 9.000      1.000 10.000

                 1.000      8.500     0.500 10.000

 1.000       3.000                  21.000 25.000

10.0

A B U E

A

B

U

E



   
   
   
   
   
   

X

 00 19.000 9.500 21.500

 

 
Matrix of trade flows 2: 

2

10.000       5.000 15.000

                10.000 10.000

                  0.500     9.500 10.000

                  3.500                 21.500 25.000

10.000 19.000 9.500 21.5

A B U E

A

B

U

E



   
   
   
   
   
   

X

 00

 

 
Matrix of trade flows 3: 

3

10.000       5.000 15.000

                10.000 10.000

                                               10.000 10.500

                  4.000      9.500      11.500 25.000

A B U E

A

B

U

E



   
   
   
   
   
   

X

 10.000 19.000 9.500 21.500

 

 
 

The value of total transaction costs, *

1 1

( )
R R

ij ij ij
i j 

 tc x  , is the same in all three cases and 

equal to 342.800. 
 
Example 3:  Four countries that are potentially export or import traders of three 

commodities, diagonal demand and supply matrices 
 
Being the matrices of the demand and supply slopes diagonal, it is assumed that no 
linkages exist across commodities either in production or consumption. This means that 
solving this problem is analogous to solving the three individual commodity models 
individually.  
 
Countries: R  A, B,U,E . Commodities: M  1,2, 3 .  
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The input data: 
 
the matrix of inverse demand intercepts:  

                 
1    2    3

  30.000   25.000    20.000

  22.000   18.000    15.000

  25.000   10.000    18.000

  28.000   20.000    19.000

A

B

U

E

 
 
 
 
 
 

A
 ; 

 
the matrix of inverse demand slopes: 

                                 1   2    3

D 

A.1
A.2
A.3

B.1
B.2
B.3

U.1
U.2
U.3

E.1
E.2
E.3

  1.2

           2.1

                    0.7

   0.8

           1.6

                    2.6

   0.8

            0.9

                    1.7

   1.1

             0.8

                    0.9













































; 

 
the matrix of inverse supply intercepts:  

                 1     2   3

B 

A
B
U
E

 0.4     0.1   0.7

 0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2



















 ; 

 
the matrix of inverse supply slopes:   
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                               1    2    3

S 

A.1
A.2
A.3

B.1
B.2
B.3

U.1
U.2
U.3

E.1
E.2
E.3

 1.4

          2.1

                   1.7

 2.4

         1.6

                   1.8

 1.9

         2.8

                   2.1

 0.6

         1.1

                   0.5













































 ; and 

 
the matrix of accounting transaction costs: 

                  1    2    3

. 0.5 0.5 0.5

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.5 0.5 0.5

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   . 

 
The optimal solution obtained without calibrating the model is as shown below:  
 
optimal trade flow matrix: 
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                       1             2           3

5.543       4.492         5.487.
 1.020.
 3.553.
                                  2.744.
6.401       5.594         2.105.

.    

.

.

.

A A

A B

AU

B A

B B

U A

U U

E A

E E

*X

             2.635         0.038

8.244       0.519         4.690

6.904                         5.264

14.034     11.105      12.192

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 
total supply quantities: 

*

                    
1             2           3

10.116       4.492         5.487

6.401        5.594         4.849

8.244        3.155         4.727

20.938      11.105      17.455

S

A

B

U

E

 
 
 
 
 
 

x
; 

 
total demand quantities: 

*

                     
1            2            3

12.448        7.127      13.532

 7.421        5.594        2.105

11.796        0.519        4.690

14.034      11.105      12.192

D

A

B

U

E

 
 
 
 
 
 

x
; 

 
corresponding supply prices: 

*

                  
1           2           3

14.563       9.533      10.028

15.563       8.550        9.028

15.063       9.033        9.528

12.063     10.616        7.528

S

A

B

U

E

 
 
 
 
 
 

p
 ; and 

 
corresponding demand prices:    
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*

                  
1           2           3

15.063      10.033      10.528

16.063        9.050        9.528

15.563        9.533      10.028

12.563      11.116        8.028

D

A

B

U

E

 
 
 
 
 
 

p
. 

 
Let’s now consider the following matrix of realized trade flows: 
 

1 2 3

5.000      4.000          6.000
.

 1.000.
 3.000.
1.000                         2.000.
5.000       5.000         2.000.
                 1.000.

.                  2.000

.  7.

.

.

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E B

E E

X

000                         2.500

                 1.500

6.000                         4.500

1.000                         0.500

12.000       8.000      10.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 , 

 
and the corresponding value of realized produced and consumed quantities in the four 
countries considered: 
 

1 2 3

9.000       4.000       6.000

6.000       6.000       4.000

7.000       3.500       2.500

19.000      8.000      15.500

S

A

B

U

E

 
 
 
 
 
 

x
 

 
1 2 3

12.000       6.000      12.500

 7.000       5.000       2.500

10.000                        2.500

12.000      10.500     10.500

D

A

B

U

E

 
 
 
 
 
 

x
 . 
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When the calibrating constraints are included in the model, the matrix of dual variables 
 , associated with these constraints is:  

 
 

1 2 3

2.100       3.400      -0.150
.

 1.900
.

3.000       0.500       1.850
.

                 0.100.
-0.500       1.700       2.250.
 1.300       0.300       0.5.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

00

0.200                       4.050

                -1.600

1.900       1.400       5.400

1.500                       1.450

3.800      -0.500       8.400

               -2.100       1.000

 1.700       2.200       1.700

1.500                      -2.050

2.400                       3.500

3.400       3.900       2.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

 
Many elements of   are negative. However, the elements of the matrix of effective 
transaction costs, TC  *  , are all not negative: 
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*

                              
1         2         3

. 2.600       3.900       0.350

. 3.400       1.500       1.500

. 4.000       1.500       2.850

. 3.000     

.

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 TC 

 3.100       3.000

1.000       3.200       3.750

1.800       0.800       1.000

2.400       2.200       6.250

4.000       2.400       4.000

2.900       2.400       6.400

3.700       2.200       3.650

4.300      0.000       8.900

3.700       1.600       4.700

4.700       5.200       4.700

5.500       4.000       1.950

6.100       3.700       7.200

3.900       4.400       3.000

 
 
 
 
 
 
 

















 



















. 

 
The optimal solution obtained using the PMP approach, i.e. after replacing the original 
transaction costs with TC  *  is as shown below: 
 
total supply quantities: 

*

              
1          2         3

9.000       4.000        6.000

6.000       6.000        4.000

7.000       3.500        2.500

19.000       8.000      15.500

S

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
total demand quantities: 

*

                
1         2         3

12.000       6.000      12.500

 7.000       5.000       2.500

10.000                        2.500

12.000      10.500     10.500

D

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
with the corresponding supply prices: 
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*

                   
1           2         3

13.000       8.500      10.900

14.600       9.200        7.500

12.700     10.000        4.850

10.900       7.200        6.550

S

A

B

U

E

 
 
 
 
 
 

p
 , 

 
and demand prices  

*

                     
1       2         3

15.600     12.400     11.250

16.400     10.000       8.500

17.000     10.000     13.750

14.800     11.600       9.550

D

A

B

U

E

 
 
 
 
 
 

p
. 

 
As previously, the model calibrates exactly each country’s total production and 
consumption. Again multiple sets of optimal trade flows are associated to this calibration. 
Three examples of matrices of optimal trade flows associated to the same optimal 
solution are provided below. 
 
Matrix of trade flows 1: 
 

1

1 2 3

5.000     4.000        6.000
.

 1.000.
 3.000.
1.000                      2.000.
5.000     5.000        2.000.
               1.000.

.                2.000

.  7.000        

.

.

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E B

E E

 X

             2.500

               1.500

6.000                      4.500

1.000                      0.500

12.000     8.000      10.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
The optimal solution above calibrates realized trade flows; it has been obtained by using 
the latter as initial values in the optimization procedure. 
 
Matrix of trade flows 2: 
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2

1 2 3

9.000                       3.500
.

                 4.000.
                                2.500.
3.000                       1.500.

                 1.000       .

.

.

.

.

.

.

.

A A

A B

AU

B A

B B

BU

B E

U B

U E

E A

E U

E E

 X

2.500

 3.000

                 5.000

 7.000

                3.500       2.500

                6.000       7.500

 7.000

12.000       2.000       8.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
Matrix of trade flows 3: 

3

1 2 3

                                  6.000.
 6.000       4.000.
 3.000.
6.000                         1.500.
               1.000          2.500.
                5.000.

.    

.

.

.

.

A A

A B

AU

B A

B B

B E

U A

U U

E A

E B

E E

 X

             3.500

7.000                         2.500

6.000      2.500          5.000

 1.000

12.000      5.500       10.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
It can be easily verified that in all three cases the model calibrates exactly on total 
demands and supplies. Total transaction costs are the same in all three cases and equal to 
300.875. 
 
Example 4:  Four countries that are potentially export or import traders of three 

commodities, full, symmetric positive semidefinite demand and supply 
slope matrices 

 
With full matrices of demand and supply slopes, this example constitutes a serious test of 
the PMP methodology. The input data are as follows: 
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the matrix of inverse demand intercepts:  

1 2 3

30.0    25.0     20.0

22.0    18.0     15.0

25.0    10.0     18.0

28.0    20.0     19.0

A

B

U

E

 
 
 
 
 
 

A
 ; 

 
the matrix of inverse demand slopes: 

                   1      2       3

.1  1.2   0.3  -0.2

.2  0.3   2.1   0.1

.3 -0.2   0.1   0.7

.1  0.8  -0.2   0.2

.2 -0.2   1.6   0.4

.3  0.2   0.4   2.6

.1  0.8   0.3   0.4

.2  0.3   0.9   -0

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

D

.1

0.4  -0.1   1.7

1.1   0.1    0.3

0.1   0.8    0.2

0.3   0.2    0.9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

; 

 
the matrix of inverse supply intercepts:  

                 
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

A

B

U

E

 
 
 
 
 
 

B
 ; 

 
the matrix of inverse supply slopes:   
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1    2    3

.1  1.4   -0.4   0.3

.2 -0.4    2.1   0.2

.3  0.3    0.2   1.7

.1  2.4    0.5   0.2

.2  0.5    1.6   0.3

.3  0.2    0.3   1.8

.1  1.9   -0.1   0.5

.2 -0.1    2.8   0.4

.3  

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

S

0.5    0.4   2.1

0.6   -0.1   0.2

-0.1    1.1   0.5

0.2    0.5   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   ; and 

 
the matrix of accounting transaction costs: 

                  1    2    3

. 0.5 0.5 0.5

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.5 0.5 0.5

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  . 

 
The optimal solution obtained without calibrating the model is as shown below: 
 
optimal trade flow matrix: 
 
 



 39

1 2 3

 3.520       2.764       4.398.
  3.478       2.787.
  3.866.
                                 5.083.
  5.321       3.442.

.                  2.453       3.140

.   7.481          

.

.

A A

A B

AU

B A

B B

U A

U U

E A

E E

 X

            0.538

 9.662                       0.332

12.128      10.407       3.037

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 
total supply quantities: 

1 2 3

10.843        5.552        4.398

 5.321        3.442        5.083

 7.481        2.453        3.678

21.790      10.407        3.370

S

A

B

U

E



 
 
 
 
 
 

X
; 

 
total demand quantities: 
 

1 2 3

13.182       5.218     12.954

  8.798       6.229

11.347                       0.538

12.128     10.407       3.037

D

A

B

U

E



 
 
 
 
 
 

X
; 

 
corresponding supply prices: 

 
1 2 3

14.707       8.293      12.547

15.707       9.293      11.547

15.207       7.793      12.047

12.207       9.354      10.047

S

A

B

U

E



 
 
 
 
 
 

p
 ; and 

 
corresponding demand prices: 
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1 2 3

15.207       8.793      13.047

16.207       9.793      10.749

15.707       6.650      12.547

12.707       9.854      10.547

D

A

B

U

E



 
 
 
 
 
 

p
. 

 
Let’s now consider the matrix of realized trade flows:     

            
1 2 3

3.000       2.500       4.500.
2.500       2.000.
4.000.
               0.500       4.000.

2.500       3.500.
0.500.

. 1.000       1.500       2.000

. 6.000       0.500

.           

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E E

X

                    1.000

7.000                      0.500

8.500     10.000      3.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
and the corresponding value of realized produced and consumed quantities in the four 
countries considered: 
 

1 2 3

 9.500       4.500       4.500

 3.000       4.000       4.000

 7.000       2.000       3.000

15.500    10.000       4.000

S

A

B

U

E

 
 
 
 
 
 

x
   and 

 
                

1         2       3

11.000       4.500     11.000

  5.000       5.500

10.000       0.500

 9.000     10.000       4.500

D

A

B

U

E

 
 
 
 
 
 

x
 

 
The matrix of dual variables, * , has positive and negative elements: 
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1 2 3

3.900       4.000       1.450
.

4.350       2.050
.

2.600                       0.950
.

                0.550.
5.950       0.950       3.250.
8.400       1.000.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 

      2.000

4.450                       2.550

1.550

2.650       3.850       2.850

2.900       1.700

2.350      -0.250       3.350

               0.200      -3.650

6.050                       2.150

6.500

4.550                       1.450

6.650      -0.150       0.850

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  . 

 
The elements of the matrix of effective transaction costs, on the contrary, are all positive: 
    

*

                            
1            2       3

.  4.400       4.500       1.950

.  5.850       3.550       1.500

.  3.600       1.000       1.950

.  3.000  

.

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 TC 

    3.550       3.000

7.450       2.450       4.750

8.900       1.500       2.500

6.650       2.200       4.750

5.550       4.000       4.000

3.650       4.850       3.850

 5.100       3.900       2.200

2.850       0.250       3.850

3.700       3.900       0.050

9.050       3.000       5.150

10.500       4.000       4.000

8.250       3.700       5.150

7.150       0.350       1.350







































 
 
 
 
 
 
 

 . 
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With the calibrating constraints – that is using the PMP approach – the optimal solution is 
as shown below: 
 
total supply quantities: 

 
1 2 3

9.500       4.500       4.500

3.000       4.000       4.000

7.000       2.000       3.000

15.500    10.000       4.000

S

A

B

U

E



 
 
 
 
 
 

X
; 

 
total demand quantities: 

                
1         2       3

11.000       4.500     11.000

  5.000       5.500

10.000       0.500

 9.000     10.000       4.500

D

A

B

U

E



 
 
 
 
 
 

X
; 

 
supply prices:           

          
                

1         2       3

13.250       6.650      12.100

10.200       8.700        9.300

14.000       6.300      10.200

  8.600       9.850       8.900

S

A

B

U

E



 
 
 
 
 
 

p
 ; and 

 
demand prices:    

 
                

1         2       3

17.650      11.150      14.050

19.100      10.200      11.800

16.850       6.550      14.050

15.750      10.200      10.250

D

A

B

U

E



 
 
 
 
 
 

p
 

 
The model calibrates exactly each country’s production and consumption of the three 
commodities. Three examples of optimal trade flows associated to the same optimal 
solution are provided below. The first optimal solution calibrated realized trade flows. 
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Matrix of trade flows 1: 

1

1 2 3

3.000       2.500       4.500.
2.500       2.000.
4.000.
               0.500       4.000.

2.500       3.500.
0.500.

. 1.000       1.500       2.000

. 6.000       0.500

.         

.

.

A A

A B

AU

B A

B B

B E

U A

U U

U E

E A

E E

 X

                       1.000

7.000                       0.500

8.500      10.000      3.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

 
Matrix of trade flows 2:     

2

1 2 3

                               4.500.
                4.500.
9.500.
3.000       4.000       4.000.
6.500       0.500.
                1.000.

. 0.500       0.500

.              

.

.

.

A A

A B

AU

B A

U A

U B

U U

U E

E A

E B

E E

 X

                  3.000

1.500                       2.500

5.000

9.000      10.000      1.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

 
 
Matrix of trade flows 3: 



 44

3

1 2 3

4.400       4.500       4.500
.

5.000.
0.100.
                               4.000.
                 4.000.
3.000.
6.600.

.                  1.500

. 0.400        0.500

.       

.

.

.

A A

A B

AU

B A

B B

B E

U A

U B

U U

U E

E A

E U

E E

 X

                         3.000

                               2.500

9.500

6.000      10.000      1.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

 
It can be easily verified that in the three cases the model calibrates exactly each country’s 
total demand and supply. The value of total transaction costs is the same in all three cases 
and equal to 290.675. 
 
Example 5:  Four countries that are potentially export or import traders of three 

commodities, full, symmetric positive semidefinite demand and supply 
slope matrices, demand and supply functions are measured at the same 
market level 

 
Here the model is calibrated in order to reproduce trade patterns as well as to adjust 
intercepts and the slopes of demand and supply functions so that demand prices are equal 
to supply prices in each region. Except for the transaction costs, which have been 
modified to make all the domestic ones equal to zero, input data are the same as in 
example 4: 
 
the matrix of inverse demand intercepts:  

1 2 3

30.0    25.0     20.0

22.0    18.0     15.0

25.0    10.0     18.0

28.0    20.0     19.0

A

B

U

E

 
 
 
 
 
 

A
 ; 

 
the matrix of inverse demand slopes: 
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                   1      2       3

.1  1.2   0.3  -0.2

.2  0.3   2.1   0.1

.3 -0.2   0.1   0.7

.1  0.8  -0.2   0.2

.2 -0.2   1.6   0.4

.3  0.2   0.4   2.6

.1  0.8   0.3   0.4

.2  0.3   0.9   -0

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

D

.1

0.4  -0.1   1.7

1.1   0.1    0.3

0.1   0.8    0.2

0.3   0.2    0.9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ; 

 
the matrix of inverse supply intercepts:  

               
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

A

B

U

E

 
 
 
 
 
 

B
 ; 

 
the matrix of inverse supply slopes:   

                
1    2    3

.1  1.4   -0.4   0.3

.2 -0.4    2.1   0.2

.3  0.3    0.2   1.7

.1  2.4    0.5   0.2

.2  0.5    1.6   0.3

.3  0.2    0.3   1.8

.1  1.9   -0.1   0.5

.2 -0.1    2.8   0.4

.3  

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

S

0.5    0.4   2.1

0.6   -0.1   0.2

-0.1    1.1   0.5

0.2    0.5   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   ; and 
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the matrix of accounting transaction costs: 
                  1    2    3

. 0 0 0

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0 0 0

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0 0 0
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0 4.0 4.0
. 3.7 3.7 3.7
. 0 0 0

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E







TC


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


  . 

 
 
The optimal solution obtained without calibrating the model is as shown below: 
 
optimal trade flow matrix: 
 
 

1 2 3

11.071       5.456       4.710.
                  0.110.
                                 5.076.
  5.418       3.732.
                                 2.826.
           .

.

.

.

.

.

A A

A B

B A

B B

U A

U B

U U

E A

E B

E U

E E

 X        2.399

 7.787                       0.834

 2.126                       0.177

  3.535

  3.314

12.609      10.583       3.289

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 
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total supply quantities: 
 

1 2 3

11.071       5.567       4.710

 5.418       3.732       5.076

 7.787       2.399       3.661

21.584     10.583       3.466

S

A

B

U

E



 
 
 
 
 
 

X
 

 
total demand quantities: 

 
1 2 3

13.196       5.456      12.790

  8.954       6.242

11.101                        0.834

12.609     10.583        3.289

D

A

B

U

E



 
 
 
 
 
 

X
 

corresponding supply prices: 
 

    

1 2 3

15.085       8.304      13.141

16.085       9.804      11.641

15.785       7.604      12.141

12.085       9.615      10.141

S

A

B

U

E



 
 
 
 
 
 

p
 ; and 

 
corresponding demand prices: 
 

1 2 3

15.085       8.304      13.141

16.085       9.804      10.712

15.785       6.753      12.141

12.085       9.615      10.141

D

A

B

U

E



 
 
 
 
 
 

p
 

 
Let’s now consider the matrix of realized trade flows:     
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1 2 3

11.000       3.500     3.000.
 1.000                     3.000.
  3.000       2.000.
 0.500                     2.000.
                  2.000.

.  6.000       0.500     0.500

.

.

.

.

A A

B A

B B

U A

U B

U U

E A

E B

E U

E E

X

  2.000

  3.000

  2.000       0.500

11.000       9.000     2.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
The optimal solution obtained when imposing that demand prices must be equal to supply 
prices and other calibrating constraints is as shown below: 

 
1 2 3

-2.341       0.107      -2.854
.

-0.465      -0.195      -0.410.
-4.733       0.467      -3.469.
-0.659      -3.107      -0.146.
-0.824      -3.002      -0.256.
-4.892  .ˆ

.

.

.

.

.

.

A B

AU

A E

B A

BU

B E

U A

U B

U E

E A

E B

E U

Λ
   -2.140      -3.115

-1.535      -1.805      -1.590

-3.576      -1.398      -4.144

-5.969      -1.038      -4.759

-1.267      -6.467      -2.531

-3.108      -5.860      -4.885

-1.431      -6.362      -2.641

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

the matrix of adjustment to transaction costs, ̂ , has positive and negative elements and 

all , ,
ˆ

i i k  are zero, as expected. 

The matrix of effective transaction costs now contains both positive and negative 
elements: 
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1            2          3

. -0.841       1.607      -1.354

.  0.535       0.805       0.590

. -1.733       3.467      -0.469

.  0.841      -1.60

.

.ˆ
.

.

.

.

.

.

A B

AU

A E

B A

BU

B E

U A

U B

U E

E A

E B

E U

 TC 

7       1.354

1.376      -0.802       1.944

-0.892       1.860       0.885

-0.535      -0.805      -0.590

-1.376       0.802      -1.944

-2.269       2.662      -1.059

1.733      -3.467       0.469

 0.892     -1.860      -0.885

2.269      -2.662       1.059

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
The deviations from supply and demand intercepts are given by: 
 

1 2 3

-0.522       0.174       0.028

 0.054       0.116       0.104ˆ
 0.029      -0.043       0.098

 0.006       0.005       0.014

A

B

U

E

 
 
 
 
 
 

V
 and; 

 
1 2 3

0.522      -0.174      -0.028

-0.054      -0.116      -0.104ˆ
-0.029       0.043      -0.098

-0.006      -0.005      -0.014

A

B

U

E

 
 
 
 
 
 

U
 

 
 
The deviations from supply and demand slopes are given by: 
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1 2 3

 0.001      -0.025      -0.012
.1

-0.025       0.611       0.302.2
-0.012       0.302       0.149.3
 0.253       0.255       0.282.1
 0.255       0.257       0.284.2
 0.282  .3ˆ

.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

Y
    0.284       0.314

 0.267      -0.012       0.286

-0.012       5.2E-4    -0.013

 0.286      -0.013       0.306

 0.124       0.078       0.100

 0.078       0.049       0.063

 0.100       0.063       0.081

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 and; 

 
1 2 3

 0.019      -0.111       -0.110
.1

 -0.111      0.638        0.638.2
 -0.110      0.638        0.637.3
  0.398      0.433        0.218.1
   0.433      0.471        0.2.2

.3ˆ
.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

W

37

  0.218      0.237        0.119

  0.352     -0.074        0.265

 -0.074      0.016       -0.056

  0.265     -0.056        0.200

  0.072      0.060        0.066

  0.060      0.051        0.056

   0.066      0.056        0.062

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

    
In phase II, when the estimates of the adjustments are included in the model and 
calibrating constraints omitted, the optimal solution is as shown below: 
 
total supply quantities: 
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1       2      3

11.000       3.500       3.000

 4.000       2.000       3.000

 6.500       2.500       2.500

18.000       9.500       2.000

S

A

B

U

E



 
 
 
 
 
 

X
 ; 

 
total demand quantities: 

                
1         2     3

14.500       3.500       8.000

  6.000       4.000

 8.000       1.000       0.500

11.000       9.000       2.000

D

A

B

U

E



 
 
 
 
 
 

X
 ; 

 
supply prices:            

                
1            2       3

14.665       6.594      11.197

13.824       8.201       9.844

15.200       7.399      11.787

12.931      10.061     10.728

S

A

B

U

E



 
 
 
 
 
 

p
 ; and 

 
demand prices:    

 
                

1            2       3

14.665       6.594      11.197

13.824       8.201       9.844

15.200       7.399      11.787

12.931      10.061     10.728

D

A

B

U

E



 
 
 
 
 
 

p
 

 
The model calibrates exactly each country’s production and consumption of the three 
commodities and in each country demand prices equal supply prices. 
 
Three examples of optimal trade flows associated to this optimal solution are provided 
below; the first one calibrates realized trade flows. 
 
Matrix of trade flows 1: 
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1

1 2 3

11.000       3.500       3.000.
 1.000                       3.000.

  3.000       2.000.
 0.500                       2.000.

                  2.000.

.   6.000       0.500  

.

.

.

.

A A

B A

B B

U A

U B

U U

E A

E B

E U

E E

 X
    0.500

  2.000

  3.000

  2.000       0.500

11.000       9.000       2.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 . 

 
Matrix of trade flows 2:     
 

2

1 2 3

                              3.000
.

 0.010
.

10.990       3.500.
                              0.500.
                 1.451.
3.990                     0.500.
 .

.

.

.

.

.

.

.

A A

A B

A E

B A

B B

BU

B E

U A

U B

U U

E A

E B

E U

E E

 X
0.010       0.549     2.000

                              2.500

 5.990       2.500

 0.510

14.500       3.500     2.000

                  0.049

 3.500       1.000

                 4.951











































  . 

 
Matrix of trade flows 3: 
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3

1 2 3

                                1.000
.

                 3.089.
11.000      0.411       2.000.
                0.089       3.000.

 4.000       0.911.
                .

.

.

.

.

.

.

A A

A B

A E

B A

B B

BU

U A

U E

E A

E B

E U

E E

 X
 1.000

6.500                       2.500

                 2.500

8.000       3.411       1.500

 2.000

8.000                       0.500

                 6.089

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 . 

 
It can be easily verified that in the three cases the model calibrates exactly on total 
demanded and supplied quantities in each country. The value of total transaction costs is 
the same in all three cases and equal to 14.406. 
 
Example 6:  Four countries that are potentially export or import traders of three 

commodities, full, asymmetric positive semidefinite demand and supply 
slope matrices 

 
In general, systems of demand and supply functions do not exhibit symmetric matrices of 
first own and cross-derivatives (slopes). When three or more commodities are involved, 
these systems cannot be integrated into a meaningful STJ objective function. The solution 
of such trade models relies upon the specification and solution of an Equilibrium 
Problem, as illustrated in section 2.4 above. 
 
The following numerical example exhibits asymmetric matrices of demand and supply 
slopes. The data are as follows: 
 
the matrix of inverse demand intercepts:  

               
1    2      3

30.0   25.0    20.0

22.0   18.0    15.0

25.0   10.0    18.0

28.0   20.0    19.0

A

B

U

E

 
 
 
 
 
 

A
 ; 

 
the matrix of inverse demand slopes: 
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1 2 3

.1 1.2 0.2 -0.2

.2 0.3 2.1 0.2

.3 -0.1 0.1 0.7

.1 0.8 -0.1 0.2

.2 -0.2 1.6 0.4

.3 0.3 0.3 2.6

.1 0.8 0.2 0.5

.2 0.3 0.9 -0.1

.3 0.4 0.0 1.7

.1 1.1 0.1 0.3

.2 0.0 0.8 0.2

.3 0.4 0.3 0.9

A

A

A

B

B

B

U

U

U

E

E

E

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
  

D
 ; 

 
the matrix of inverse supply intercepts:  

               
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

A

B

U

E

 
 
 
 
 
 

B
 ; 

 
the matrix of inverse supply slopes:   

                  
1    2    3

.1   1.4   -0.4   0.3

.2  -0.2    2.1   0.2

.3   0.2    0.3   1.7

.1   2.4    0.5   0.2

.2   0.7    1.6   0.3

.3   0.1    0.5   1.8

.1   1.9   -0.1   0.5

.2  -0.1    

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

S

2.8   0.4

 0.6    0.5   2.1

 0.6   -0.1   0.2

-0.1    1.1   0.5

 0.3    0.3   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ; 
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the matrix of accounting transaction costs: 
 

                  1     2     3

. 0.5 0.5 0.5

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.5 0.5 0.5

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.5 0.5 0.5
. 3.7 3.7 3.7
. 3.0 3.0 3.0
. 4.0
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

4.0 4.0
3.7 3.7 3.7
0.5 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
The optimal solution obtained in “phase 0”, without calibrating the model, is shown 
below: 
 
optimal trade flows matrix: 
 

1 2 3

3.910       1.740         4.637.
 2.834       2.887.
 3.684.
                                  4.835.

 5.356        3.037.

.                  2.704        2.037

.  7.618          

.

.

A A

A B

AU

B A

B B

U A

U U

E A

E E

 X

              0.837

9.809                         0.450

12.909      12.124       0.158

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 
total supply quantities: 
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1         2       3

10.429       4.627       4.637

 5.356       3.037       4.835

 7.618       2.704       2.873

22.718     12.124       0.608

S

A

B

U

E



 
 
 
 
 
 

X
 ; 

 
total demand quantities: 
 

                
1         2       3

13.719       4.445      11.958

  8.190       5.924

11.302                        0.837

12.909      12.124       0.158

D

A

B

U

E



 
 
 
 
 
 

X
 ; 

 
corresponding supply prices: 
 

                
1        2       3

14.540       8.659      12.057

15.540       9.659      11.057

15.040       8.159      11.557

12.040       9.769        9.557

S

A

B

U

E



 
 
 
 
 
 

p
 ; 

 
corresponding demand prices: 
 

                
1         2       3

15.040       9.159      12.557

16.040     10.159      10.766

15.540       8.659      12.057

12.540     10.269      10.057

D

A

B

U

E



 
 
 
 
 
 

p
. 

 
Let’s now consider the matrix of realized trade flows: 
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1 2 3

3.000       2.000     3.000.
 2.500       2.500.
 2.000.
0.500                     4.000.
 5.000       2.000.

. 1.000       1.000     1.000

.  6.000

. 10.000

. 12.000     10.000

A A

A B

AU

B A

B B

U A

U U

E A

E E












X










 
 
 
 
 



 , 

 
 
and the corresponding values of realized produced and consumed quantities of the three 
products in the four countries considered: 
 

                
1         2       3

7.500       4.500       3.000

5.500       2.000       4.000

7.000       1.000       1.000

22.000    10.000

S

A

B

U

E

 
 
 
 
 
 

x
  

 
and 

                
1         2       3

14.500       3.000       8.000

  7.500       4.500

  8.000

12.000      10.000

D

A

B

U

E

 
 
 
 
 
 

x
. 

 
When the calibrating constraints (phase I) are included in the model, the matrix of dual 
variables * , associated with these constraints is: 
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1 2 3

3.100       3.600       6.400
.

4.950       2.150       1.250
.

7.600      -2.050       5.150
.

0.800       0.350      -0.450.
-3.100       3.400       5.

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 Λ

.000

0.750       3.950       1.850

1.200      -2.450       3.550

-5.400       0.150      -1.850

-0.500       9.050       8.150

1.150       7.400       2.800

5.000       4.400       7.900

-3.000       5.600       1.100

-1.100       2.550      12.550

0.750       1.100       7.400

3.200      -3.300      11.100

1.600       4.300      10.700

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  . 

 
 
Many of its elements are negative. The same is true for the matrix of effective transaction 
costs TC  * : 
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1 2 3

3.600       4.100       6.900
.

6.450       3.650       2.750
.

8.600      -1.050       6.150
.

3.800       3.350       2.550.
-1.600       4.900     .

.

.

.

.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

 TC +Λ

 6.500

1.250       4.450       2.350

3.400      -0.250       5.750

-1.400       4.150       2.150

0.500     10.050       9.150

3.350       9.600       5.000

5.500       4.900       8.400

 0.700       9.300       4.800

1.900       5.550     15.550

4.750       5.100     11.400

6.900       0.400     14.800

2.100       4.800     11.200

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

    
The phase I equilibrium matrix of trade flows 
 

1 2 3

3.000       2.000     3.000.
 2.500       2.500.
 2.000.
0.500                     4.000.

 5.000       2.000.

. 1.000       1.000     1.000

.  6.000

. 10.000

. 12.000      10.000

A A

A B

AU

B A

B B

U A

U U

E A

E E














X








 
 
 
 
 
 
 



 

 
equals the matrix of realized trade flows. 
 
The Phase II equilibrium matrix of supply quantities: 
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           *

1 2 3

7.500       4.500       3.000

5.500       2.000       4.000

7.000       1.000       1.000

22.000    10.000

S

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
equilibrium matrix of demand quantities: 

    *

1 2 3

14.500       3.000       8.000

  7.500       4.500

  8.000

12.000      10.000

D

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
equilibrium matrix of supply prices:        

 
*

                  
1           2           3

10.000       8.650       8.650

15.200       7.850       9.050

13.100       2.700       6.400

11.700       7.200       8.400

S

A

B

U

E

 
 
 
 
 
 

p
 ; 

 
equilibrium matrix of demand prices:   
    

*

                  
1           2           3

13.600     12.750      15.550

16.450     12.300      11.400

18.600       7.600      14.800

13.800     12.000      11.200

D

A

B

U

E

 
 
 
 
 
 

p
 . 

 
As it was the case with examples 1-5, the equilibrium model too calibrates exactly each 
country’s production and consumption of the three commodities and exhibits multiple 
optimal solutions; three examples of optimal sets of trade flows associated to that same 
optimal solution are provided below: 
 
matrix of trade flows 1: 

 



 61

1

1 2 3

4.500                     3.000.
 2.000       2.500.
 1.000.
                 2.000.
                              4.000.

.  5.500       2.000
.                 1.000     1.00
.

.

.

A A

A B

AU

A E

B A

B B

U A

U U

E A

E E

 X

0

 7.000

10.000       2.000

12.000       8.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ; 

 
matrix of trade flows 2: 
 

2

  1         2         3

7.500       2.000       3.000.
                2.500.
0.500                       4.000.
                2.000.
5.000.
                              .

.

.

.

.

.

A A

A B

B A

B B

B E

U A

U E

E A

E B

E U

E E

 X  1.000

7.000       1.000

6.500       1.000

7.500

8.000

                9.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ; 

 
matrix of trade flows 3 
 



 62

3

1 2 3

0.500                   3.000
.

 0.500       2.500.
 6.500       2.000.
                              4.000.
                 2.000.
 5.500.

.                            

.

.

.

.

.

A A

A B

A E

B A

B B

B E

U A

U B

U E

E A

E U

E E

 X
   1.000

 7.000

                  1.000

14.000       3.000

  8.000

                  7.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 . 

 
The value of total transaction costs is the same in all three cases and equal to 267.400. 
 
Example 7:  Four countries that are potentially export or import traders of three 

commodities, full, asymmetric positive semidefinite demand and supply 
slope matrices, demand and supply functions are measured at the same 
market level 

As in example 5, the model is calibrated in order to reproduce trade patterns as well as to 
adjust intercepts and slopes of demand and supply functions in order for demand prices to 
equal supply prices in each region. Except for the transaction costs, input data are the 
same as in example 6. The data are as follows: 
 
the matrix of inverse demand intercepts:  

               
1    2      3

30.0   25.0    20.0

22.0   18.0    15.0

25.0   10.0    18.0

28.0   20.0    19.0

A

B

U

E

 
 
 
 
 
 

A
 ; 

 
the matrix of inverse demand slopes: 
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1 2 3

.1 1.2 0.2 -0.2

.2 0.3 2.1 0.2

.3 -0.1 0.1 0.7

.1 0.8 -0.1 0.2

.2 -0.2 1.6 0.4

.3 0.3 0.3 2.6

.1 0.8 0.2 0.5

.2 0.3 0.9 -0.1

.3 0.4 0.0 1.7

.1 1.1 0.1 0.3

.2 0.0 0.8 0.2

.3 0.4 0.3 0.9

A

A

A

B

B

B

U

U

U

E

E

E

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
  

D
 ; 

 
the matrix of inverse supply intercepts:  

                 
1     2   3

0.4     0.1   0.7

0.2    -0.4   0.3

-0.6     0.2  -0.4

-0.5    -1.6  -1.2

A

B

U

E

 
 
 
 
 
 

B
 ; 

 
the matrix of inverse supply slopes:   

                  
1    2    3

.1   1.4   -0.4   0.3

.2  -0.2    2.1   0.2

.3   0.2    0.3   1.7

.1   2.4    0.5   0.2

.2   0.7    1.6   0.3

.3   0.1    0.5   1.8

.1   1.9   -0.1   0.5

.2  -0.1    

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

S

2.8   0.4

 0.6    0.5   2.1

 0.6   -0.1   0.2

-0.1    1.1   0.5

 0.3    0.3   0.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ; 
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the matrix of accounting transaction costs: 
 

                 1        2      3

. 0.0 0.0 0.0

. 1.5 1.5 1.5

. 1.0 1.0 1.0

. 3.0 3.0 3.0

. 1.5 1.5 1.5

. 0.0 0.0 0.0

. 2.2 2.2 2.2

. 4.0 4.0 4.0
. 1.0 1.0 1.0
. 2.2 2.2 2.2
. 0.0 0.0 0.0
. 3.7 3.7 3.7
. 3.0 3.0 3.0
.
.
.

A A
A B
AU
A E
B A
B B
BU
B E
U A
U B
U U
U E
E A
E B
E U
E E

TC

4.0 4.0 4.0
3.7 3.7 3.7
0.0 0.0 0.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
The optimal solution obtained without calibrating the model is shown below: 
 
optimal trade flows matrix: 
 

1 2 3

10.640       4.653       4.943.
                                4.794.
  5.461       3.305.
                                 1.673.
                  2.646.

.   7.930        

.

.

.

.

A A

B A

B B

U A

U B

U U

E A

E B

E U

E E

 X
              1.159

 3.125                       0.423

  2.886

  3.074

13.405      12.311       0.352

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ; 

 
total supply quantities: 
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1         2       3

10.640       4.653       4.943

 5.461       3.305       4.794

 7.930       2.646       2.832

22.490     12.311       0.775

S

A

B

U

E



 
 
 
 
 
 

X
 ; 

 
total demand quantities: 
 

                
1         2       3

13.765       4.653      11.833

  8.347       5.951

11.003                        1.159

13.405     12.311        0.352

D

A

B

U

E



 
 
 
 
 
 

X
; 

 
corresponding supply prices: 
 

                
1         2       3

14.918        8.732      12.628

15.918      10.148      11.128

15.618        7.948      11.628

11.918      10.081        9.628

S

A

B

U

E



 
 
 
 
 
 

p
 ; 

 
corresponding demand prices: 
 

                
1         2       3

14.918        8.732      12.628

15.918      10.148      11.128

15.618        7.948      11.628

11.918      10.081        9.628

D

A

B

U

E



 
 
 
 
 
 

p
. 

 
Let’s now consider the matrix of realized trade flows: 
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1 2 3

.  10.000       2.000      4.000

.    1.000       

.    0.500                      3.500

.    5.000       2.000

.                    0.500

.                                 1.0

.

.

.

.

.

.

A A

A B

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

X
00

                   2.000

 6.000                     2.000

 2.000                     1.000

  2.500        0.500

  1.500 

11.000       11.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

, 

 
 
The optimal solution obtained when imposing that demand prices must be equal to supply 
prices and other calibrating constraints is as shown below: 
 
the matrix of adjustment to transaction costs: 
 

1 2 3

-3.2E-16  -2.3E-16   -7.7E-16
A.A

-2.354        2.569      -2.442
A.B

-1.557      -0.224      -0.785
A.U

-3.810       3.123      -1.868A.E
-0.646      -2.569        B.A

B.B

B.U

B.Eˆ
U.A

U.B

U.U

U.E

E.A

E.B

E.U

E.E

Λ

0.942

2.6E-18    7.3E-16  -2.0E-16

-0.703      -2.793       1.657

-2.956      -3.446       0.574

 1.557        0.224     -0.215

 0.703        0.593     -1.657

-8.4E-16  -4.1E-16   5.8E-16

-2.253        3.347     -1.083

 0.810       -3.123     -1.132

-1.044       -4.554     -0.574

-1.447       -3.347      1.083

-4.8E-16  -7.4E-16  -4.7E-16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  . 
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the matrix of effective transaction costs  ˆTC  : 
1 2 3

-3.2E-16  -2.3E-16  -7.7E-16
.

-0.854       4.069      -0.942
.

-0.557       0.776       0.215
.

-0.810       6.123       1.132.
 0.854      -1.069       .

.

.

.ˆ
.

.

.

.

.

.

.

.

A A

A B

AU

A E

B A

B B

BU

B E

U A

U B

U U

U E

E A

E B

E U

E E

TC +Λ

2.442

2.6E-18    7.3E-16  -2.0E-16

 1.497      -0.593       3.857

 1.044       0.554       4.574

 2.557       1.224       0.785

 2.903       2.793       0.543

-8.4E-16  -4.1E-16  -5.8E-16

 1.447       7.047       2.617

 3.810      -0.123       1.868

 2.956      -0.554       3.426

 2.253       0.353       4.783

-4.8E-16  -7.4E-16  -4.7E-16

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   . 

 
 

Deviations of the supply and demand intercepts are given by: 
 

        

                 
1        2      3

7.6E-4     0.031   0.010

0.002       0.028   0.019
V̂

0.053       0.014   0.010

0.009       0.001   0.005

A

B

U

E

 
 
 
 
 
 

 and; 

 
                 

1            2       3

-7.6E-4    -0.031  -0.010

-0.002      -0.028  -0.019
Û

-0.053      -0.014  -0.010

-0.009      -0.001  -0.005

A

B

U

E

 
 
 
 
 
 

 

 
 



 68

Deviations of supply (Y) and demand (W) slopes are given by: 
 

1 2 3

 0.008       0.002       0.003
.1

 0.342       0.062       0.125.2
 0.115       0.021       0.042.3
 0.012       0.005       0.007.1
 0.154       0.070       0.098.2
 0.104  .3ˆ

.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

Y
    0.047       0.066

 0.318       0.106       0.159

 0.084       0.028       0.042

 0.059       0.020       0.030

 0.151       0.102       0.009

 0.024       0.016       0.001

 0.083       0.056       0.005

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

and; 

 
 

1 2 3

 0.010       0.002        0.007
.1

 0.389       0.062        0.296.2
 0.130       0.021        0.099.3
 0.018       0.009        1.1E-10.1
  0.237       0.126        1.2

.3ˆ
.1

.2

.3

.1

.2

.3

A

A

A

B

B

B

U

U

U

E

E

E

W

.5E-9

 0.160       0.085        1.0E-9

  0.398       3.8E-9      0.106

  0.104       1.0E-9      0.028

  0.074       7.1E-10    0.020

 0.097       0.102        1.8E-9

 0.015       0.016       -5.7E-11

  0.054       0.056        1.0E-9

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
The phase I equilibrium matrix of trade flows 
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1 2 3

.  10.000       2.000      4.000

.    1.000       

.    0.500                      3.500

.    5.000       2.000

.                    0.500

.                                 1.

.

.

.

.

.

.

A A

A B

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

X*
000

                   2.000

 6.000                     2.000

 2.000                     1.000

  2.500        0.500

  1.500 

11.000       11.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
equals the matrix of realized trade flows. 
 
The Phase II equilibrium matrix of supply quantities: 

*

1 2 3

11.000     2.000       4.000

5.500       2.500       3.500

6.000       2.000       3.000

17.000    11.500       1.000

S

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
equilibrium matrix of demand quantities: 

    *

1 2 3

12.500       2.000       9.500

  8.500       4.500

 7.500                       2.000

11.000      11.500

D

A

B

U

E

 
 
 
 
 
 

x
 ; 

 
equilibrium matrix of supply prices:        

 
*

                  
1           2           3

16.308       7.321       11.780

15.454       9.889         9.338

14.752       7.097       10.994

12.498      10.443        9.912

S

A

B

U

E

 
 
 
 
 
 

p
 ; 

 
equilibrium matrix of demand prices:   
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*

                  
1           2           3

16.308       7.321      11.780

15.454       9.889        9.338

14.752       7.097      10.994

12.498     10.443        9.912

D

A

B

U

E

 
 
 
 
 
 

p
 . 

 
This model too calibrates exactly each country’s production and consumption of the three 
commodities. The model exhibits multiple optimal solutions; three examples of optimal 
sets of trade flows associated to that same optimal solution are provided below: 
 
matrix of trade flows 1: 
 

1 2 3

.  10.000       2.000      4.000

.    1.000       

.    0.500                      3.500

.    5.000       2.000

.                    0.500

.                                 1

.

.

.

.

.

.

A A

A B

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

*
1X

.000

                   2.000

 6.000                     2.000

 2.000                     1.000

  2.500        0.500

  1.500 

11.000       11.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

; 

 
matrix of trade flows 2: 
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2

1 2 3

11.000       2.000      4.000
.

                                 3.500
.

   5.500       2.500
.

                   0.500
.

                               1.000
.

          
.

.

.

.

.

.

A A

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

*X          2.000

 6.000                     2.000

 1.500                     1.000

  3.000        

  1.500 

11.000       11.500

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

; 

 
matrix of trade flows 3 
 

3

1 2 3

.  10.000       2.000      4.000

.    1.000       

.    0.500                      3.500

.    5.000       2.476

.                    0.024

.                                 1

.

.

.

.

.

.

A A

A B

B A

B B

B E

U A

U B

U U

E A

E B

E U

E E

*X
.000

                   2.000

 6.000                     2.000

 2.000                     1.000

  2.500        0.024

  1.500 

11.000       11.476

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 
 

References 
 
Anania G. (2001). Modeling Agricultural Trade Liberalization. A Review. Paper 
presented at the annual meeting of the American Agricultural Economics Association, 
Chicago, August 5-8. 

Armington P. A. (1969). A theory of demand for products distinguished by place of 
production. IMF Staff Papers.16. 



 72

Bauer S. and H. Kasnakoglu (1990). “Non-linear programming models for sector and 
policy analysis”. Economic Modelling. July: 275-290. 

Bouamra-Mechemache Z., J.-P. Chavas, T. Cox and V. Réquillart (2002). “EU Dairy 
Policy Reform and Future WTO Negotiations: a Spatial Equilibrium Analysis”. Journal 
of Agricultural Economics. (53) 2: 233-257. 

Bouët A. (2008). The Expected Benefits of Trade Liberalization for World Income and 
Development. Opening the “Black Box” of Global Trade Modeling. Food Policy Review 
no. 8, International Food Policy Research Institute, Washington D.C.. 

Dantzig G. B. (1951). “Application of the Simplex Method to a Transportation Problem”. 
In T. C. Koopmans (ed). Activity Analysis of Production and Allocation. New York: John 
Wiley and Sons Inc.: 359-373. 

Francois J. F. and K. A. Reinert (1997). Applied Methods for Trade Policy Analysis. A 
Handbook. Cambridge: Cambridge University Press. 

Howitt R. (1995a). “Positive Mathematical Programming”. American Journal of 
Agricultural Economics. (77): 329-342. 

Howitt R. (1995b). “A Calibration Method for Agricultural Economic Production 
Models”. Journal of Agricultural Economics. (46) 2: 147-159. 

Jansson T. and T. Heckelei (2009). “A new estimator for trade costs and its small sample 
properties”. Economic Modelling. (26): 489-498. 

Koopmans T. C. (1947). “Optimum Utilization of the Transportation System”. 
Proceedings of the International Statistical Conference. Washington, D.C., (5), reprinted 
as Supplement to Econometrica, (17), 1949. 

Paris Q. (1981). “Multiple Optimal Solutions in Linear Programming Models”. American 
Journal of Agricultural Economics. (63): 724-727. 

Paris Q. (1983). “Multiple Optimal Solutions in Quadratic Programming Models”. 
Western Journal of Agricultural Economics. (8): 141-154. 

Samuelson P. (1952). “Spatial Price Equilibrium and Linear Programming”. American 
Economic Review. (42): 283-303. 

Takayama T. and G. G. Judge (1971). Spatial and Temporal Price and Allocation 
Models. North Holland, Amsterdam.  

van Tongeren F., H. van Meijl and Y. Surry (2001). “Global models applied to 
agricultural and trade policies: a review and assessment”. Agricultural Economics. (26): 
149-172. 


