Band brightness temperature simulated from coupled SVAT model and radiative transfer model over the Valencia Anchor Station
Silvia Enache Juglea, Yann H. Kerr, Arnaud Mialon, Ernesto Lopez-Baeza, Jean-Christophe Calvet, Jean-Pierre Wigneron

To cite this version:
Silvia Enache Juglea, Yann H. Kerr, Arnaud Mialon, Ernesto Lopez-Baeza, Jean-Christophe Calvet, et al.. Band brightness temperature simulated from coupled SVAT model and radiative transfer model over the Valencia Anchor Station. European Geosciences Union General Assembly, Apr 2008, Vienne, Austria. hal-02754378

HAL Id: hal-02754378
https://hal.inrae.fr/hal-02754378
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
L-Band brightness temperature simulated from coupled SVAT model and radiative transfer model over the Valencia Anchor Station


(1) Cesbio Université Paul Sabatier Toulouse, (2)Universitat de Valencia, (3) CNRM Meteo France, (4) INRA Bordeaux

Soil moisture is a key parameter controlling the exchanges at the surface/atmosphere interface. However, this parameter, very important for the weather and climate modelling, is not well observed at a global scale. Consequently, the SMOS (Soil Moisture and Ocean Salinity) mission was designed to measure soil moisture over continental surfaces as well as ocean salinity. It will provide measurements at least every 3 days at the equator.

The VAS (Valencia Anchor Station) experimental site, in Spain, is a cornerstone of the SMOS Cal/Val plan. It is a semiarid environment and is characterized by an extensive average of measurements at different levels both in the atmosphere and in the soil in order to derive surface energy fluxes.

The research presented here deals with use of ground surface variables to simulate passive microwave brightness temperature so as to have Satellite “match ups” for CalVal and to test retrieval algorithms. For this long term records of satellite data are analyzed. In these framework ground and meteorological measurements from the VAS site are spatialized to a SMOS pixel using a Soil-Vegetation-Atmosphere-Transfer(SVAT) model (SURFEX) from Météo France. Output data, particularly soil moisture, are then used to simulate the L-band surface emission through the use of the L-Meb (L-band Microwave Emission of the Biosphere) model. We will present the first simulation results which will help better understanding the exact signification of
the SMOS signal and thus give a first insight of the SMOS data.