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Abstract
Background: Due to the continuous improvements of high throughput technologies and
experimental procedures, the number of sequenced genomes is increasing exponentially.
Ultimately, the task of annotating these data relies on the expertise of biologists. The necessity for
annotation to be supervised by human experts is the rate limiting step of the data analysis. To face
the deluge of new genomic data, the need for automating, as much as possible, the annotation
process becomes critical.

Results: We consider annotation of a protein with terms of the functional hierarchy that has been
used to annotate Bacillus subtilis and propose a set of rules that predict classes in terms of elements
of the functional hierarchy, i.e., a class is a node or a leaf of the hierarchy tree. The rules are
obtained through two decision-trees techniques: first-order decision-trees and multilabel attribute-
value decision-trees, by using as training data the proteins from two lactic bacteria: Lactobacillus
sakei and Lactobacillus bulgaricus. We tested the two methods, first independently, then in a
combined approach, and evaluated the obtained results using hierarchical evaluation measures.
Results obtained for the two approaches on both genomes are comparable and show a good
precision together with a high prediction rate. Using combined approaches increases the recall and
the prediction rate.

Conclusion: The combination of the two approaches is very encouraging and we will further
refine these combinations in order to get rules even more useful for the annotators. This first study
is a crucial step towards designing a semi-automatic functional annotation tool.
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Background
Context
Due to the continuous improvements of high throughput
technologies and experimental procedures, the number of
sequenced genomes is increasing exponentially. The first
sequenced genome was published 10 years ago. Currently,
about 800 (updated in May 2008) genomes have been
completely sequenced and published, coding for more
than 6 millions proteins (as stored in the protein
sequence database UniProtKB). A further 3 700 new
genomes are expected in the near future [1].

Biologist experts play a central role in the analysis of this
massive amount of raw data. To annotate a new genome
they need to integrate many pieces of information coming
from various sources: results of bioinformatics analysis
programs, data stored in specialized databases, results of
high-throughput experiments such as transcriptomics,
proteomics, etc., information stored in the literature, gen-
eral knowledge about the domain of interest (biological
properties of the studied organism, its ecology, etc.). Even
for a small bacterial genome, containing about 2 000
genes, this annotation task is a heavy burden that takes
between 12 and 18 months to complete for a small team
of annotators. A number of annotation tools have been
designed to help the biologists concentrating exclusively
on this high-level task. The aims of theses tools are to hide
technical details, to make the system implementation
transparent, to centralize and facilitate the access to rele-
vant data, and to report a synthesis of all the findings to
the annotators in an efficient manner. In spite of these
tools, the need for a human supervision of the annotation
process still constitutes the bottleneck of genomic data
analyses. Therefore, to face the deluge of new genomic
data, there is a crying need to automate, as far as possible,
the annotation process itself. Computational annotation
methods should take into account as much relevant infor-
mation as possible regarding the analyzed genome, as
human experts do.

Let us emphasize here that there is a difference between
the direct annotation of the gene product, e.g., "fatty acid-
binding protein, adipocyte" and the annotation of the
protein with terms of a functional hierarchy, for instance
for GO [2], "GO:16564; Molecular function: transcription
repressor activity" or "GO:42632; Biological process: cho-
lesterol homeostasis". In the latter case different proteins
are grouped according to their molecular function or to
the functional path they belong to. In this article we are
concerned with the second type of annotation.

Annotation is mostly based on evolutionary considera-
tions, more precisely on the concept of homology.
Homology is the fact, for two genes or proteins, to
descend from a common ancestor. As such they share a

number of properties, in particular their function. The
principle of annotation is thus to infer an homology rela-
tionship between a gene (protein) of interest and a gene
(protein) whose function is known and to transfer this
function.

State of the art
Computational annotation methods range from symbolic
to numerical techniques. Some of them are based on
machine-learning techniques (e.g. SPEARMINT [3] or
GOPET [4] that use C4.5 [5] and SVM [6] respectively)
while others are probabilistic approaches (e.g. MAGIC
[7,8] which is based on a Bayesian network or the Baye-
sian approach proposed in [9]).

In the context of the RAFALE project [10] our goal is to
provide biologists with a semi-automatic tool for func-
tional annotation. As a straightforward consequence,
both productivity of the annotators and consistency of the
annotations would be improved. It is a semi-automatic
tool in the sense that the process is collaborative: annota-
tions are suggested by rules that reflect known protein
annotations but the annotations are ultimately validated
by the biologists. We chose to learn rules obtained
through decision-trees that exhibit several good features.
They can be easily understood and used by human anno-
tators. They represent modular pieces of information that
can be considered as explanations of the annotations pro-
posed to users. In our approach not only do we aim at
obtaining good quality annotations but also we focus on
how they have been obtained. This point is essential for a rel-
evant evaluation of the quality of the annotations in order
for them to be used by the biologists. Otherwise, biolo-
gists would not trust such rules and would not use them,
thus missing a possibility of saving time. However, we do
not restrict ourselves to high quality annotations. Unlike
HAMAP [11], we can be led to propose several alternative
annotations, together with their confidence degree, asking
biologists to conclude themselves. In the following, we
propose to apply two decision-trees techniques to the
problem of predicting classes from a functional hierarchy,
in the same spirit as in [12] which deals with the problem
of predicting ORF functional classes. Two different frame-
works have been chosen to represent rules that are more
or less expressive and accordingly more or less expensive:
first-order decision-trees [13] and multilabel attribute-
value decision-trees [14]. As we are more interested in
providing biologists with reliable annotation – even
though it concerns only a restricted subset of proteins –
we aim at obtaining rules with high precision rather than
good recall (see section Results).
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Methods
Annotation framework and genomes under study
The available data
In this work our training set corresponds to data provided
by the AGMIAL annotation platform [15]. This platform
has been used to annotate two lactic bacteria: Lactobacillus
sakei [16] and Lactobacillus bulgaricus [17].

AGMIAL embodies an annotation strategy that considers
the following pieces of information:

• modular aspect and intrinsic properties of protein
sequences;

• search for homology relationship between proteins;

• genomic context;

• subcellular localization.

More than 30 bioinformatics methods belonging to the
above categories are implemented in AGMIAL. As men-
tioned in the Background section, homology search tech-
niques represent the cornerstone of the annotation
process. However, with the availability of many
sequenced genomes and thus the possibility of annotating
a new genome in the light of other known genomes, tech-
niques based on the genomic context are becoming
increasingly important.

The two teams of biologists that analyzed the above
genomes used the results of the bioinformatics methods
deployed in AGMIAL, and other available data, to assign
a function to the genome proteins. They employed a func-
tional hierarchy that has been previously used to annotate
Bacillus subtilis [18], called Subtilist hierarchy in the fol-
lowing. This functional hierarchy provides a controlled
vocabulary to describe the protein function. Thus they
attributed to each protein a node or a leaf of the func-
tional hierarchy. This hierarchy is very simple: it consists
of 3 levels that become more specific as one proceeds
toward the leaves (see Fig 1).

In this study, we choose to focus only on classes 1, 2 and
3. Class 5 and 6 correspond to proteins for which the
annotators judged there was not enough information to
conclude on a particular function. Class 4 is a medley that
gathers together various heterogeneous functions without
any relationship. It was not possible to learn regularities
from data of this class. The exclusion of these 3 first level
classes and their subclasses in the hierarchy removed 11
out of 62 classes (18%).

The descriptors
To generate annotation rules, we have to describe the pro-
teins in terms of their properties. Some properties are
intrinsic such as the number of transmembrane segments,
the isoelectric point, the molecular mass, the number of
domains and their type, etc. Other properties express a
relationship between the protein of interest and proteins
of other genomes (homology relationship) or between
proteins of the analyzed genome (genomic context rela-
tionship). These properties are provided by the bioinfor-
matics programs that analyze the genomic data.

Homology information
• blastmatchGo
For each protein of interest, we use homologous proteins
that have been found with BLAST [19]. For the current
study we only consider close homologs, i.e., those having
more than 50% identical residues and an e-value less than
10-4. In addition, the lengths of the protein and its
homolog have to be similar to exclude the case of
domains (l1 ≥ 0.8 × l2 or l2 ≥ 0.8 × l1, with l1 the length
of the protein and l2 the length of its homolog). We then
extract the GO-terms [2] associated with the homologous
proteins in the Uniprot data bank [20]. The GO-terms cor-
respond to functional classes of the Gene Ontology [21].
A protein has usually many homologs and each homolog
can be described by several GO-terms. To build the blast-
matchGo descriptor we group together all the homologs
that have the same GO-term and we consider the fraction
(f) of homologs that have a particular GO-term.

For instance, this will generate rules such as: 'if blast-
matchGo(esa100, GO: 0006810, f) and f > 0.7 then class =
3.5'. In this expression, esa100 is the 100th protein of the
L. sakei genome starting from the origin of replication,
GO:0006810 is a term of the Gene Ontology that is asso-
ciated to 70% of the homologs of esa100 found by BLAST.

• blastmatchSw
The blastmatchSw descriptor is similar to the blastmatchGo
descriptor, but it uses Swiss-Prot (SW) keywords [22]
instead of GO-terms to describe homologous proteins.

• interpro
This descriptor provides information about domains and
motifs. We associate an INTERPRO [23] identifier to a
protein if the corresponding domain or motif is found in
the protein.

In this study we consider only proteins that have at least
one descriptor of each type: blastmatchGo, blastmatchSw
and interpro. The distribution of these proteins among the
nodes of the first level of the Subtilist hierarchy of pro-
teins is shown in Tab. 1 for the two genomes of interest
(see also Fig. 1).
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Functional hierarchy used to annotate B. subtilisFigure 1
Functional hierarchy used to annotate B. subtilis. The left hand side of the figure shows the three level functional hierar-
chy. The columns on the right hand side correspond to the number of proteins annotated with the corresponding node or leaf 
for L. sakei and L. bulgaricus respectively. Columns 'annot.' correspond to the number of proteins annotated by human experts, 
columns 'process.' correspond to the number of proteins that are considered in this study (see text). In the latter case, for 
inner nodes, this number is given as the sum of the figures for the direct descendants and the number of proteins having the 
node (partial) annotation, within square brackets. For instance, for proteins of L. sakei annotated in class 2 "intermediary 
metabolism", there are 2 proteins with only the class 2 annotation and 215 with more detailed annotations, that are thus dis-
tributed in the daughter classes: 2.1 – 2.9.

L.sakei L.bulgaricus
Class definitions annot. process. annot. process.

1 Cell envelope and cellular processes 367 [9]+162 449 [0]+176
o 1.1 Cell wall 25 11 86 27
o 1.2 Transport/binding proteins and lipoproteins 224 [37]+100 268 [45]+110

+ 1.2.1 Transport/binding of proteins/peptides 8 6 39 15
+ 1.2.2 Transport/binding of nucleic acids 0 0 0 0
+ 1.2.3 Transport/binding of inorganic ions 57 27 32 17
+ 1.2.4 Transport/binding of carbohydrates 30 15 18 12
+ 1.2.5 Transport/binding of amino acids 30 14 44 19
+ 1.2.6 Transport/binding of nucleosides/nucleotides 12 1 2 2

o 1.3 Sensors (signal transduction) 26 19 24 6
o 1.4 Membrane bioenergetics (electron transport chain and ATP synthase) 8 6 28 16
o 1.5 Mobility and chemotaxis 0 0 0 0
o 1.6 Protein secretion 16 5 11 4
o 1.7 Cell division 23 11 17 10
o 1.8 Sporulation 0 0 0 0
o 1.9 Germination 0 0 0 0
o 1.10 Transformation/competence 8 1 19 3

2 Intermediary metabolism 349 [2]+215 315 [0]+190
o 2.1 Metabolism of carbohydrates and related molecules 106 [35]+42 106 [0]+65

+ 2.1.1 Specific pathways 34 28 88 50
+ 2.1.2 Main glycolytic pathways 19 13 17 14
+ 2.1.3 TCA cycle 0 1 0 1

o 2.2 Metabolism of amino acids and related molecules 38 24 55 32
o 2.3 Metabolism of nucleotides and nucleic acids 82 54 75 56
o 2.4 Metabolism of lipids 54 24 38 18
o 2.5 Metabolism of coenzymes and prosthetic groups 40 15 34 16
o 2.6 Metabolism of phosphate 1 1 5 2
o 2.7 Metabolism of sulfur 0 0 0 0
o 2.8 Metabolism of nitrogen, nitrate, nitrite 0 0 2 1
o 2.9 Protein fate 23 19 0 0

3 Information pathways 377 [3]+226 381 [0]+230
o 3.1 DNA replication 34 24 19 11
o 3.2 DNA restriction/modification and repair 12 6 14 5
o 3.3 DNA recombination and repair 47 29 43 22
o 3.4 DNA packaging and segregation 4 1 13 11
o 3.5 RNA synthesis 47 [4]+41 96 [0]+38

+ 3.5.1 Initiation 1 1 6 2
+ 3.5.2 Regulation 100 38 79 28
+ 3.5.3 Elongation 1 1 10 7
+ 3.5.4 Termination 2 1 1 1

o 3.6 RNA modification 34 15 29 18
o 3.7 Protein synthesis 107 [7]+84 97 [3]+78

+ 3.7.1 Ribosomal proteins 57 45 56 44
+ 3.7.2 Aminoacyl-tRNA synthetases 22 18 24 23
+ 3.7.3 Initiation 6 5 3 3
+ 3.7.4 Elongation 6 6 6 3
+ 3.7.5 Termination 4 3 4 2

o 3.8 Protein modification 5 4 25 14
o 3.9 Protein folding 18 15 2 1
o 3.10 Protein degradation 0 0 43 32

4 Other functions 206 0 144 0
o 4.1 Adaptation to atypical conditions 40 0 16 0
o 4.2 Detoxification 20 0 7 0
o 4.3 Antibiotic production 0 0 0 0
o 4.4 Phage-related functions 22 0 6 0
o 4.5 Transposon and IS 11 0 114 0
o 4.6 Miscellaneous 113 0 1 0

5 Similar to unknown proteins 345 0 462 0

6 No similarity 229 0 280 0

1873 603 2031 596
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Intrinsic properties
The descriptors corresponding to intrinsic properties of
the proteins considered in this study are:

• TM the number of transmembrane segments;

• pI the isoelectric point;

• mm the molecular weight.

Each protein has many homologs described by GO-terms,
SW keywords and INTERPRO identifiers. In order to avoid
redundancy and to reduce the search space of the machine
learning algorithms, we applied mappings of SW key-
words and INTERPRO identifiers to GO-terms. We used
the mappings provided on the GO web page [24]. We kept
Swiss-Prot keywords and INTERPRO identifiers if no map-
ping to a GO-term was found. This mapping allows a
reduction of the search space that the machine learning
algorithm needs to explore.

Table 2 presents the distribution of GO-terms, SW key-
words and INTERPRO motifs for the two genomes with
and without the application of mappings. We can observe
that the size of the search space is significantly reduced 
(-33% or -40% depending on the genome).

Two approaches
In this section, we present the two machine learning tech-
niques we used to learn decision-trees: ILP framework and
Multilabel probabilistic decision-tree.

ILP framework
TILDE is a relational learning system from the ILP com-
munity that is based on first-order logical decision-trees.
It uses top-down induction of decision-trees by adapting
C4.5's heuristics. It allows discretization of numeric
attributes and provides look-ahead facilities so that prop-
erties of descriptors and parameters can be easily set
through a bias file.

We decided to predict protein function by using TILDE
level by level, beginning from the upper level of the func-
tional hierarchy. In order to discriminate the three classes
of the first level, we build three decision-trees, where each
class in turn is considered as the set of examples, while the
two others give the counter-examples. Note that with this
method a protein may be assigned up to 3 classes of the
first level. In order to stay close to the AGMIAL system
which allows only one annotation for a protein, we chose
to assign a "no prediction" tag to a protein if the three
trees disagree on the class predicted. This leads to a
decrease in the recall value but, of course, to an increase in
the precision.

As the second and third levels contain fewer proteins than
the first one, we decided to learn multiclasses trees, that is,
trees where each leaf refers to a single class, but where sev-
eral classes can be found at different leaves. Thus we got
ten trees, three at the first level, three at the second level
and four at the third level, as only four classes at the sec-
ond level had subclasses.

Multilabel probabilistic decision-tree
In a hierarchical multilabel classification tree, an example
may belong to several classes. Moreover, an example
belonging to some class with some membership degree
also belongs to its superclasses with higher membership
degrees.

Each leaf of a probabilistic decision-tree represents a vec-
tor of classes where the membership degree is equal to the

Table 1: Number of proteins that have at least one descriptor of 
each type: blastmatchGo, blastmatchSw, interpro.

Classes

Organism 1 2 3 ∑

L. sakei 171/367 217/349 229/377 603/1093

L. bulgaricus 176/449 190/315 230/381 596/1145

L. sakei andL. bulgaricus protein distribution at the first level of the 
functional hierarchy. a/b: a is the number of proteins with at least one 
highly similar (percentage of identical residues greater than 50% on a 
consistent length) protein with a GO-term descriptor, a Swiss-Prot 
keyword and an INTERPRO domain, b is the number of proteins 
belonging to this class for the considered genome.

Table 2: Impact of the mappings SW → GO and INTERPRO → GO.

Organism GO SW keywords INTERPRO Number of descriptors

L. sakei 620/875 (+41,1%) 230/49 (-78,7%) 715/120 (-83,2%) 1565/1044 (-33,3%)

L. bulgaricus 599/876 (+46,2%) 223/46 (-80,2%) 1056/199 (-81,1%) 1878/1121 (-40,3%)

L. sakei and L. bulgaricus numbers of GO-terms, SW keywords and INTERPRO motifs with and without the mapping SW → GO, INTERPRO → 
GO. a/b (c%): a is the number of different descriptors used without mappings, b is the number of different descriptors used with mappings, c is the 
number of descriptors "saved" when carrying out the mapping (in%).
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proportion of the training examples observed in the leaf
(and belonging to the class). For example, a leaf may be
the vector: (3 – 90%, 2 – 10%, 3.2 – 85%, 3.1 – 15%, 3.2.3
– 36%, 3.2.5 – 64%). Different algorithms, derived from
C4.5 [5], have been proposed [25,14]. We chose to use the
Clus-HMC algorithm [14] that has been designed to take
into account class hierarchy. The algorithm uses minimi-
zation of the average variance and a weighted Euclidean
distance to compare two partitions of the data. The dis-
tance takes into account the depth of the classes in the
hierarchy.

In this study, we use the parameters empirically found to
be the best by Blockeel et al. in [14]. In order to evaluate
the methods, we turn to Hierarchical Evaluation Meas-
ures, that are adapted to our data.

Hierarchical Evaluation Measure
Kiritchenko et al. [26] defined a Hierarchical Evaluation
Measure which respects the three main properties that a
hierarchical evaluation measure should satisfy:

1. The measure gives credit to partially correct classifica-
tion;

2. The measure punishes distant errors more heavily;

3. The measure punishes errors at higher levels of a hierar-
chy more heavily.

These properties ensure that we differentiate misclassifica-
tions depending on the level at which they occur in the
hierarchy. Predictions are evaluated using the five follow-
ing parameters: n: number of proteins to be annotated, np:

number of proteins with at least one prediction (correct or

not), : number of correct predictions, : number of

missing predictions, : number of supplementary pre-

dictions, and : number of incorrect predictions. Fig. 2

illustrates different configurations.

Hierarchical precision (hP) and hierarchical recall (hR) have
been reformulated with our parameters to respect the
three above properties. A hierarchical Fscore (hFβ ∈ [0..1])
has been defined in [26]. The Fscore (hFβ) measure com-
bines precision (hP) and recall (hR) to provide a single
evaluation of a hierarchical classification tool. This meas-
ure is controlled by the β ∈ [0, + ∞] parameter which per-
mits to give more or less importance to either precision or
recall.

Usually, β is set to 1 which implies equal weight for preci-
sion and recall. These hierarchical measures are defined as
follows:

We also employ the prediction rate measure, pr, represent-
ing the percentage of predicted proteins and defined as pr
= np/n.

It may happen that some predictions are more detailed
than the expert annotation. To respect the spirit of the
measures defined in [26], in the evaluation of our method
performances we consider the more detailed prediction as
an incorrect prediction (see Fig. 2-d). However, a more
detailed prediction might very well be correct. Indeed, the
annotations considered as references here have been done
a couple of years ago with less information than is availa-
ble today. Consequently, the prediction will often corre-
spond to the annotation that a human expert would do
based on the current information available for prediction.
For example, in L. sakei, protein "DNA directed RNA
polymerase, a subunit" annotated in class 3.5 (RNA syn-
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thesis) is predicted in 3.5.3 (transcription elongation), as
it should be.

Results and Discussion
Parameters
In both approaches, decision-trees were learnt under the
same condition: the minimal number of proteins in a leaf
had to be equal to 8 (smallest values would likely result in
overfitting). When applying decision-tree, a class was pre-
dicted only if it represented more than a minimal ratio of
the examples observed in the leaf at the learning stage.
This minimal ratio called Confidence Threshold noted
by CT, allows us to control the prediction rate. Its value
has been chosen empirically. As shown on Fig. 3, the pre-
cision increases steadily with the threshold whereas the
recall in Fig. 4 exhibits a sharp decrease after this value. As
a result, the hierarchical Fscore (β = 1) also decreases for
thresholds CT larger than 75% (see Fig. 5). In the follow-
ing we use this value CT = 75%.

Approaches
For the two approaches, TILDE and multilabel probabilis-
tic decision tree, we carry out two different tests. In the
first test, proteins of both genomes are considered as a
whole, and rules are learnt on a fraction of them and
tested on the other fraction by a 3-fold cross validation
procedure. In the second test, rules are learnt on proteins
of a genome and tested on proteins of the second genome.
The latter is a more "natural" way of proceeding since we
seek to annotate new genomes in the light of previously
annotated genomes. Results of these tests are evaluated
with the four measures previously presented but we will
only detail the second test, which is more natural.

As can be observed in Tab. 3, results are good for both
approaches and both genomes. Most of the proteins have
a prediction (pr > 75% for Multilabel approach and pr >
0.96 for TILDE). The recall is in the range 45% and 65%
depending on the genome predicted. The precision is
good, over 80% for most cases. The resulting hFscore is
thus in the range 60% to 70%. Most of the proteins have
a good prediction for the first level and some of them have
more detailed predictions at the second and third levels.

We have also combined the two tested methods as fol-
lows:

• Combined-Multilabel: first carry out the prediction with
Multilabel. If no prediction is obtained, employ TILDE.

• Combined-TILDE: this is the converse of the previous
approach, use TILDE first then Multilabel.

When TILDE is used as the first prediction, no real gain is
observed. The prediction rate (pr) for the TILDE approach
is close to 1 and thus the Multilabel approach is only used
for the few proteins that are not predicted by TILDE.

On the other hand, when the Multilabel approach is used
as the first prediction method, the gain is important both
in terms of recall (almost 10%) and prediction rate (20 to
26%). This increase in the recall is concomitant to a slight
decrease in the precision. However, overall, the precision
remains close to 0.8 and this is good enough to be used in
a semi-automatic application.

Hierarchical PrecisionFigure 3
Hierarchical Precision. Plot of the hierarchical precision as a function of the confidence threshold (CT). A class is predicted 
only if it represents more than CT% of the examples observed in the leaf at the learning stage. On the left hand side L. sakei has 
been used to learn the decision-trees that have then been employed to predict proteins of L. bulgaricus, on the right hand side 
this is the converse.
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Trees and rules
Fig. 6 presents an example of the rules obtained with
TILDE and Multilabel for protein esa800 of L. sakei. The
trees were learnt with the proteins of L. bulgaricus. Fig. 7
shows the trees produced with TILDE at each level (for the
first two levels only the fragment of the tree of interest is
displayed). The rules correspond to paths in these trees.
The meaning of the GO-terms is given in Tab. 4 together
with a mapping that most biologists would do of these
terms on the functional hierarchy.

Using the tree displayed in Fig. 7, the rules shown in Fig.
6 can be interpreted as follows.

For the first level, the homologs of esa800 do not have the
GO-term "translation", but more than 69% of them are
associated with the GO term "DNA binding" which is
enough to classify the protein in class 3 (conf = 98%)
("information pathways" see Tab. 4).

For the second level, the homologs of esa800 do not have
the GO-term "translation" but are associated with the GO-
term "transcription" which corresponds to class 3.5
(conf= 97%) (RNA synthesis). For the third level, the
homologs of esa800 are not associated with the GO-term
"transferase activity". This is a very general term that does
not carry any specific information in favor of a particular
class. However in the context of class 3.5, it makes sense
since the elongation process (3.5.3) corresponds to the

Hierarchical FscoreFigure 5
Hierarchical Fscore. Same as Fig. 3 for the hierarchical Fscore.

Hierarchical RecallFigure 4
Hierarchical Recall. Same as Fig. 3 for the hierarchical recall.
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attachment (transfer) of a new nucleotide to the growing
RNA chain. Therefore the protein is predicted 3.5.2 (conf
= 87%) since its homologs do not have this term.

The multilabel approach proposes a similar rule, that con-
cludes to the same class (conf = 90%) for esa800 (Fig. 6).

Annotators can thus easily interpret these rules and trees
and confirm or reject the rule conclusion.

Conclusion and perspectives
Results obtained for the two approaches on both genomes
are comparable and are good enough to be useful for the
annotators (good precision and high prediction rate). A
first attempt at combining the two approaches is very

encouraging (this increases the recall and the prediction
rate). We will further refine these combinations.

We are now analysing thoroughly the rules obtained from
the trees and comparing them in order to extract common
pieces of knowledge which could be considered as
strongly reliable for an automatic annotation. The biolog-
ical meaning of these rules and their relevance for annota-
tion purpose will be investigated by experts that use the
AGMIAL platform. As we may obtain several possible
annotations, we would like to extend the AGMIAL inter-
face in order to make it support multiple annotations for
the same protein, if required, and to provide the user with
different predictions together with their confidence
degree. Also we plan to learn new trees based on a richer
set of descriptors for the training examples, for instance,
by taking into account the genomic context or subcellular
localisation. Finally, we are considering validating our
approach by applying it to other genomes and to learn
other expressive classifiers.

Note added in proofs: we were considering applying our
methodology on the 5 MIPS genomes annotated with the

Table 4: GO-terms.

GO identifier Definition biologist mapping

GO:0006412 translation 3.7
GO:0003677 DNA binding 3.1 – 3.5
GO:0004177 aminopeptidase activity 3.10
GO:0006396 RNA processing 3.5 – 3.6
GO:0006350 transcription 3.5
GO:0006260 DNA replication 3.1
GO:0003723 RNA binding 3.6
GO:0016740 transferase activity context dependent

GO-terms shown in the trees of Fig. 7 and their definition. The last 
column is the mapping of the GO-term definition on the functional 
hierarchy that most biologists would do.

Table 3: Prediction results.

Learn Test Method hP hR hF pr

L. bulgaricus + L. sakei 3-CV Multilabel 86.6% 52.2% 65.1% 73.7%
TILDE 86.7% 51.9% 64.9% 76.4%

L. sakei L. bulgaricus Multilabel 85.3% 47.4% 60.9% 72.2%
TILDE 82.6% 44.5% 57.8% 96.8%

combined-Multilabel 81.4% 55.3% 65.9% 98.3%
combined-TILDE 81.5% 44.7% 57.7% 98.3%

L. bulgaricus L. sakei Multilabel 80.5% 52.7% 63.7% 78.1%
TILDE 85.9% 65.2% 74.1% 96.8%

combined-Multilabel 79.7% 61.4% 69.4% 98.5%
combined-TILDE 86.0% 66.8% 75.2% 98.5%

Results observed for a confidence threshold set to 0.75 in the leaves.

Example of rulesFigure 6
Example of rules. Example of rules obtained with TILDE 
and Multilabel

Expert annotation: for L. sakei protein esa800

• function: deoxyribonucleoside synthesis operon transcriptional regulator

• Subtilist class: 3.5.2

TILDE rules:

• First level tree:

if not (blastmatchGo(A,GO:0006412,C,D)) and blastmatchGo(A,GO:0003677,E,F),F>0.6956522
then 3 (conf : 0.98)

• Second level tree:

if not blastmatchGo(A,GO:0006412,C,D) and blastmatchGo(A,GO:0006350,E,F),F>0.037037037
then 3.5 (conf. 0.97)

• Third level tree:

if not blastmatchGo(A,GO:0016740,C,D)
then 3.5.2 (conf. 0.87)

Multilabel prediction rule:

if not GO:0006412 and not GO:0006810 and GO:0006350 and not GO:0016740
and MM > 27345

then classes = 3 (conf. 1), 3.5 (conf. 0.9) and 3.5.2 (conf. 0.9)
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MIPS Funcat functional hierarchy. MIPS scientists pub-
lished recently a paper [27] describing a work quite simi-
lar, in spirit if not in methodological details, to the one we
presented here, using Funcat and their 5 annotated
genomes.
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