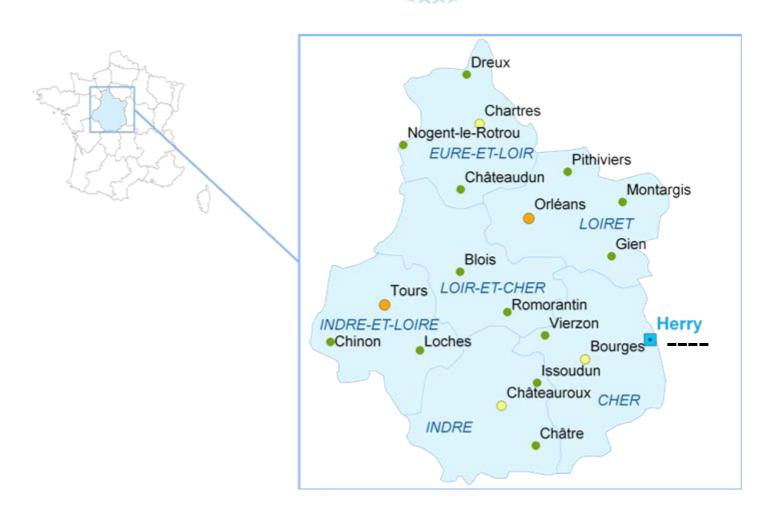
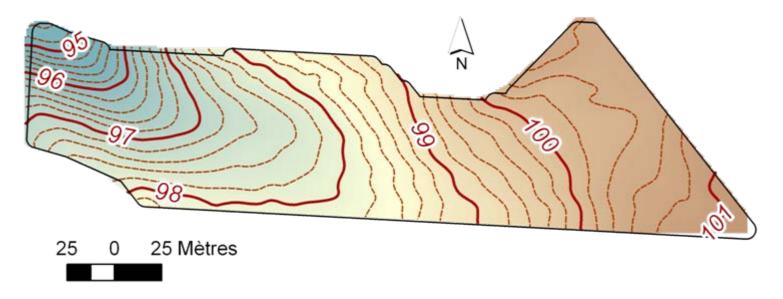
Etude de la croissance d'une plantation de merisiers à l'aide de mesures de résistivité électrique des sols.

Mise en évidence des facteurs limitants.

Nicoullaud B¹, Dufour J², Bourennane H¹, Lelay C¹, Meslier C³, Pasquier C¹, Verger M³ et Cousin I¹


- 1 INRA, UR 0272 Unité de Science du Sol, Centre d'Orléans, BP 20619, F-45166 Olivet Cedex.
- 2 INRA, UR 588 Unité d'Amélioration, Génétique et Physiologie Forestière, Centre d'Orléans, BP 20619, F-45166 Olivet Cedex
- 3 INRA, UE 995 Unité Expérimentale d'Amélioration des arbres forestiers, Centre d'Orléans, BP 20619, F-45166 Olivet Cedex

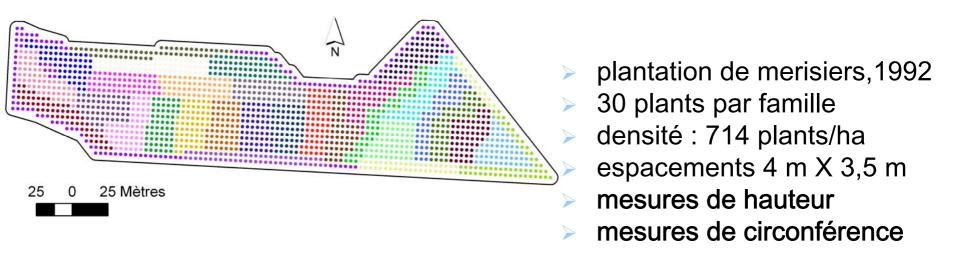
Problématique


- Recherches en amélioration des arbres forestiers
- nombreux essais variétaux sur la France (800 ha)
- interactions génotypes milieux
- comment lors de la mise en place des essais (coûteux), prendre en compte une éventuelle hétérogénéité du milieu, des sols en particulier?
- reconnaissance du terrain : sondages tarière à densité variable
- nouvelles méthodes pour aider à la mise en place des essais : mesures spatiales de la résistivité apparente des sols

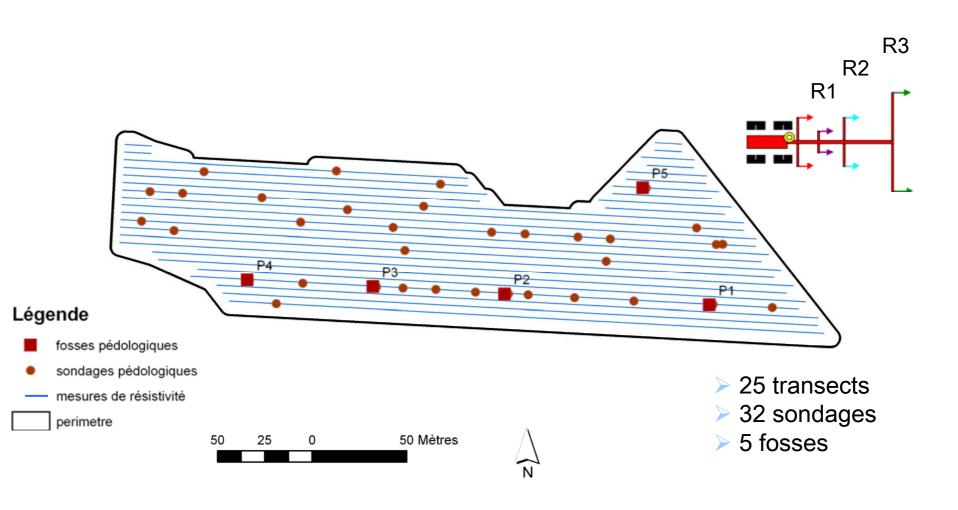
Situation géographique

Topographie de la parcelle

- > site étudié : parcelle de 2,4 ha, anciennement cultivée
- > longueur de 378 m suivant une direction Est Ouest
- > largeur de 100 m

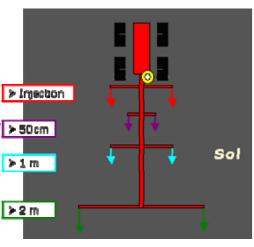


Géologie


- 1/50 000 La Charité sur Loire
- Substratum : calcaire crayeux de Bourges (Oxfordien supérieur), subrécifaux, tendres et massifs
- Sables et argiles du Bourbonnais (Pliocène supérieur)
 - Sables à galets de quartz, chailles et silex
 - Sables argileux quartzo feldspathiques
- Limons des plateaux (Würm)

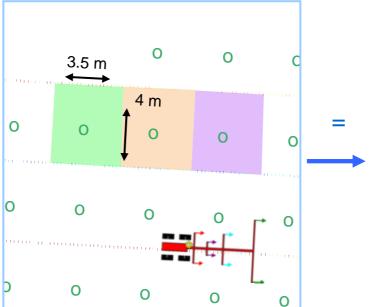
Le dispositif expérimental

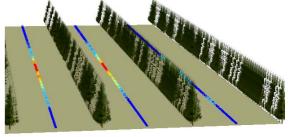
Blocs, constitués de 57 ou 58 plants.


Mesures

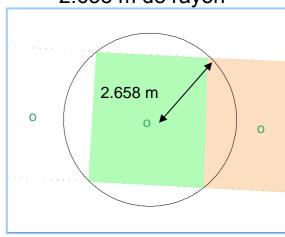
Propriétés des sols et résistivité électrique

- Constituants : argile, sable, carbone, oxydes, EG
- 2) Teneur en eau
- 3) Température
- 4) Solution du sol
- 5) Structure
- Mesure intégratrice, non destructive, assez rapide


Mesures de la résistivité apparente des sols

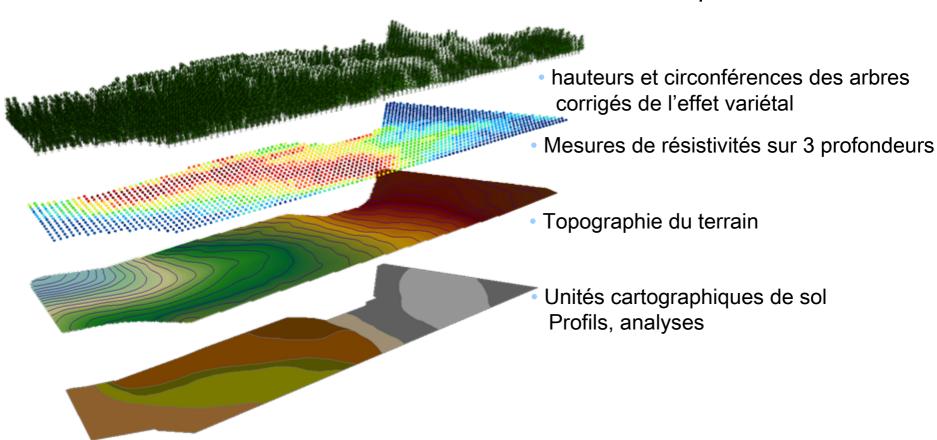


- mesures de résistivité tous les 20 cm
- le 27 mai 2005
- société -GEOCARTA
- dispositif (ARP) multiélectrodes mobile.

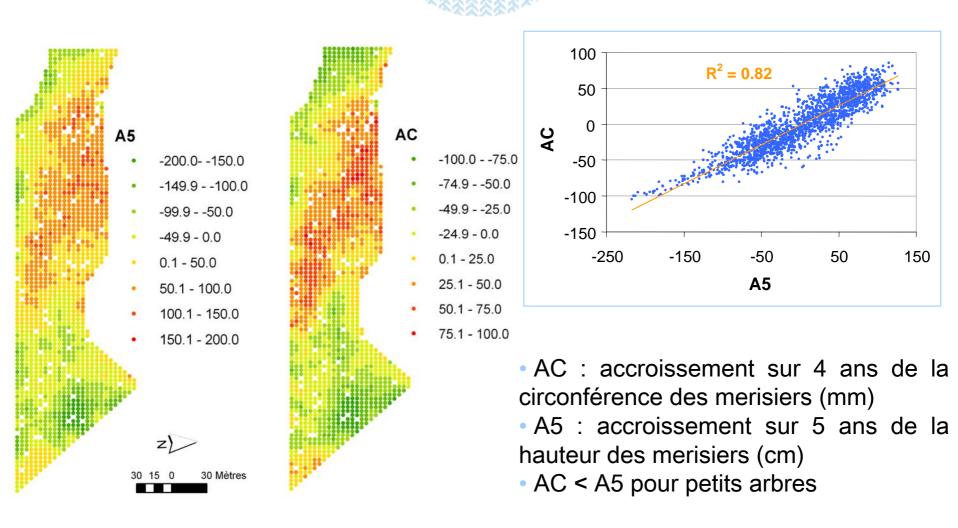

e = 50 cm : R1 e = 100 cm : R2 e = 200 cm : R3

Cellule de 4X3.5 m centrée sur chaque arbre

Cercle concentrique de 2.658 m de rayon



Traitement des mesures de plantes

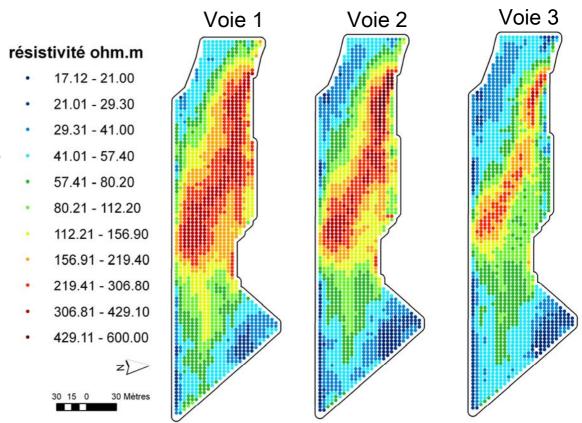

- Dispositifs agronomiques ou forestiers : milieu naturel avec variations environnementales s'exprimant de façon graduelle et différentes selon les caractères observés
 - > 2 facteurs : génétique et milieu
- Méthode de Papadakis itérée :
- Carte de croissance (hauteur, circonférence) purgée des effets génétiques
- Résultats sont exprimés par rapport à la moyenne de l'essai centré sur 0

Représentation 3D

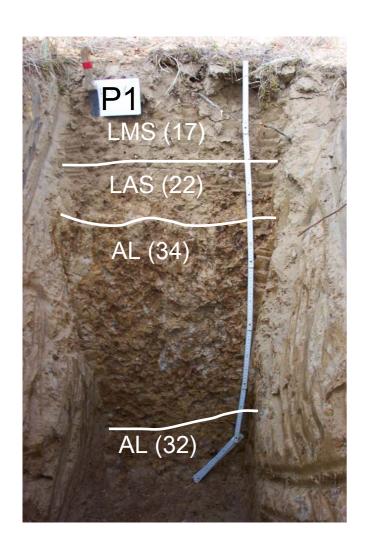
Données disponibles :

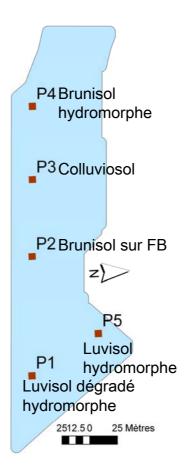
Paramètres de croissance

Analyse statistique

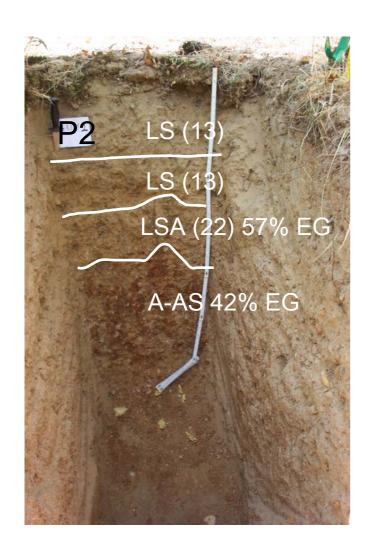

	Analyse en blocs		Analyse Papadakis	
	Hauteur Diamètre cm mm		Hauteur cm	Diamètre mm
Valeur du F famille	4,6*** 3,9***		5,3***	5,0***
Valeur du F blocs	57,2*** 55,9***			
Ecart type résiduel	54	33	45	28

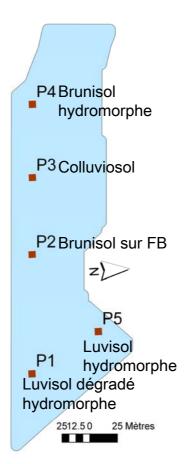
Comment expliquer l'effet bloc ?

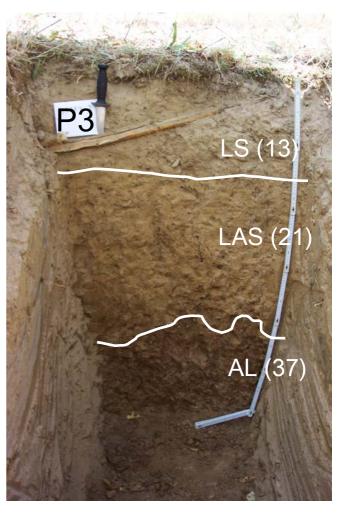

*** : très hautement significatif

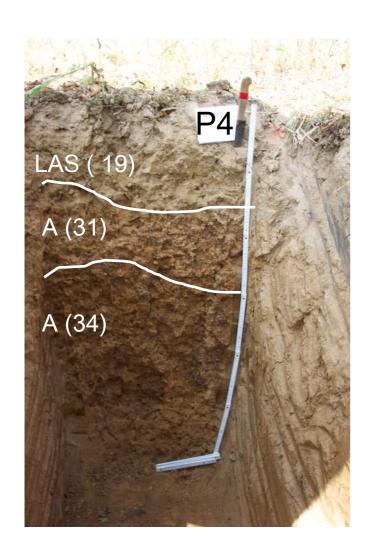

Cartographie de la résistivité électrique du sol

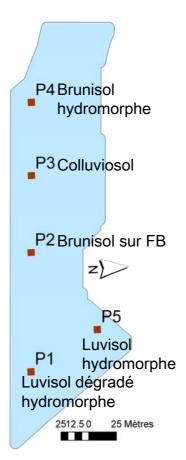
- forts contrastes
- zones bien individualisées

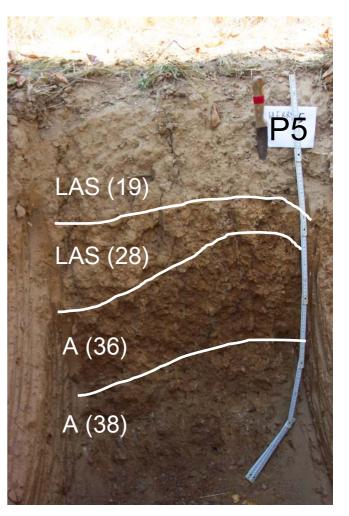



Les Sols

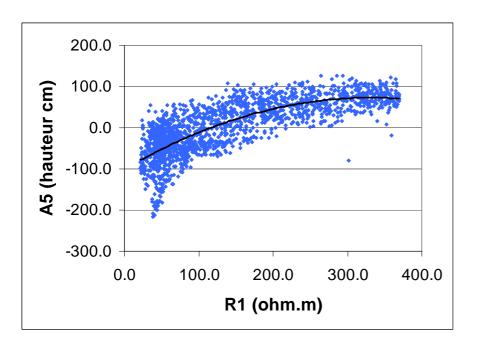



Les Sols





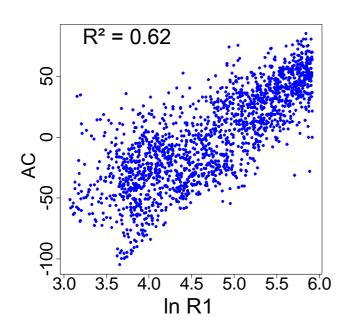
Les Sols


Relations sols - résistivité


Profils		texture	R1 ohm.m	R2 ohm.m	R3 ohm.m	
1	LP	LMS/AI	61	43	43	
5	LP	LAS/AL	43	34	33	
2	FB	LS/ Asgr	345	296	167	
3	CollAdec	LS/ A-ASgr	170	116	62	
4	Adec	LAS/A	51	38	35	

Les sols

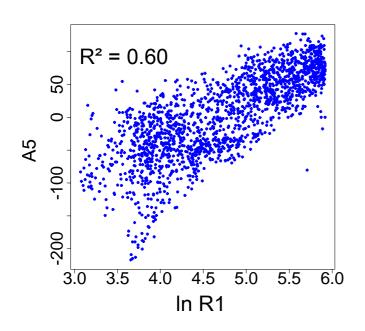
Recherche des corrélations entre variables



Transformation logarithmique des valeurs de résistivité

Modélisation : AC (circonférence)

Régression linéaire


Variables	R² ajusté	erreur	
Explicatives	(%)	standard	
In R1	62	23.36	
In R2	58	24.7	
In R3	42	28.9	
altitude	15	34.9	

Régression multiple

Acm ACm = -175.692 + 52.802 lnR1 - 17.58 lnR3 Acm Acm

Variable: A5 (hauteur)

Régression linéaire

Variables	R² ajusté	erreur	
Explicatives	(%)	standard	
In R1	60	39.83	
In R2	55	42.43	
In R3	36	50.38	
altitude	30	52.8	

Régression multiple

A 5 m = 422.171 + 84.177 lnR1 - 34.679 lnR3 - 6.812 altitude $<math>R^2 = 0.66$

Discussion : limites à l'utilisation des mesures de résistivités

- Résistivité électrique : mesure intégratrice liée à de nombreuses propriétés du sol
- Hauteur et circonférence corrélées avec R (plus fortement à R1)
- Cohérent avec la phase étudiée : stade jeune du peuplement (5-10 ans), ce sont principalement les propriétés des 50/60 premiers cm de sols qui sont déterminantes
- Les corrélations avec AC (circonférence) plus élevées qu'avec A5 (hauteur)
- AC et A5 ne sont pas sensibles de la même façon aux propriétés du milieu
- Bien que globale, cette mesure rend compte en partie du comportement du végétal

Discussion: limites à l'utilisation de la résistivité

So	ls	AC mm	A5 cm	R1 ohm.m	AC %	A5 %	
1	Ldg	-38.8	-71.2	63.2	-32.7	-22.7	Francost a valence se
4	BgAdec	-31.6	-26.0	63.0	-26.6	-8.2	En vert : valeurs ne
2	Lg	-14.2	-24.4	79.2	-12	-7.8	différant pas au
3	ILFB	9.1	17.7	187.2	7.6	5.6	seuil de 5%, test de Scheffe
5	CollAdec	10.9	28.7	136.3	9.2	9.1	lest de Schehe
8	BgFB	19.8	40.0	191.7	16.7	12.7	
6	CollFB	37.9	69.7	249.1	31.9	21.6	
7	BFB	44.7	67.9	294.0	37.7	22.2	

- AC varie + A5 et modification de la morphologie
- Sols même résistivité (1-4) et groupes AC et A5 différents
- Sols de groupes de résistivité différents (3-5) non différents sur AC ou A5
- ✓ Très grande prudence pour une utilisation directe par rapport au peuplement. Mesures ne préjugeant pas des conditions de milieu

Discussion: Interprétation en fonction des sols

Sols	matériau parental	AC mm	A5 cm	R1 ohm.m	Hydro classe	texture surf/ A%	
1	LP	-38.8	-71.2	63.2	4+/5	LMS 17	9.1 : valeurs ne
4	LP	-31.6	-26.0	63.0	4	LAS 19	différant pas au
2	Adec	-14.2	-24.4	79.2	3+/4	LAS 19	seuil de 5%,
3	LP	9.1	17.7	187.2	3/3+	(LAS)	test de Scheffe
5	Coll	10.9	28.7	136.3	3+/4	LS 13	
8	FB	19.8	40.0	191.7	3/4	(LS)	
6	Coll	37.9	69.7	249.1	3/3+	LS 13	
7	FB	44.7	67.9	294.0	3-/3	(LS) (13)	

- 2 groupes en fonction du matériau parental / texture de surface/ structure
- > Dans chaque groupe classement en fonction de l'hydromorphie
- Meilleures cond de croissance (sain)/ diamètre plus important (7)
- Très fortes résistivités (sagr), ru limitante, asymptote
- > Sols à engorgements de printemps très préjudiciables + effet indirect (texturestructure)
- Durée d'engorgement (limite classe hydromorphie)

Conclusion (1)

- ✓ interaction espèce/milieu: stress (croissance, morphologie)
- √ corrélation entre paramètres de croissance / résistivité
- ✓ attention aux interprétations abusives : domaine restreint de validité
- ✓ Isorésistivité : sols différents parfois
- ✓ nécessité pour l'interprétation de se référer aux sols et à l'écophysiologie de l'espèce
- ✓ essais avec plus d'individus par famille

Conclusion (2) : Quel intérêt pour la mise en place d'un essai ?

- ✓ Personnel peu formé à la pédologie et essai de grande valeur scientifique
- ✓ Faire appel à un pédologue
- Mesures de résistivité préalables à l'implantation, intérêt : éviter de grosses erreurs
- ✓ Utiliser les zones de forts contrastes pour disposer au mieux l'essai
- ✓ Utiliser d'autres indices en appui (topo, etc)
- ✓ Faire une reconnaissance pédologique minimale pour interpréter les principales zones d'isorésistivité

Perspectives

- Avenir : mesures en 2007 (à 15 ans), nouvelles interprétations à réaliser (comportement non linéaire dans le temps en fonction de l'age de la plante et des stress appliqués, merisier : age d'exploitabilité = 50 ans)
- Autres paramètres sols, sensibilité de la plante selon âge
- Intégration d'un effet bordure
- Intégration de la microtopographie (Limons des Plateaux)
- Sondages ciblés sur arbres particuliers (selon croissance) par zones de sol