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Identifiability analysis of an epidemiological PDE model

Antoine Perasso, &trice Laroche and Suzanne Touzeau

Abstract— We investigate the parameter identifiability prob-  type
lem for a SIR system of nonlinear integro-partial differential 9 5
equations of transport type, representing the spread of a disease _
with a long infectious but undetectable period in an animal (81& + aa) S(t,a) = —pS(t,a) = fS(ta)I(t), (1)
population. After obtaining the expression of the model input- ) 9 9
output (1O) relationships, we give sufficient conditions on the ( 4+ — + c9>](t,a, 0)=—(u+c)I(ta,0)
boundary conditions of the system that guarantee the parameter ot Oa a0
identifiability on a finite time horizon. We finally illustrate our +0(0)35(t,a)I(t), (2)
findings with numerical simulations.

(8 . 3) R(t,a) = —pR(t,a) + (1 —a)cI(t,a,1),

ot = 0Oa
o . (3)
Epidemiological models are useful tools to describe the
spread of a disease in a population, to predict its evavhere I(¢t) = fOA fol I(t,a,0)dd da denotes the force of
lution and control its outbreak. They usually derive frominfection defined as the total number of infected individuals.
the classical SIR model, a compartmental model in whicAll parameters are positive: basic mortality rate unitary
the population is structured in susceptible, infected anklorizontal transmission rat@, infection load growth rate
recovered individuals. (Z—f = ¢f), and disease-induced mortality proportione
The model we investigate in this paper is a SIR-like mode(0, 1]. Boundary conditions are given by
a simplified version of a model developed to study the spread
of scrapie in a sheep flock [5]. It is characterised by 25(1,0) = B(1), 1(t,0,0) =1(t,a,0) =0, R(t,0)=0
long and variable incubation period, during which individuals _ _ _ - N (4)
are infectious but cannot be detected. At the end of thighereB is the birth function, and initial conditions by
period, detectable clinical signs appear. Then, either infecte%m’ a) = So(a), 1(0,a,0) = Io(a,0) R(0,a)=0. (5)
individuals recover and become immune or they die from
the disease. Vertical (in utero) transmission is neglecte@he system input is the birth functidB. Infected individuals
The population is assumed to be a well-mixed populationannot be distinguished from susceptible individuals during
confined on a limited territory, so the space dimension catheir infectious incubation period. The system outputs are
be omitted. It is however structured in age & [0, A]) observed on a given finite time horizdh > 0 and consist
and infection load (6< [0, 1]). Newly infected individuals of the age density of the total population
are distributed alon@ according to a probability density 1
function © (support[0, 1]). The infection load) then grows N(t,a) = S(t,a) + R(t,a) +/ I(t,a,0) d9, (6)
exponentially with time during the incubation period, which 0
ends whend reaches 1. An alternative option would havethe total basic mortality outflow
been to structure the infected population according to an age
of infection instead, leading to a model similar to [1]. What- m(t,a) = pN(t,a), 7
ever the modelling, it yields a distributed delay structuret.he case incidence outflow
At the end of the incubation period, a fractien €]0, 1|
of infected individuals die. The other individuals recover i(t,a) = acI(t,a,1), (8)
and become immune. The resulting susceptiblg iiffected
(I) and recoveredR) population densities evolve with time the recovered inflow
(t € [0,4+o0[) according to the following nonlinear integro-
partiz[il diffe[rential dynamical system of transport reaction t(ta) = (1 —a)el(t,a 1). ©)
Anto o _ o Function B is known. The uniqueness of mortality rate
s B e a0t et Paned @ difect consequence of (6) and (7) and can be estimated
ant oi ne. per asso@:- bor deaux2. fr [2]. Similarly, disease-induced mortality proportiancan be
Béatrice Laroche is with UMR8506 Laboratoire des Signaux e#8yss;  deduced from (8) and (9). Sineét, a) is known and since

ggi;frfgecga[i:rsgg'hggisé i‘%tfacel F91190 Gifsur-Yvette, France houndary and initial conditions o are zero,R(t,a) is
Suzanne Touzeau is with UR341 Mathatiques et Infor- Known for all(¢,a) € [0,7] x [0, A]. Let us denote
matique  Appligées, INRA, F-78350 Jouy-en-Josas, France

suzanne.touzeau@ouy.inra.fr j=t+i=cl(t,a,l). (10)
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Unlike the other parameters, epidemiological parameters We assume that the initial conditiori$,, ;) are fixed,

¢, § and function® need to be identified from output but they are not known. Then we have

observations. Theorem 1: Let G C Ao be such that for al(©,0) €
An important issue is therefore to check whether thesg?, V(c,¢) € (R**)2, V(a, &) € (R**)2,

epidemiological parameters are identifiable, i.e. whether they - B _

can be uniquely determined from the input, initial conditions (¥(c,0) =¥(¢,0)) = (c=¢, ©=0) (14)

and observed outputs. It is an inverse problem that consists d

in establishing that the map from parameters to outputs

is into, the input and initial conditions being known. This U(0) V() e

property is a prerequisite to the model identification, in which «  a F(e,8) - F(5,0)

parameters are estimated from observed data. [} (15)
The paper is organised as follows: identifiability results are (a=a, c=cand® = ©).

stated in Section II; Section Il establishes an input-output
(10) relation for the model; the proofs, based on algebrafhen Qg = (R**)? x G is identifiable.
differential elimination are given in Section IV. Finally, Theorem 1 ensures that, given a suitable parametric family
results are illustrated by simulations in Section V. for the first infection load distributionQf is identifiable
under the realistic hypothesis that the birth function is
piecewise continuous, and the initial conditions are piece-
The parameters of interest are gathered into a vacter wise continuous, fixed and unknown.This theorem has a
(¢, 3,0)T belonging toP = (R**)2 x Ay, where A, is the very strong practical interest, because when dealing with
set of real-analytic functions of, 1], continuous or[0,1], parameter identification on experimental data,s indeed
with zero values at 0 and 1. restricted to a parametric family of p.d.f., such as for instance
Let us denotef/;” = L2 ([0, A],R*), Hy = L*([0,A] x the two-parameter family of Beta p.d.f. with supporfin1].
[0,1],RT) and letC,(J1, J2) be the set of piecewise contin- For this family, it is easily checked that conditions (14) and
uous functions from/J; to J,. It has been shown in [3] that (15) hold.
for T > 0, (So,lo) € Hi x Hy, B € C,([0,T],R"), Note that in Theorem 1, the initial conditions are assumed
and p € P system (1-5) has a unigue mild solutionto be fixed but unknown. Assuming now that they are not
(S,R,I) in C([0,T], (H{")? x Hy), with outputs(IV,j) in  fixed, they have to be included in the unknown parameter
C([0,T], (H{)?). vector. Hence the “extended parameter” to output map is
Moreover, with stronger regularity assumptions on th@ow defined onPg = P x C,([0, A],RT) x C,([0, 4] x
initial conditions, namely(So,ly) € C,([0,Al,RT) x [0,1],R™).
C,([0,A] x [0,1],R*), the solutions are such that Theorem2: LetG C A, be as in Theorem 1, and assume
(S(),I(t) € Cu([0,A4],RT) x Cu([0,A] x [0,1],RT). that B = 0. Then for allp = (c, 3,0, S0,1p)T € Pg,
Consequently, the outputd(t,-) and j(¢,-) are both in 5= (¢ 3,0,5,1))" € Pg such thatl(0) = I(0),

Il. IDENTIFIABILITY RESULTS

CP([OvA]vRJr)' o) =0 _ = — A @_(:)
We assume in the sequel that all these assumptions are () =0(p) = (c=¢, f=5,0=0).
verified. Hence the parameter to output m@pis defined 1. | NPUT-OUTPUT RELATIONSHIPS

from P to the set . . . I
A standard strategy to investigate identifiability problems

O ={(N,j) € C([0,T], (H)*) / is to seek differential 10 relationships of the model. To this
Vt e [0,T], (N (t),j(t) € Cp([0, A], RT)}. end, we use an alternative expression of the incidence (10).

It can be deduced from the mild solution of (1-5) given in
A subsetQ of P is said to be identifiable if the restriction [3] by

Olq is into. Gt [ 1(s) ds)

We are now in a position to state our first identifiabilityg; ,)_ So(a —t)e 0 fora>1t, (16)
result. ’ B(t — a)e” FetPILL 1) d) for g < ¢,

To this end, we define the following notations

« for B € C,([0,7],R"), B and B, are defined as I(t,a,0) = (17)

B={te[0,T], B(t) #0}, B=infB, (11) (Sola—t)e " [0 (ecls=1)pI(s)e=0Jo Hudugs
_ ct\,—(pt+e)t

. for © € Ay ande € R, W(c,0) € A, is defined as “0(“ t,0e%)e forat o

B(t— a e uaf ecls— t)@(@ec(s t))ﬁI( ) =6 [ J(w) s
v € 10,1], ¥(c, ©)(0) = c8°O(6°) (12) for a < t.
and 7 (c, ©) is defined as Let us define the non-negative real-analytic functiorRort,
continuous orR+
0= [ etous

Ve € 0,1], F (13)

X(1)=9(c,0)(e™T). (18)

2078



Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

Note that X is the p.d.f. corresponding to the incubationarguments prove that is alsoC*'. Summing (23) and (24)

period (= =L In#). Then, for(t,a) €
t < a, one has

j(t,a)

[0,7T] x [0, A] and

S)BI(S)e—ﬂj}f L(u)du g g

+clo(a —t, e_Ct)e_(’”'c)t7

t
=So(a —t)e M [ X (t —
0

(19)

and, for(t,a) € [0,T] x [0, A] andt > a

t

i(t,a) = B(t —a)e ™[ X(t— s)BI(s)e P lialWdugg
t—a (20)
We now defineD = {(t,a) € [0,T] x [0, 4], a < t} and
introduce the functiony defined onD by
t g
y(t,a)= | X(t—s)BI(s)e PlalWdu go  (21)
t—a
In the sequel we shall also denote
Dp={(t,a) €D, t—ac B}, D=0,+0:.
Therefore,y is known onDg sincey(t,a) = % on

Dg. Moreover, the following key result holds.
Proposition 1. On D, y and Dy areC*, 9,y is differen-
tiable and

DOyy(X (a) — y) = day(X'(a) — Dy).

On Dg, Eq. (22) defines an 1O relation for the system.
Proof 1: Considery defined onD by

(22)

t
ta) = [ e O ele ) () eI K g
t—a

From Eq. (17) the functioh— I(¢) is differentiable or{0, 7]

leads toDy = —cy—c¢, which proves thaDy is C!. Since
y is C andt — I(t) is differentiable, Eq. (23) implies that
0.y is differentiable. Applying the operatdp to (23), since
D(I(t — a)) =0, leads to

DOy = BI(t — a) (X'(a) - Dy). (25)

Eqg. (22) is obtained by combination dn of Eq. (23) and
(25).

IV. PROOF OFTHEOREMS1 AND 2

Let (So, Ip) and B be given and considép, p) € P2 such
that

O(p) = O(p). (26)

In the sequel, the population densities, the p.d.f. of first
infection load and incubation period, the output vector asso-
ciated top shall be denoted aS$, I, ©, X, j and N; more
generally, all the quantities wearing a bar will be related to
p. The same quantities without bar will be relatechtdNote
that (26) impliesy = y on Dg.

As mentioned in the introduction, we start with an algebro-
differential elimination step wherg = y is combined with
Eq. (22) in order to obtain some relationships betweamd
.

We obtained the following fundamental result.

Proposition 2: If (26) holds, then

either X =X,
or J(a,a) € (RT)?/
1~ 1 _
a#aand—X' - X=X - X.
[ «

In this last caset ~— pAI(t) andt — BI(t) are non

and has a piecewise continuous derivative. Consequentigro constant functions of8, whose values are. and &
. _ .
t — e Plolwdu ¢ C1([0,T]) and y(t,a) has partial respectively.

derivatives ina andt on D, expressed as

day = X (a)BI(t — a)
— BI(t —a) tX(t — §)BI(s)e P Jia lwdugg
t—a
= X(a)pI(t — a) — BI(t — a)y(t, a)
=PIt —a) (X(a) —v), (23)
and
Ay =—X (a)B1(t—a)— tX(t — §)BI(s)e Pl dWdugg
. t—a
_ 02/ e2c(s—1) Gl(ec(sft))ﬁl:(s) -8B/ du e
t—a
t
+0I(t—a) [ X(t—s)BI(s)e P lialwdugg

t—a

= —X(a)BI(t —a) — cy + BI(t — a)y — cy. (24)

Let us defineM,(t,a) = (Dy e and aIsoMa v Y(a) =
(X'(a), X(a))T andY(a) = (X’ (a))" and finally
for x > 0,
X'(x)  X'(z A(z)
Rz)=| X@(z) XP() A'(x) |, (27)
X®(z) XO(z) AD(z)

where we seA = X — X onR+.
Note that from (26),M,(t,a) = Myz(t,a) and Mp,, =
Maag on Dg.
We sketch the proof of Proposition 2, the detailed proofs can
be founded in [4]. Proposition 2 follows from three technical
lemmas that make an extensive use of the following remark.
Remark 1: Since® and® are analytic orjo, 1], X, X, A
and all their derivatives are real-analytic functionsRh*.
Consequently, either they have isolated zeroRirf or they
are identically equal to zero.
The first lemma is

Moreover, standard results on integrals depending on param-Lemma 1. If (26) holds one gets for allt, a) € D

eters imply that the functiong andg are continuous om.

From Eq. (23,24) we deduce thaty ando,y are continuous
functions onD and consequently is C'* on this set. Similar

2079

Ddyy(X (a) — X(a)) — day(X'(a) = X'(a)) =0
[X'X — XX'| —y[X' — X'] + Dy[X — X] = 0.

(28)
(29)
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Then the second lemma is
Lemma 2: If (26) holds one gets for allt,a) € D

X'X - XXX - X]-[XPX - XX?)[X - X]
_y ([X’ ~ XX - XO][X - X]) —0.

(30)
And finally,
Lemma 3: If (26) holds thenR(z) = 0 for all x € R** .

Otherwise, there would exist an open subiget V(z2) such
that W(z) # 0 for z € V. The unique solution of system
(35,37) would bg(X’, X’) = (0,0) on V. This would imply
v(xz) = 0onV, which is impossible. We now distinguish the
two following subcases.
Case 2.1. If there exists an open subs®t C V(z2)
on which \'(z) # 0, thenW = 0 on V(z,) implies that
(;1 /X)) = 0 in V. Consequently, there exists a constant

We now proceed with the proof of Proposition 2. Lemma{'O such thatX’ = ¢ X’ on V and we can conclude as in

3 and (26) imply that, for allx
M), p(x),v(z) € R such that

{ AX' 4+ puX' +vA =0,

> 0,

AX@) 4y X® 4 pA =0,
AXG) 4 XG4 AR =,

(381

where\, i, v are minors of determinant (27). We can choose

v associated ta\(?), given byr = X' X® — X' X, Then
two cases may arise.

Case 1. Assume that v(z) = 0 for all z > 0. The function

X' is a non zero function o®**, otherwise, by continuity,

X would be constant and equal to zero Br. Therefore,
we can findz; > 0 such thatX’(z,) # 0. By continuity,
this is still true in a neighbourhoo®(z;) of z;. Then, for

all z € V(x1),
(K@) x & (i) —o,

which implies that there exists a constaptsuch thatX’ =
co X' onV(zy). From Remark 1, we get’ = ¢ X’ onR**
andX =cy X on R+* sinceX (0) = X (0) = 0. Taking into
account that/,"* X (z)dz = [, X(z)dz = 1, we have
co = 1 and finally X = X on IR**.

Case 2. Assume that there exists zo > 0 and a neigh-
bourhood V(z3) € R** such that v(z) # 0 for all = €

V(Hfg

equations are satisfied a/(x5),
AX! +aX' =A, (32)
AXP4ax@= A/, (33)
AXO) 4 ix®=AG)] (34)

wherel = —2 [ =
ing (33) ylelds forz € V(z3),

NX'+ /X =0. (35)

there exists

). Then, from system (31), we deduce that the followingk — X =

—L.. Differentiating (32) and subtract-

Case 1that X = X onR*.

Case2.2. If N =0onV(x), thgnS\ is a constant function
on V(x2) whose value is denotetly. Since X’ has isolated
zeros, Remark 1 and (35) imply thatis also a constant
function onV(x2) whose value is denotei,. Consequently,
on V(z2), equalities (32) and (33) become respectively
X'+ X' = A,

MX® 4 X3 = A, (38)

By Remark 1, these equalities can be extendeRt6 and
can be used to simplify (30). OPz one therefore has
(X'X - XX'|A' - [ XX - XXP)A
= (MoX + 2o X)(XP X — X' x3),
= (Ao + ji0) (XD X' — X' x@),

(A2 — AAC

and
(=500 + fio) + JoX + fin X ) (XD X' - X'X®) =0
By Remark 1, since’ # 0, we conclude that
—y(Xo + fio) + AoX +icX =0 onDg.  (39)
Then, either\, + fio = 0, and integrating (38) yieldas =
0. Or \g + fio # 0 and consequently for all
(t, a) € Dp

XX (a) + X (a )
Xo + fio

y(t.a) =
This expression used in (23) yields, for &la) € Dg,

— jio BI(t - a) (X (a) - X(a)). (40)

Denoting€ = {a € [0, A], A(a) # 0}, we easily check that
0 is in the closure off. Moreover, equation (40) implies

MoX'(a) + fio X' (a)

In the same way, differentiating (32) twice and subtractinghat (¢,a) — SI(t — a) is a constant o{(¢,a) € Dg, a €

(34) yields

AOX + i X 4o NXPD + XP)y=0.  (36)

Finally, differentiating (35) and combining it (36), we get
ADX 4 A X" =0 on V(xy). (37)

From (35) and (37), we havd” = 0 on V(x2) where

/ "/
vl o |

1@ ~<2>

2080

&} and consequently, for at € £N[0,T], t — BI(t) is

constant on3 N [0,7 — al]. Since0 is in the closure of,

we conclude that — (1(t) is constant or3. We denotex

this constant, which is positive, as already mentioned. By the

same arguments we also prove that- 31(¢) is a positive

constant onB that we denotex. Then (32) and (40) yield

a = leo Similarly, & is positive and such that = —;\1—0.

Substituting these values in (38) yields the desired result.
Applying Proposition 2, the assumptions (14) and (15) on

G immediately yieldsc = ¢ and© = ©.
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SubstitutingX = X in Eq. (23), one has for all¢, a) €
B x [0, A]
Duy(€ +a.a) = FL(E) (X (a) ~y(& +a,0)),
day(€ + a,a) = BL(€) (X (a) — y(€ +a,a)).

Term to term subtraction yields

(BL(E) = BI(S)) (X (a) — y(§ +a,a)) = 0.

By contradiction, assume that there exig{sc B such that
BI(&) # BI(&). Since B is piecewise continuous argd—
(BT — BI)(€) is continuous, there exists an intervi(&)
included inj3, containingéy, not reduced to a singleton set,
such that(8I — BI)(¢) # 0 for all &€ € V(&). Therefore,
(41) reduces to

X(a) =y +a,a), Y(a)eV() x[0,4]. (42)

This implies thab;y({+a,a) = 0 for (£,a) € V(&) %[0, A].
Consequently, Eq.(23) becom8sy(¢ + a,a) = 0 on V(&)
and differentiating (42) w.r.t: yields

X'(a) = 0y(§ +a,a) + 0ay(§ +a,a) =0,

for all a € [0, A]. It follows that X = 0 on [0, A]. Then
Remark 1 implies thaf{ is null on R, which contradicts
its definition as a p.d.f., and consequently yields

BI(t) = BI(1), (43)

If B =0, (43) immediately yields? = § and Theorem 1 is
proved. Otherwise ifB > 0, we deduce from (26) and (6)
that on|0, B]

/

a0 - [

Therefore, since fon € [0,t], B(t — a) = 0, multiplying
Eqg. (44) by and using Eq. (16), one gets
) »
(45)

B —T)(t) = Gt ( /

(e—BfJ I(e)de _ By I(f)ds) .

(41)

vVt € B.

A

S(t,a)da—

A
S(t,a)da, Vt € [0,T]. (44)

A—min(t,A)
So(a)da

Consider the continuous functiogs: [0, 7] —]0, 1] defined

by
ey =eno(~ [ e [ )

f( e, | ﬁI(ﬁ)d§>ds>,

A—min(s,A)
So(a)da

where the continuous functiofi: R? —]0, 1] is defined by

f:(a:,y)»—>{ — ey T #y,

(46)

e Tifr=uy.

Eqg. (45) can be rewritten as

BI-T) (1) =

/ (BT p1) ()de.  (47)

0

2081

By contradiction, let us assume that> 5. Then we have

BI-T)(t) < (BT BL)(1),
and, consequently to (47), we get

g'(t)
g(t)

which implies thatt — g(t) [ (51— BI)(€)d¢ is increasing
on [0, B]. At t = 0, one hagsI— gI)(0) = (6—3)I(0) > 0

and, by a continuity argument, there exigts ¢y < B such
that 31 — 31 is positive on[0, ¢¢]. Since0 < ¢ < 1, for all

t € [0, B]

/0 (B1— FI) (6)de < (51— GT)(H),  (48)

/ (BT — FI) (€)de > g(t) / (1 - A1) (€)de > Ao,
0 0

where Ay = g(c0) [ (BI(€) — BI(£))d¢ > 0. Using this
inequality and the expression efgg(—(tt)) in (48), we deduce
that for allt € [e9, B]

) y

e ( /

/ (B / T()de. 5 / t I(E)dﬁ) Ao < (81— F)(2).

Evaluating the above expressiontat B yields a contra-
diction with Eq. (43), and thep = 3, which ends proof of
Theorem 1.

When the initial conditions are not fixed, using (43) and
=0, we get31(0) = BI(0). If I(0) = I(0), it follows that

= /3, which proves Theorem 2.

A—min(t,A)
So(a)da

B
B
V. NUMERICAL SIMULATIONS

In this section, we illustrate our identifiability results
through a simulation scenario that represents Theorem 1 for
the Beta distribution family.

For this scenario, system (1,2, 3,4,5) is integrated with
parameter values given in Table I. The birth functiBnis
constant. The initial susceptible population density follows
an exponential distributiorby(a) « e #%. The initial in-
fected population densityy(a,6) is uniformly distributed
over [a™i, gMax] x [gmin gmax] The initial recovered popu-
lation density i9). Scaling coefficients are adjusted to obtain
the initial population sizes given in Table I. Parameter values
are chosen to mimic realistic epidemiological situations.

The differences between the parameter veciond p
are the infection load growth ratesand ¢, and the first
infection load distributions® and ©. They are both Beta
distributions with the same standard deviatiogs= og, but
different meansng # mg. Parameters andc¢ are adjusted
to obtain the same mean incubation period of 3 years for the
distribution given in (18). First infection load and incubation
period distributions are represented in Fig. 1.

With such similar incubation period distributions, one
could fear the model not to be identifiable. However, The-
orem 1 guarantees that the model is identifiable. This is
illustrated in Fig. 2 that for both parameter sets represents
outputj, given by (10), integrated over age. These outputs
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TABLE |
PARAMETER VALUES USED FOR THE SIMULATIONS
& r’/ \
Parameter definition symbol value o ," \
initial population size - 600 indiv. 1 .
initial infected population size - 30 indiv. 5 [
— age range [a™in gmax]  [0.625,1,04] years sS4l I
basic mortality rate m 0.15 year! ] / ‘\‘
horizontal transmission rate Ié] 3103 (indiv. year)! °] / |
disease-induced mortality proportion «a 0.5 2 / \
birth rate B 70 indiv./year . / \
maximum lifespan A 13 years 1 /,«’ \
observation period T 4 years o o1 oz da ds da de d7 ab ab 10
initial infection load range [6™n, gmax] [0.68,0.73] First infection load
infection load growth rates (c,¢) (0.35,0.12) year!
first infection load distributior®: mean me 0.35
— : standard deviation B oo 0.05 i
first infection load distributior®: mean  mg 0.7 097
— : standard deviation o) 0.05 087
0,7i
067
-~ : . . T os]
exhibit notable differences. It is even more obvious on the QZii
yearly cumulated outputs in Fig. 2. 03]
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Fig. 2. Outputs corresponding to the two parameter sets given in Table I:
(¢, ©) plain line & (¢, ©) dashed line. The model is identifiable.
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