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Identifiability analysis of an epidemiological PDE model

Antoine Perasso, B́eatrice Laroche and Suzanne Touzeau

Abstract— We investigate the parameter identifiability prob-
lem for a SIR system of nonlinear integro-partial differential
equations of transport type, representing the spread of a disease
with a long infectious but undetectable period in an animal
population. After obtaining the expression of the model input-
output (IO) relationships, we give sufficient conditions on the
boundary conditions of the system that guarantee the parameter
identifiability on a finite time horizon. We finally illustrate our
findings with numerical simulations.

I. INTRODUCTION

Epidemiological models are useful tools to describe the
spread of a disease in a population, to predict its evo-
lution and control its outbreak. They usually derive from
the classical SIR model, a compartmental model in which
the population is structured in susceptible, infected and
recovered individuals.

The model we investigate in this paper is a SIR-like model,
a simplified version of a model developed to study the spread
of scrapie in a sheep flock [5]. It is characterised by a
long and variable incubation period, during which individuals
are infectious but cannot be detected. At the end of this
period, detectable clinical signs appear. Then, either infected
individuals recover and become immune or they die from
the disease. Vertical (in utero) transmission is neglected.
The population is assumed to be a well-mixed population
confined on a limited territory, so the space dimension can
be omitted. It is however structured in age (a∈ [0, A])
and infection load (θ∈ [0, 1]). Newly infected individuals
are distributed alongθ according to a probability density
function Θ (support[0, 1]). The infection loadθ then grows
exponentially with time during the incubation period, which
ends whenθ reaches 1. An alternative option would have
been to structure the infected population according to an age
of infection instead, leading to a model similar to [1]. What-
ever the modelling, it yields a distributed delay structure.
At the end of the incubation period, a fractionα ∈]0, 1[
of infected individuals die. The other individuals recover
and become immune. The resulting susceptible (S), infected
(I) and recovered(R) population densities evolve with time
(t ∈ [0,+∞[) according to the following nonlinear integro-
partial differential dynamical system of transport reaction
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deaux; Universit́e Bordeaux 2, CNRS; F-33076 Bordeaux, France
antoine.perasso@u-bordeaux2.fr
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(

∂

∂t
+

∂

∂a

)

S(t, a) = −µS(t, a) − β S(t, a) I(t), (1)
(

∂

∂t
+

∂

∂a
+ cθ

∂

∂θ

)

I(t, a, θ) = −(µ + c) I(t, a, θ)

+ Θ(θ)β S(t, a) I(t), (2)
(

∂

∂t
+

∂

∂a

)

R(t, a) = −µR(t, a) + (1 − α) c I(t, a, 1),

(3)

where I(t) =
∫ A

0

∫ 1

0
I(t, a, θ) dθ da denotes the force of

infection defined as the total number of infected individuals.
All parameters are positive: basic mortality rateµ, unitary
horizontal transmission rateβ, infection load growth ratec
(dθ

dt
= cθ), and disease-induced mortality proportionα ∈

[0, 1]. Boundary conditions are given by

S(t, 0) = B(t), I(t, 0, θ) = I(t, a, 0) = 0, R(t, 0) = 0
(4)

whereB is the birth function, and initial conditions by

S(0, a) = S0(a), I(0, a, θ) = I0(a, θ) R(0, a) = 0. (5)

The system input is the birth functionB. Infected individuals
cannot be distinguished from susceptible individuals during
their infectious incubation period. The system outputs are
observed on a given finite time horizonT > 0 and consist
of the age density of the total population

N(t, a) = S(t, a) + R(t, a) +

∫ 1

0

I(t, a, θ) dθ, (6)

the total basic mortality outflow

m(t, a) = µN(t, a), (7)

the case incidence outflow

i(t, a) = αc I(t, a, 1), (8)

the recovered inflow

r(t, a) = (1 − α) c I(t, a, 1). (9)

Function B is known. The uniqueness of mortality rateµ
is a direct consequence of (6) and (7) and can be estimated
[2]. Similarly, disease-induced mortality proportionα can be
deduced from (8) and (9). Sincer(t, a) is known and since
boundary and initial conditions onR are zero,R(t, a) is
known for all (t, a) ∈ [0, T ] × [0, A]. Let us denote

j = r + i = cI(t, a, 1). (10)
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Unlike the other parameters, epidemiological parameters
c, β and function Θ need to be identified from output
observations.

An important issue is therefore to check whether these
epidemiological parameters are identifiable, i.e. whether they
can be uniquely determined from the input, initial conditions
and observed outputs. It is an inverse problem that consists
in establishing that the map from parameters to outputs
is into, the input and initial conditions being known. This
property is a prerequisite to the model identification, in which
parameters are estimated from observed data.

The paper is organised as follows: identifiability results are
stated in Section II; Section III establishes an input-output
(IO) relation for the model; the proofs, based on algebro-
differential elimination are given in Section IV. Finally,
results are illustrated by simulations in Section V.

II. I DENTIFIABILITY RESULTS

The parameters of interest are gathered into a vectorp =
(c, β,Θ)T belonging toP = (R+∗)2 ×A0, whereA0 is the
set of real-analytic functions on]0, 1[, continuous on[0, 1],
with zero values at 0 and 1.

Let us denoteH+
1 = L2 ([0, A], R+), H+

2 = L2([0, A] ×
[0, 1], R+) and letCp(J1, J2) be the set of piecewise contin-
uous functions fromJ1 to J2. It has been shown in [3] that
for T > 0, (S0, I0) ∈ H+

1 × H+
2 , B ∈ Cp([0, T ], R+),

and p ∈ P system (1-5) has a unique mild solution
(S,R, I) in C([0, T ], (H+

1 )2 × H+
2 ), with outputs(N, j) in

C([0, T ], (H+
1 )2).

Moreover, with stronger regularity assumptions on the
initial conditions, namely(S0, I0) ∈ Cp([0, A], R+) ×
Cp([0, A] × [0, 1], R+), the solutions are such that
(S(t), I(t)) ∈ Cp([0, A], R+) × Cp([0, A] × [0, 1], R+).
Consequently, the outputsN(t, ·) and j(t, ·) are both in
Cp([0, A], R+).

We assume in the sequel that all these assumptions are
verified. Hence the parameter to output mapO is defined
from P to the set

O ={(N, j) ∈ C([0, T ], (H+
1 )2) /

∀ t ∈ [0, T ], (N(t), j(t)) ∈ Cp([0, A], R+)2}.

A subsetQ of P is said to be identifiable if the restriction
O|Q is into.

We are now in a position to state our first identifiability
result.

To this end, we define the following notations

• for B ∈ Cp([0, T ], R+), B andB, are defined as

B = {t ∈ [0, T ], B(t) 6= 0}, B = inf B, (11)

• for Θ ∈ A0 andc ∈ R
+∗, Ψ(c,Θ) ∈ A0 is defined as

∀θ ∈ [0, 1], Ψ(c,Θ)(θ) = cθcΘ(θc) (12)

andF(c,Θ) is defined as

∀θ ∈ [0, 1], F(c,Θ)(θ) =

∫ θc

0

Θ(ξ)dξ. (13)

We assume that the initial conditions(S0, I0) are fixed,
but they are not known. Then we have

Theorem 1: Let G ⊂ A0 be such that for all(Θ, Θ̄) ∈
G2, ∀(c, c̄) ∈ (R+∗)2, ∀(α, ᾱ) ∈ (R+∗)2,

(Ψ(c,Θ) = Ψ(c̄, Θ̄)) ⇒ (c̄ = c, Θ̄ = Θ) (14)

and

Ψ(c̄, Θ̄)

α
−

Ψ(c,Θ)

ᾱ
= F(c,Θ) −F(c̄, Θ̄)

⇓ (15)

(α = ᾱ, c = c̄ andΘ = Θ̄).

ThenQ⋆
G = (R+∗)2 × G is identifiable.

Theorem 1 ensures that, given a suitable parametric family
for the first infection load distribution,Q⋆

G is identifiable
under the realistic hypothesis that the birth function is
piecewise continuous, and the initial conditions are piece-
wise continuous, fixed and unknown.This theorem has a
very strong practical interest, because when dealing with
parameter identification on experimental data,Θ is indeed
restricted to a parametric family of p.d.f., such as for instance
the two-parameter family of Beta p.d.f. with support in[0, 1].
For this family, it is easily checked that conditions (14) and
(15) hold.

Note that in Theorem 1, the initial conditions are assumed
to be fixed but unknown. Assuming now that they are not
fixed, they have to be included in the unknown parameter
vector. Hence the “extended parameter” to output map is
now defined onPE = P × Cp([0, A], R+) × Cp([0, A] ×
[0, 1], R+).

Theorem 2: Let G ⊂ A0 be as in Theorem 1, and assume
that B = 0. Then for all p = (c, β,Θ, S0, I0)

T ∈ PE,
p̄ = (c̄, β̄, Θ̄, S̄0, Ī0)

T ∈ PE such thatI(0) = Ī(0),

O(p) = O(p̄) ⇒ (c = c̄, β = β̄, Θ = Θ̄).

III. I NPUT-OUTPUT RELATIONSHIPS

A standard strategy to investigate identifiability problems
is to seek differential IO relationships of the model. To this
end, we use an alternative expression of the incidence (10).
It can be deduced from the mild solution of (1-5) given in
[3] by

S(t, a)=

{

S0(a − t)e−(µt+β
∫

t

0
I(s) ds) for a > t,

B(t − a)e−(µa+β
∫

t

t−a
I(s) ds) for a 6 t,

(16)

I(t, a, θ) = (17)


















S0(a − t)e−µt
∫ t

0
ec(s−t)Θ

(

θec(s−t)
)

βI(s)e−β
∫

s

0
I(u)duds

+I0(a − t, θe−ct)e−(µ+c)t for a > t,

B(t−a)e−µa
∫ t

t−a
ec(s−t)Θ

(

θec(s−t)
)

βI(s)e−β
∫

s

t−a
I(u)duds

for a 6 t.

Let us define the non-negative real-analytic function onR
+∗,

continuous onR+

X(τ) = Ψ(c,Θ)(e−τ ). (18)
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Note thatX is the p.d.f. corresponding to the incubation
period (τ = −1

c
ln θ). Then, for(t, a) ∈ [0, T ] × [0, A] and

t 6 a, one has

j(t, a) =S0(a − t)e−µt

∫ t

0

X(t − s)βI(s)e−β
∫

s

0
I(u)duds

+ cI0(a − t, e−ct)e−(µ+c)t,
(19)

and, for(t, a) ∈ [0, T ] × [0, A] and t > a,

j(t, a) = B(t − a)e−µa

∫ t

t−a

X(t − s)βI(s)e−β
∫

s

t−a
I(u)duds.

(20)
We now defineD = {(t, a) ∈ [0, T ] × [0, A], a 6 t} and

introduce the functiony defined onD by

y(t, a) =

∫ t

t−a

X(t − s)βI(s)e−β
∫

s

t−a
I(u)du ds. (21)

In the sequel we shall also denote

DB = {(t, a) ∈ D, t − a ∈ B}, D = ∂a + ∂t .

Therefore,y is known onDB sincey(t, a) = j(t,a)
B(t−a)e−µa on

DB. Moreover, the following key result holds.
Proposition 1: On D, y andDy areC1, ∂ay is differen-

tiable and

D∂ay(X(a) − y) = ∂ay(X ′(a) − Dy). (22)

On DB, Eq. (22) defines an IO relation for the system.
Proof 1: Considerỹ defined onD by

ỹ(t, a) = c

∫ t

t−a

e2c(s−t) Θ′(ec(s−t))β I(s) e−β
∫

s

t−a
I(u)du ds.

From Eq. (17) the functiont 7→ I(t) is differentiable on[0, T ]
and has a piecewise continuous derivative. Consequently,
t 7→ e−β

∫

t

0
I(u)du ∈ C1([0, T ]) and y(t, a) has partial

derivatives ina and t on D, expressed as

∂ay = X(a)βI(t − a)

− βI(t − a)

∫ t

t−a

X(t − s)βI(s)e−β
∫

s

t−a
I(u)duds

= X(a)βI(t − a) − βI(t − a)y(t, a)

= βI(t − a) (X(a) − y) , (23)

and

∂ty =−X(a)βI(t−a)−c

∫ t

t−a

X(t − s)βI(s)e−β
∫

s

t−a
I(u)duds

− c2

∫ t

t−a

e2c(s−t) Θ′(ec(s−t))β I(s) e−β
∫

s

t−a
I(u)du ds

+ βI(t − a)

∫ t

t−a

X(t − s)βI(s)e−β
∫

s

t−a
I(u)duds

= −X(a)βI(t − a) − cy + βI(t − a)y − cỹ. (24)

Moreover, standard results on integrals depending on param-
eters imply that the functionsy and ỹ are continuous onD.
From Eq. (23,24) we deduce that∂ay and∂ty are continuous
functions onD and consequentlyy is C1 on this set. Similar

arguments prove that̃y is alsoC1. Summing (23) and (24)
leads toDy = −c y−c ỹ, which proves thatDy is C1. Since
y is C1 and t 7→ I(t) is differentiable, Eq. (23) implies that
∂ay is differentiable. Applying the operatorD to (23), since
D
(

I(t − a)
)

= 0, leads to

D∂ay = β I(t − a) (X ′(a) − Dy). (25)

Eq. (22) is obtained by combination onD of Eq. (23) and
(25).

IV. PROOF OFTHEOREMS1 AND 2

Let (S0, I0) andB be given and consider(p, p̄) ∈ P2 such
that

O(p) = O(p̄). (26)

In the sequel, the population densities, the p.d.f. of first
infection load and incubation period, the output vector asso-
ciated top̄ shall be denoted as̄S, Ī, Θ̄, X̄, j̄ and N̄ ; more
generally, all the quantities wearing a bar will be related to
p̄. The same quantities without bar will be related top. Note
that (26) impliesȳ = y on DB.

As mentioned in the introduction, we start with an algebro-
differential elimination step wherēy = y is combined with
Eq. (22) in order to obtain some relationships betweenp and
p̄.

We obtained the following fundamental result.
Proposition 2: If (26) holds, then

either X = X̄,

or ∃ (α, ᾱ) ∈ (R+∗)2 /

α 6= ᾱ and
1

α
X̄ ′ −

1

ᾱ
X ′ = X − X̄.

In this last case,t 7→ βI(t) and t 7→ β̄ Ī(t) are non
zero constant functions onB, whose values areα and ᾱ
respectively.
Let us defineMy(t, a) = (Dy, y)

T , and alsoM∂ay, Y (a) =

(X ′(a), X(a))
T and Ȳ (a) =

(

X̄ ′(a), X̄(a)
)T

and finally
for x > 0,

R(x) =

∣

∣

∣

∣

∣

∣

X ′(x) X̄ ′(x) ∆(x)
X(2)(x) X̄(2)(x) ∆′(x)
X(3)(x) X̄(3)(x) ∆(2)(x)

∣

∣

∣

∣

∣

∣

, (27)

where we set∆ = X − X̄ on R
+.

Note that from (26),My(t, a) = Mȳ(t, a) and M∂ay =
M∂aȳ on DB.
We sketch the proof of Proposition 2, the detailed proofs can
be founded in [4]. Proposition 2 follows from three technical
lemmas that make an extensive use of the following remark.

Remark 1: SinceΘ andΘ̄ are analytic on]0, 1[, X, X̄, ∆
and all their derivatives are real-analytic functions onR

+∗.
Consequently, either they have isolated zeros inR

+∗ or they
are identically equal to zero.
The first lemma is

Lemma 1: If (26) holds one gets for all(t, a) ∈ DB

D∂ay(X(a) − X̄(a)) − ∂ay(X ′(a) − X̄ ′(a)) = 0 (28)

[X ′X̄ − XX̄ ′] − y [X ′ − X̄ ′] + Dy [X − X̄] = 0. (29)
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Then the second lemma is
Lemma 2: If (26) holds one gets for all(t, a) ∈ DB

[X ′X̄ − XX̄ ′] [X ′ − X̄ ′] − [X(2)X̄ − XX̄(2)] [X − X̄]

−y
(

[X ′ − X̄ ′]2 − [X(2) − X̄(2)] [X − X̄]
)

= 0.

(30)
And finally,

Lemma 3: If (26) holds thenR(x) = 0 for all x ∈ R
+∗ .

We now proceed with the proof of Proposition 2. Lemma
3 and (26) imply that, for allx > 0, there exists
λ(x), µ(x), ν(x) ∈ R such that







λX ′ + µX̄ ′ + ν∆ = 0,
λX(2) + µX̄(2) + ν∆′ = 0,
λX(3) + µX̄(3) + ν∆(2) = 0,

(31)

whereλ, µ, ν are minors of determinant (27). We can choose
ν associated to∆(2), given byν = X ′X̄(2) − X̄ ′X(2). Then
two cases may arise.

Case 1. Assume that ν(x) = 0 for all x > 0. The function
X̄ ′ is a non zero function onR+∗, otherwise, by continuity,
X̄ would be constant and equal to zero onR

+. Therefore,
we can findx1 > 0 such thatX̄ ′(x1) 6= 0. By continuity,
this is still true in a neighbourhoodV(x1) of x1. Then, for
all x ∈ V(x1),

(

X̄ ′(x)
)2

×
d

dx

(

X ′

X̄ ′

)

= 0,

which implies that there exists a constantc0 such thatX ′ =
c0 X̄ ′ onV(x1). From Remark 1, we getX ′ = c0 X̄ ′ onR

+∗

andX = c0 X̄ on R
+∗ sinceX(0) = X̄(0) = 0. Taking into

account that
∫ +∞

0
X(x)dx =

∫ +∞

0
X̄(x)dx = 1, we have

c0 = 1 and finallyX = X̄ on R
+∗.

Case 2. Assume that there exists x2 > 0 and a neigh-
bourhood V(x2) ⊂ R

+∗ such that ν(x) 6= 0 for all x ∈
V(x2). Then, from system (31), we deduce that the following
equations are satisfied onV(x2),

λ̃X ′ +µ̃X̄ ′ = ∆, (32)

λ̃X(2)+µ̃X̄(2)= ∆′, (33)

λ̃X(3)+µ̃X̄(3)= ∆(2), (34)

whereλ̃ = −λ
ν

, µ̃ = −µ
ν

. Differentiating (32) and subtract-
ing (33) yields, forx ∈ V(x2),

λ̃′X ′ + µ̃′X̄ ′ = 0. (35)

In the same way, differentiating (32) twice and subtracting
(34) yields

λ̃(2)X ′ + µ̃(2)X̄ ′ + 2(λ̃′X(2) + µ̃′X̄(2)) = 0. (36)

Finally, differentiating (35) and combining it (36), we get

λ̃(2)X ′ + µ̃(2)X̄ ′ = 0 on V(x2). (37)

From (35) and (37), we haveW = 0 on V(x2) where

W =

∣

∣

∣

∣

λ̃′ µ̃′

λ̃(2) µ̃(2)

∣

∣

∣

∣

.

Otherwise, there would exist an open subsetV ⊂ V(x2) such
that W (x) 6= 0 for x ∈ V. The unique solution of system
(35,37) would be

(

X ′, X̄ ′
)

= (0, 0) on V. This would imply
ν(x) = 0 onV, which is impossible. We now distinguish the
two following subcases.

Case 2.1. If there exists an open subsetV ⊂ V(x2)
on which λ̃′(x) 6= 0, then W = 0 on V(x2) implies that
d
dx

(µ̃′/λ̃′) = 0 in V. Consequently, there exists a constant
c0 such thatX ′ = c0 X̄ ′ on V and we can conclude as in
Case 1 that X = X̄ on R

+.
Case 2.2. If λ̃′ = 0 onV(x2), thenλ̃ is a constant function

on V(x2) whose value is denoted̃λ0. SinceX̄ ′ has isolated
zeros, Remark 1 and (35) imply that̃µ is also a constant
function onV(x2) whose value is denoted̃µ0. Consequently,
on V(x2), equalities (32) and (33) become respectively

λ̃0X
′ + µ̃0X̄

′ = ∆,

λ̃0X
(2) + µ̃0X̄

(2) = ∆′.
(38)

By Remark 1, these equalities can be extended toR
+∗ and

can be used to simplify (30). OnDB one therefore has

[X ′X̄ − XX̄ ′]∆′ − [X(2)X̄ − XX̄(2)]∆

= (λ̃0X + µ̃0X̄)(X̄(2)X ′ − X̄ ′X(2)),

(∆′)2 − ∆∆(2) = (λ̃0 + µ̃0) (X̄(2)X ′ − X̄ ′X(2)),

and
(

−y(λ̃0 + µ̃0) + λ̃0X + µ̃0X̄
)(

X̄(2)X ′ − X̄ ′X(2)
)

= 0.

By Remark 1, sinceν 6= 0, we conclude that

−y(λ̃0 + µ̃0) + λ̃0X + µ̃0X̄ = 0 on DB. (39)

Then, either̃λ0 + µ̃0 = 0, and integrating (38) yields∆ =
X − X̄ = 0. Or λ̃0 + µ̃0 6= 0 and consequently for all
(t, a) ∈ DB

y(t, a) =
λ̃0X(a) + µ̃0X̄(a)

λ̃0 + µ̃0

.

This expression used in (23) yields, for all(t, a) ∈ DB,

λ̃0X
′(a) + µ̃0X̄

′(a) = µ̃0 β I(t − a) (X(a) − X̄(a)). (40)

DenotingE = {a ∈ [0, A], ∆(a) 6= 0}, we easily check that
0 is in the closure ofE . Moreover, equation (40) implies
that (t, a) 7→ β I(t − a) is a constant on{(t, a) ∈ DB, a ∈
E} and consequently, for alla ∈ E ∩ [0, T ], t 7→ β I(t) is
constant onB ∩ [0, T − a]. Since0 is in the closure ofE ,
we conclude thatt 7→ β I(t) is constant onB. We denoteα
this constant, which is positive, as already mentioned. By the
same arguments we also prove thatt 7→ β̄ Ī(t) is a positive
constant onB that we denotēα. Then (32) and (40) yield
α = 1

µ̃0

. Similarly, ᾱ is positive and such that̄α = − 1
λ̃0

.
Substituting these values in (38) yields the desired result.

Applying Proposition 2, the assumptions (14) and (15) on
G immediately yieldsc = c̄ andΘ = Θ̄.
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SubstitutingX = X̄ in Eq. (23), one has for all(ξ, a) ∈
B × [0, A]

∂ay(ξ + a, a) = βI(ξ)
(

X(a) − y(ξ + a, a)
)

,

∂ay(ξ + a, a) = β̄Ī(ξ)
(

X(a) − y(ξ + a, a)
)

.

Term to term subtraction yields
(

βI(ξ) − β̄Ī(ξ)
) (

X(a) − y(ξ + a, a)
)

= 0. (41)

By contradiction, assume that there existsξ0 ∈ B such that
βI(ξ0) 6= β̄Ī(ξ0). SinceB is piecewise continuous andξ 7→
(βI − β̄Ī)(ξ) is continuous, there exists an intervalV(ξ0)
included inB, containingξ0, not reduced to a singleton set,
such that(βI − β̄Ī)(ξ) 6= 0 for all ξ ∈ V(ξ0). Therefore,
(41) reduces to

X(a) = y(ξ + a, a), ∀(ξ, a) ∈ V(ξ0) × [0, A]. (42)

This implies that∂ty(ξ+a, a) = 0 for (ξ, a) ∈ V(ξ0)×[0, A].
Consequently, Eq.(23) becomes∂ay(ξ + a, a) = 0 on V(ξ0)
and differentiating (42) w.r.ta yields

X ′(a) = ∂ty(ξ + a, a) + ∂ay(ξ + a, a) = 0,

for all a ∈ [0, A]. It follows that X ≡ 0 on [0, A]. Then
Remark 1 implies thatX is null on R

+, which contradicts
its definition as a p.d.f., and consequently yields

β I(t) = β̄ Ī(t), ∀t ∈ B. (43)

If B = 0, (43) immediately yieldsβ = β̄ and Theorem 1 is
proved. Otherwise ifB > 0, we deduce from (26) and (6)
that on[0, B]

(I− Ī)(t) =

∫ A

0

S̄(t, a)da−

∫ A

0

S(t, a)da, ∀t ∈ [0, T ]. (44)

Therefore, since fora ∈ [0, t], B(t − a) = 0, multiplying
Eq. (44) byβ and using Eq. (16), one gets

β(I − Ī)(t) = βe−µt

(

∫ A−min(t,A)

0

S0(a)da

)

×

(

e−β̄
∫

t

0
Ī(ξ)dξ − e−β

∫

t

0
I(ξ)dξ

)

.

(45)

Consider the continuous functionsg : [0, T ] →]0, 1] defined
by

g(t) = exp

(

−

∫ t

0

βe−µs

(
∫ A−min(s,A)

0

S0(a)da

)

×

f

(
∫ s

0

β̄Ī(ξ)dξ,

∫ s

0

βI(ξ)dξ

)

ds

)

,

where the continuous functionf : R
2 →]0, 1] is defined by

f : (x, y) 7→

{

− e−x
−e−y

x−y
if x 6= y,

e−x if x = y.
(46)

Eq. (45) can be rewritten as

β
(

I − Ī
)

(t) =
g′(t)

g(t)

∫ t

0

(

β̄Ī − βI
)

(ξ)dξ. (47)

By contradiction, let us assume thatβ > β̄. Then we have

β
(

I − Ī
)

(t) 6 (βI − β̄Ī)(t),

and, consequently to (47), we get

−
g′(t)

g(t)

∫ t

0

(

βI − β̄Ī
)

(ξ)dξ 6 (βI − β̄Ī)(t), (48)

which implies thatt 7→ g(t)
∫ t

0

(

βI− β̄Ī
)

(ξ)dξ is increasing
on [0, B]. At t = 0, one has(βI− β̄Ī)(0) = (β− β̄)I(0) > 0
and, by a continuity argument, there exists0 < ε0 < B such
that βI − β̄Ī is positive on[0, ε0]. Since0 < g < 1, for all
t ∈ [ε0, B]
∫ t

0

(

βI − β̄Ī
)

(ξ)dξ > g(t)

∫ t

0

(

βI − β̄Ī
)

(ξ)dξ > Λ0,

whereΛ0 = g(ε0)
∫ ε0

0

(

βI(ξ) − β̄Ī(ξ)
)

dξ > 0. Using this

inequality and the expression of− g′(t)
g(t) in (48), we deduce

that for all t ∈ [ε0, B]

βe−µt

(

∫ A−min(t,A)

0

S0(a)da

)

×

f

(

β̄

∫ t

0

Ī(ξ)dξ, β

∫ t

0

I(ξ)dξ

)

Λ0 6 (βI − β̄Ī)(t).

Evaluating the above expression att = B yields a contra-
diction with Eq. (43), and thenβ = β̄, which ends proof of
Theorem 1.

When the initial conditions are not fixed, using (43) and
B = 0, we getβI(0) = β̄Ī(0). If I(0) = Ī(0), it follows that
β = β̄, which proves Theorem 2.

V. NUMERICAL SIMULATIONS

In this section, we illustrate our identifiability results
through a simulation scenario that represents Theorem 1 for
the Beta distribution family.

For this scenario, system (1, 2, 3, 4, 5) is integrated with
parameter values given in Table I. The birth functionB is
constant. The initial susceptible population density follows
an exponential distributionS0(a) ∝ e−µa. The initial in-
fected population densityI0(a, θ) is uniformly distributed
over [amin, amax]× [θmin, θmax]. The initial recovered popu-
lation density is0. Scaling coefficients are adjusted to obtain
the initial population sizes given in Table I. Parameter values
are chosen to mimic realistic epidemiological situations.

The differences between the parameter vectorsp and p̄
are the infection load growth ratesc and c̄, and the first
infection load distributionsΘ and Θ̄. They are both Beta
distributions with the same standard deviationsσΘ = σΘ̄, but
different meansmΘ 6= mΘ̄. Parametersc and c̄ are adjusted
to obtain the same mean incubation period of 3 years for the
distribution given in (18). First infection load and incubation
period distributions are represented in Fig. 1.

With such similar incubation period distributions, one
could fear the model not to be identifiable. However, The-
orem 1 guarantees that the model is identifiable. This is
illustrated in Fig. 2 that for both parameter sets represents
output j, given by (10), integrated over age. These outputs
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TABLE I

PARAMETER VALUES USED FOR THE SIMULATIONS.

Parameter definition symbol value
initial population size – 600 indiv.
initial infected population size – 30 indiv.
— age range [amin, amax] [0.625, 1, 04] years
basic mortality rate µ 0.15 year−1

horizontal transmission rate β 3 10−3 (indiv. year)−1

disease-induced mortality proportion α 0.5
birth rate B 70 indiv./year
maximum lifespan A 13 years
observation period T 4 years
initial infection load range [θmin, θmax] [0.68, 0.73]
infection load growth rates (c, c̄) (0.35, 0.12) year−1

first infection load distributionΘ: mean mΘ 0.35
— : standard deviation σΘ 0.05
first infection load distribution̄Θ: mean m

Θ̄
0.7

— : standard deviation σ
Θ̄

0.05

exhibit notable differences. It is even more obvious on the
yearly cumulated outputs in Fig. 2.
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Fig. 1. Distributions represented for the two parameter sets given in Table I:
(c, Θ) plain line & (c̄, Θ̄) dashed line.
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Fig. 2. Outputsj corresponding to the two parameter sets given in Table I:
(c, Θ) plain line & (c̄, Θ̄) dashed line. The model is identifiable.

A. Perasso et al. • Identifiability Analysis of an Epidemiological PDE Model 

2082




