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Abstract
Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility distri-
butions: generalised p-boxes. This representation has
many attractive features, as it remains quite simple
while having an interesting interpretation in terms of
lower and upper confidence bounds over nested sets.
However, the merits of this representation in various
uncertainty processing tasks still have to be evaluated.
This is the topic of this paper, in which the handling of
information modelled by generalised p-boxes is stud-
ied, from the point of view of elicitation, propagation,
conditioning and fusion.

Keywords. Generalized p-boxes, comonotonic
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1 Introduction

When modelling and processing uncertainty in the
presence of imprecision and incompleteness, it is of-
ten desirable to use approaches whose complexity re-
mains low rather than full-fledged generic models.
The benefits of using the former is that their ma-
nipulation is often easier, implying a lower compu-
tational cost. They can also be easier to explain to
non-experts, thus being useful at the elicitation and
post-processing stages. The disadvantage of such sim-
ple models is that in some situations they may not be
sufficient to represent the available knowledge nor to
faithfully address a given problem.

Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility distri-
butions [5]: generalised p-boxes. We showed that this
representation is quite simple, can be modeled by ran-
dom sets and has strong connections with many other
recent uncertainty representations such as clouds [16].
The interpretation of generalised p-boxes as collec-

tion of nested sets with associated lower and upper
confidence bounds makes them promising for uncer-
tainty elicitation. Note that general clouds, of which
generalized p-boxes constitute a subfamily, are more
complex, hence less attractive, in this respect [5].

However, for a given representation to be useful in
uncertainty analysis, one has to study its stability
across computations, and their computational com-
plexity. Such a study has already partially been done
for generalised p-boxes, whose propagation through a
model and use in optimisation procedures under un-
certainty have been considered previously [4, 11]. In
this paper, we recall some of these previous results and
complete this study by investigating other aspects of
generalised p-boxes manipulation, such as condition-
ing or merging. When possible, we link our results
with other ones originating from the frameworks of
probability sets [18], belief functions [17] and possibil-
ity theory [7]. Since generalised p-boxes constitute a
subfamily of Neumaier’s clouds [5,16], this study also
provides some answers to questions regarding the ma-
nipulation of these clouds (in particular with respect
to their merging).

Section 2 recalls basics about generalised p-boxes and
their links with other uncertainty representations and
frameworks. In the following sections, we explore the
problems of computing probability bounds, informa-
tion elicitation, propagation, conditioning and merg-
ing with generalised p-boxes. We conclude that their
main practical interest lies in their simplicity for in-
formation representation and elicitation.

2 Preliminaries

Let X be a variable taking its value on a finite space
X having N elements. First recall that two mappings
f and f ′ from a finite indexed set X = {x1, . . . , xN}
to the real line R are said to be comonotonic if there
is a common permutation σ of {1, 2, . . . , N} such that
f(xσ(1)) ≥ f(xσ(2)) ≥ · · · ≥ f(xσ(N)) and f ′(xσ(1)) ≥

179



f ′(xσ(2)) ≥ · · · ≥ f ′(xσ(N)). In other words, f and f ′
are comonotonic if and only if for any pair of elements
x, y ∈ X , f(x) < f(y) ⇒ f ′(x) ≤ f ′(y) (and f ′(x) <
f ′(y) ⇒ f(x) ≤ f(y)). Note that comonotonicity
is not a transitive relation1. We consider here that
uncertainty about X is modelled by a generalised p-
box [F , F ], defined as follows:
Definition 1. A generalised p-box [F , F ] over a finite
space X is a pair of comonotonic mappings F , F , F :
X → [0, 1] and F : X → [0, 1] from X to [0, 1] such
that F is pointwise less than F (i.e. F ≤ F ) and
there is at least one element x in X for which F (x) =
F (x) = 1,

These limit conditions ensure that [F , F ] character-
izes a so-called coherent lower probability. To make
notations easier, we introduce an additional element
x0 to X , such that F (x0) = F (x0) = 0. As many ap-
plications involve variables taking values on the real
line R, we also consider generalised p-boxes defined on
this space or on one of its product spaces. We limit
ourselves to Borel sets and to discrete generalised p-
boxes (i.e., when F , F only takes a finite number of
values), other situations being seldom encountered in
practice. This allows us, by a proper partition, to
come back to the finite space case.

A generalised p-box [F , F ] induces a particular weak
order ≤[F,F ] between elements of X , such that
x ≤[F,F ] y iff F (x) ≤ F (y) and F (x) ≤ F (y). In
the sequel, for sake of clarity, we assume that each
distribution F , F takes distinct values for each ele-
ment x ∈ X , and we consider that these elements
are indexed in agreement with the ordering induced
by the generalised p-box representing the uncertainty
about the value of X. That is, elements x1, . . . , xN
are indexed such that i < j → F (xi) ≤ F (xj) and
F (xi) ≤ F (xj). Given a generalised p-box [F , F ] over
X , we define [F , F ]-connected subsets and v[F,F ]-
ordering as follows:
Definition 2. Given a generalised p-box [F , F ] over
X , a subset C ⊆ X is called [F , F ]-connected if it
can be expressed as a union of consecutive elements
xk, that is

C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N}.
Definition 3. Let A = {xi, . . . , xj}, B =
{xi′ , . . . , xj′} ⊆ X be two [F , F ]-connected sets. The
v[F,F ]-ordering between these sets if defined as follows

A v[F,F ] B if and only if
{

i ≤ i′
j ≤ j′.

When A v[F,F ] B and B 6v[F,F ] A, we denote it by
A @[F,F ] B.

1Otherwise all mappings would be comonotonic, since all
mappings are comonotonic with the constant mapping.

2.1 Link with convex sets of probability

Convex sets of probabilities constitute one of the most
general uncertainty model available nowadays. Their
use has been popularised by Walley [18] and stud-
ied by numerous authors (see Miranda [13] for a re-
cent review). In this paper, we will restrict ourselves
to sets of probabilities PP induced by lower proba-
bilities. Given a probability set P, its lower proba-
bility P on an event A ⊆ X is defined as P (A) =
infP∈P P (A). Upper probability can be defined sim-
ilarly (i.e., P (A) = supP∈P P (A)) and the two mea-
sures are dual, in the sense that, for any event A ⊆ X ,
P (A) = 1−P (Ac), where Ac is the complement of A.
Then PP = {P ≥ P}. The lower probability P is
called coherent if P (A) = inf{P (A), P ∈ PP },∀A.
The probability set PP is then called a credal set.

A generalised p-box [F , F ] induces a particular credal
set P[F,F ] such that

P[F,F ] = {P ∈ PX |F (xi) ≤ P ({x1, . . . , xi}) ≤ F (xi)}

with PX the set of all probability measures over X .
When X is the real line (X = R) and when sets Ai
are of the type (−∞, xi] with xi < xj when i ≤ j, we
retrieve classical p-boxes [10].

2.2 Link with random sets

Formally, a random set [2] is a mapping from a prob-
ability space to the power set of another space. In
the discrete case [17], a random set can also be con-
structed as a mass assignment m : ℘(X ) → [0, 1] s.t.∑
E∈℘(X )m(E) = 1. In this case, subsets E having

a strictly positive mass are called focal sets. We de-
note the set of focal sets by F , and a random set by
(m,F). From a random set, we can define two uncer-
tainty measures, respectively the belief and plausibil-
ity functions, which reads, for all A ⊆ X:

Bel(A) =
∑

E,E⊆A
m(E); Pl(A) =

∑

E,E∩A 6=∅
m(E).

The belief function quantifies our credibility in event
A, by summing all the masses that surely support
A, while the plausibility function measures the maxi-
mal confidence that can be given to event A, by sum-
ming all masses that could support A. They are dual
measures, in the sense that for all events A, we have
Bel(A) = 1 − Pl(Ac). The belief function can be
interpreted as a lower probability, and in this case in-
duces a credal set P(m,F) = {P ∈ PX |P ≥ Bel}, and
Bel(A) = P (A), Pl(A) = P (A) for any event A ⊆ X .
A generalised p-box [F , F ] also induces a particular
random set [5]. This random set can be built by the
following procedure: consider a threshold θ ∈ [0, 1].
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When F (xi+1) > θ ≥ F (xi) and F (xj+1) > θ ≥
F (xj), then, the corresponding focal set is Ai+1 \Aj ,
with weight

m(Ai+1 \Aj) = min(F (xi+1), F (xj+1))

−max(F (xi), F (xj)). (1)

This allows to apply results concerning random sets to
generalised p-boxes. Let us note (m,F)[F,F ] the ran-
dom set induced by a generalised p-box [F , F ]. The
focal sets of (m,F)[F,F ] have very specific features,
which can be summarised as follows:

[F , F ]-connectedness: If A ∈ F[F,F ], then A is
[F , F ]-connected.

[F , F ]-ordered: focal sets are completely ordered
with respect to ordering v[F,F ], i.e., for any two
distinct sets A,B ∈ F[F,F ], either A @[F,F ] B or
B @[F,F ] A.

2.3 Link with possibility distributions and
clouds

A possibility distribution [7] is a mapping π : X →
[0, 1] from a space X to the unit interval such that
π(x) = 1 for at least one element x in X . Formally,
a possibility distribution is equivalent to the mem-
bership function of a fuzzy set. From this possibil-
ity distribution are defined two uncertainty measures,
respectively the possibility and necessity functions,
which reads, for all A ⊂ X:

Π(A) = sup
x∈A

π(x); N(A) = 1−Π(Ac).

Given a possibility distribution π and a degree α ∈
[0, 1], the strong and regular α-cuts are subsets respec-
tively defined as the sets Eα = {x ∈ X |π(x) > α} and
Eα = {x ∈ X |π(x) ≥ α}. These α-cuts are nested,
since if α > β, then Eα ⊆ Eβ . In the finite case,
a possibility distribution takes at most N values.
Let us denote these N values by α0 = 0 < α1 <
. . . < αN = 1. We denote the set of probabilities
Pπ = {P ∈ PX |P ≥ N} associated to a possibility dis-
tribution π by Pπ.
Possibility distributions can also be interpreted as
particular random sets: they are equivalent to ran-
dom sets whose focal elements are nested. A belief
function (resp. a plausibility function) is a necessity
measure (resp a possibility measure) if and only if it
derives from a mass function with nested focal sets.
Such a random set is called consonant by Shafer [17].
Given a possibility distribution π, the corresponding
random set will have the following focal sets Ei with
masses m(Ei), i = 1, . . . , N :

{
Ei = {x ∈ X|π(x) ≥ αi} = Eαi

m(Ei) = αi − αi−1.
(2)

Uncertainty modelled by a generalised p-box [F , F ]
can also be modelled by a pair of possibility distribu-
tions πF , πF such that, for i = 1, . . . , N ,

πF (xi) = F (xi), (3)
πF (xi) = 1− F (xi−1), (4)

in the sense that P[F,F ] = PπF
∩ PπF

. The random
sets with mass assignments mπF

and mπF
modeling

the uncertainty of distributions πF , πF are such that,
for i = 0, . . . , N − 1,

mπF
(Aci ) = F (xi+1)− F (xi)

mπF
(Ai+1) = F (xi+1)− F (xi).

If we denote the M distinct values taken by F , F by
0 = γ0 < γ1 < . . . < γM = 1, then the following
random set, defined for j = 1, . . . ,M as
{
Ej = {xi ∈ X|(πF (xi) ≥ γj) ∧ (1− πF (xi) < γj)},

m(Ej) = γj − γj−1.
(5)

is the same as the random set given by Eq. (1).

Due to their links with possibility distributions, gen-
eralised p-boxes also have strong connections with
clouds, an uncertainty representation introduced by
Neumaier [16]. A cloud [π, δ] is a pair of distributions
δ, π from X to [0, 1] such that δ ≤ π, π(x) = 1 for
at least one x ∈ X and δ(y) = 0 for at least one ele-
ment y ∈ X . A cloud [π, δ] induces a set of probabili-
ties P[π,δ] = {P ∈ PX |P (δα) ≤1− α≤ P (πα)}, with
δα = {x|δ(x) ≥ α} and πα = {x|π(x) > α}. It
can be shown that clouds whose distributions δ, π are
comonotonic are equivalent to generalised p-boxes [5],
in the sense that they model exactly the same fam-
ily of probability sets. A so-called comonotonic cloud
[π, δ] models the same uncertainty as the generalised
p-box [F , F ] for which πF = π and πF = 1 − δ,
and conversely. That is, for any cloud [π, δ], we
have P[π,δ] = Pπ ∩ P1−δ, with π, 1 − δ possibility
distributions. Using the fact that clouds [π, δ] and
[1 − δ, 1 − π] represent the same uncertainty, in the
sense that P[π,δ] = P[1−δ,1−π], it is immediate that a
generalised p-box [F , F ] represents the same uncer-
tainty as the generalised p-box [F ∗, F ∗], where, for
i = 1, . . . , N

F ∗(xi) = 1− F (xi−1) and F ∗(xi) = 1− F (xi−1)

with the ordering ≤[F∗,F∗]
being the reverse of ≤[F,F ].

3 Computing probability bounds

Given a generalised p-box [F , F ], computing lower
and upper probabilities over any event A ⊆ X is
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rather easy. First, we consider events forming [F , F ]-
connected sets C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N}
where xi, xj are respectively the two elements of C
with least and greatest index with respect to ordering
≤[F,F ]. The lower probability of such a set is clearly
obtained as [5]

P (C) = max{0, F (xj)− F (xi−1)}.

Now the focal sets induce, via their intersections, a
partition of X . Any subset E ∈ X in the Boolean
sub-algebra H induced by this partition is made of
a disjoint union of [F , F ]-connected sets Ck : E =
C1 ∪ . . . ∪ CM . Then [5]:

P [F,F ](E) =
M∑

k=1

P [F,F ](Ck).

Now we can compute the lower and upper probabil-
ities of any event A ⊆ X . Namely, let A∗ be the
lower approximation of A in H (i.e. the maximal
subset A∗ ⊆ A in H). It can be proved [5, 14] that
P (A) = P (A∗), hence, if A∗ = C1 ∪ . . . ∪ CM and
Ci = {xi, xi+1, . . . , xi}, that

P (A) =
M∑

i=1

max{0, F (xi)− F (xi−1)}.

Upper probabilities are easily retrieved by duality. In
particular, if C = {xk ∈ X |0 < i ≤ k ≤ j ≤ N} is a
[F , F ]-connected subset, then

P (C) = F (xj)− F (xi−1). (6)

Note that these bounds always coincide with the lower
envelope of P[F,F ], contrary to other conservative
bounds using the relations between possibility distri-
butions and ordinary p-boxes [1] or clouds and pos-
sibility distributions [16] in their respective computa-
tions.

4 Elicitation of generalised p-boxes

To shorten notations, we adopt, from now on, the
following notation: for i = 1, . . . , N , let αi := F (xi)
and βi := F (xi) be the lower and upper probability
bounds of sets {x1, . . . , xi}, themselves denoted by Ai.
A generalised p-box can then be described as a set of
N probabilistic constraints on nested sets

i = 1, . . . , N, αi ≤ P (Ai) ≤ βi.

Hence, generalised p-boxes can be elicited by ask-
ing an expert to provide upper and lower uncertainty
bounds over a finite set of nested sets or intervals.
There are many situations where asking information

1

a

β

α

bA

F = πF
F

1− πF

Figure 1: Illustration of [F , F ] and associated cloud
[πF , 1− πF ] of Example 1

under this form is more natural than asking for a set
of (imprecise) quantiles, as would be done for ordi-
nary p-boxes. A typical situation is when a parame-
ter or physical quantity θ can be assumed to have an
unknown but constant value: in such cases, it sounds
natural to ask for confidence bounds around a best es-
timate θ̂. Other situations where generalised p-boxes
may prove interesting is: (1) when working with cat-
egorical variables for which a natural ordering does
exist and; (2) when θ ∈ Rn and when sets Ai are con-
vex nested regions of Rn, in which case generalised
p-boxes may fit in, while ordinary p-boxes does not.

Example 1. Given a parameter θ ∈ [a, b], with
[a, b] ⊆ R, an expert provides an interval A as a
best guess about the value of θ, together with upper
and lower confidence estimates whether θ is in A.
This answer (which can be given, for example, as a
level on a symbolic scale) is translated into confidence
bounds α, β such that α ≤ P (A) ≤ β. Define X as
{A, [a, b]\A}. This information can be translated into
a generalised p-box taking values F (x) = F (x) = 1
if x ∈ [a, b] \ A(= x2) and F (x) = β, F (x) = α if
x ∈ A(= x1). Note that this is a generalisation of the
so-called simple support function [17], where an upper
confidence bound (β) is given in addition to a lower
one. Figures 1 and 2 provides a graphical illustra-
tion of this simple generalised p-box, while its induced
random set is such that

m(A) = α; m([a, b]) = β − α; m([a, b] \A) = 1− β.

Note that, from a purely practical viewpoint, the cloud
πF , 1− πF on figure 2 looks more self-explanatory, at
least graphically.

The next example is more complex, illustrating how
p-boxes can help in uncertainty elicitation.

Example 2. Consider an expert having to assess a
pH value in a certain situation. His best guess is
pH ∈ [4.5, 5.5]. He is not very certain about these
bounds and only judges them fairly plausible. He pro-
vides another wider interval [4, 6] about which he feels
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1

a

1− β

1− α

bA

F ∗ = πF
F ∗
1− πF

Figure 2: Illustration of , F ∗, F ∗ and associated cloud
[πF , 1− πF ] of Example 1

πF

1-πF

3 4 4.5 5.5 6 7
0

0.2
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0.6

0.8

1.0

Figure 3: πF , 1−πF of generalised p-box of Example 2

more confident. He is however absolutely sure that pH
values outside [3, 7] are impossible. His opinion can
be modelled as follows:

• 0.3 ≤ P (pH ∈ [4.5, 5.5]) ≤ 0.6,

• 0.7 ≤ P (pH ∈ [4, 6]) ≤ 0.9,

• 1 ≤ P (pH ∈ [3, 7]) ≤ 1.

The resulting distributions πF , 1 − πF of this gener-
alised p-box are pictured in Figure 3.

5 Propagating generalised p-boxes

Let f be a function of variableX such that f(X) = Y ,
with Y a variable taking values on a space Y. Recall
that X can be any pre-ordered space (e.g., the dis-
cretization of a multi-dimensional continuous space).
First recall that the propagation of a random set
(m,F), and of its induced set of probabilities P(m,F),
comes down to computing, for every focal set A ∈ F ,
the image f(A) and to assigning the same mass to
this set as to A in the original random set (m,F).
In a previous paper [4], we studied how to propagate
a generalised p-box [F , F ] on X , defined by the con-
straints αi ≤ P (Ai) ≤ βi for i = 1, . . . , N , through
the model f . We compared three different methods:

• by computing the image of each focal set of
(m,F)[F,F ], ending up with the random set de-

noted by (m,F)f((m,F)) and such that to any
threshold θ ∈ [0, 1] corresponds the focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1 \Aj)) =
min(αi+1, βj+1)−max(αi, βj);

• by considering constraints αi ≤ P (f(Ai)) ≤ βi
on the probabilities of images of sets Ai. Sets
f(Ai) being still nested, these constraints again
correspond to a generalized p-box, inducing the
random set denoted by (m,F)f([F,F ]) and such
that to any threshold θ ∈ [0, 1] corresponds the
focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1) \ f(Aj)) =
min(αi+1, βj+1)−max(αi, βj).

Note that f(Ai+1) \ f(Aj) ⊆ f(Ai+1 \ Aj) the
former possibly being empty ;

• by separately propagating the focal sets of each
possibility distributions πF , πF , ending up with
two propagated random sets (m,F)f(πF ) and
(m,F)f(πF ) which respectively have, for i =
0, . . . , N − 1, mass assignments m(f(Aci )) =
βi+1 − βi and m(f(Ai+1)) = αi+1 − αi. Re-
arranging them as in the original generalised p-
box, we end up with the random set denoted by
(m,F)f(πF ,πF ) and such that to any threshold
θ ∈ [0, 1] corresponds the focal set

αi+1 > θ ≥ αi
βj+1 > θ ≥ βj

}
m(f(Ai+1) \ f(Acj)

c) =
min(αi+1, βj+1)−max(αi, βj).

Here, f(Ai+1 \Aj) ⊆ f(Ai+1) \ f(Acj)
c).

If we respectively denote the probability sets, in-
duced by the three propagated random sets, by
Pf((m,F)),Pf(πF ,πF ), and Pf([F,F ]), we have the fol-
lowing inclusion relations:

Pf([F,F ]) ⊆ Pf((m,F)) ⊆ Pf(πF ,πF ),

with the inclusions being usually strict. The above
relations turn into equalities when f is an injective
function, however restricting oneself to such functions
is very limiting. When f is not injective, only the
second set Pf((m,F)) provides the correct result.

6 Conditioning with generalised
p-boxes

Since the lower probability P [F,F ] induced by a gen-
eralised p-box is also a belief function, there are two
main ways of conditioning P [F,F ] when uncertainty on
X is modelled by a generalised p-box [F , F ]: the first
is Dempster’s rule of conditioning, while the second

ISIPTA’09: The Role of Generalised p-Boxes in Imprecise Probability Models 183



is Walley’s rule of conditioning. Both extend clas-
sical Bayes conditioning, but correspond to different
interpretations of conditioning [8]. In this section, we
study whether the conditional uncertainty measures
obtained by both conditionings can still be modelled
by generalised p-boxes.

6.1 Dempster conditioning

Given a random set (m,F) and a conditioning event
B = {xb1 , . . . , xbM

}, we denote the conditional (plau-
sibility and belief) measures obtained by Dempster
conditioning [2]by P [B], P [B]. These conditional mea-
sures, which are still belief and plausibility measures,
can be obtained by computing, for each event A ⊆ X

P [B](A) =
P (A ∩B)
P (B)

,

where P is the plausibility measure of (m,F). Since
P [B] is a plausibility function, it has positive mass
assignment m[B], which can also be built from the
initial distribution m, by transferring it to subsets of
B, computing for every subset A ∈ X ,

m[B](A) =





∑
C⊆{X\B}m(A ∪ C)
1−∑A⊆Bc m(A) , if A ⊆ B

0, otherwise.

This means that the massm(A) is transferred to A∩B
if A∩B 6= ∅, and that the masses given to non-empty
sets are then normalised (so that

∑
A⊆X m[B](A) =

1). Now, the question is to know whether the upper
and lower measures P [B], P [B] are still induced by a
generalised p-box? The answer is yes, as the following
proposition indicates.
Proposition 1. Let P [F,F ] be the lower probability
induced by a generalised p-box, and B a condition-
ing event, then the lower measure P [B] obtained by
Dempster’s conditioning stems from a generalised p-
box [F , F ][B] defined on X ∩ B and yielding the re-
striction of weak order ≤[F,F ] of the original p-box to
elements x ∈ B.

Proof. Since P [B] is still induced by a random set, it
suffices to shows thatm[B] remains a mass assignment
induced by a generalised p-box, that is that focal sets
of m[B] are [F , F ]-connected and [F , F ]-ordered on B
with pre-ordering ≤[F,F ].

First, as we consider the weak ordering ≤[F,F ] re-
stricted to elements of B, and as any focal set A =
{xi, . . . , xj} is transformed after conditioning to the
focal set A ∩ B, thus retaining all elements in A and
B, A∩B is still [F , F ]-connected if the (pre)-ordering
is restricted to elements of B.

We have then to show that two distinct focal sets
A,A′ remain [F , F ]-ordered after conditioning on B.
Assume A = {xi, . . . , xj} @[F,F ] A

′ = {xk, . . . , xl},
meaning that i ≤ k and j ≤ l, with at least one of
the two inequalities strict. Let us consider an element
xbi ∈ B and the sets A \ xbi ,A′ \ xbi . If xbi ∈ A ∩A′,
then k ≤ bi ≤ j, and A \ xbi @[F,F ] A

′ \ xbi . If xbi ∈
A\A′, then i ≤ bi < k, and either A\xbi = A′ \xbi or
A \ xbi @[F,F ] A

′ \ xbi , as A,A′ are [F , F ]-connected,
thus we have A \ xbi v[F,F ] A

′ \ xbi . As we can do it
repeatedly for each element x ∈ B, this finishes the
proof.

The above proposition indicates that all the infor-
mation contained in conditional measures P [B], P [B]

is captured by a generalised p-box. If B =
{xb1 , . . . , xbM

}, with elements indexed accordingly to
≤[F,F ], and if we let Bi = {xb1 , . . . , xbi

}, then it
is sufficient to compute P [B](Bi), P [B](Bi) for i =
1, . . . ,M and to consider the induced generalised p-
box [F , F ][B] to model all the conditional information.
Let us consider the case (which is the most likely
to happen in practice) of conditioning on a [F , F ]-
connected set B = {xbi

|b1 ≤ bi ≤ bM}, then the
conditioned generalised p-box is easy to compute, as
we have, for i = 1, . . . ,M (Using Eq. (6))

P [B](Bi) =
P (Bi ∩B)
P (B)

=
P ({xb1 , . . . , xbi})
P ({xb1 , . . . , xbM

})

=
F (xbi

)− F (xb1−1)
F (xbM

)− F (xb1−1)
= F [B](xbi

),

P [B](Bi) = P [B](Bi) = 1− P [B](Bci ) = 1− P (Bci ∩B)
P (B)

= 1− P ({xbi+1, . . . , xbM
})

P ({xb1 , . . . , xbM
})

=
F (xbi

)− F (xb1−1)
F (xbM

)− F (xb1−1)
= F [B](xbi).

6.2 Walley’s conditioning

Let us now study Walley’s conditioning [18]. Given
a set of probabilities P, its associated lower and up-
per probabilities P , P and a conditioning event B for
which P (B) > 0,2 we denote the (dual) measures ob-
tained after applying Walley’s conditioning by P |B
and P |B . For any event A ⊆ X , P |B(A) is

P |B(A) = inf
P∈P

P (A ∩B)
P (B)

.

2We avoid dealing with the case where there are P ∈ P such
that P (B) = 0, which requires more caution (See Miranda [13]
for an introduction)
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x1 x2 x3 x4

F 0.3 0.5 0.9 1
F 0.1 0.4 0.7 1

Table 1: Generalised p-box [F , F ] of Example 3

When lower probabilities are belief functions, P |B(A)
can be computed by the following formula:

P |B(A) =
P (A ∩B)

P (A ∩B) + P (Ac ∩B)
.

We can then ask ourselves the same question as for
Dempster’s conditioning: can the information of P |B ,
which is known to still be a belief function [12], be
totally captured by a generalised p-box? The next
example shows that this is not the case.
Example 3. Consider the space X = {x1, x2, x3, x4}
and the p-box [F , F ] summarized in Table 1. Consider
now the conditioning event B = {x1, x2, x4}. Com-
puting the conditional measure P |B for {x1}, {x4}
and {x1, x4}, we get

P |B({x1}) = 1/8;P |B({x4}) = 1/6;P |B({x1, x4}) = 2/6.

Were P |B induced by a generalised p-box, it would
satisfy P |B({x1, x4}) = P |B({x1})+P |B({x4}) (after
Section 3), since {x1} and {x4} are disjoint [F , F ]-
connected sets. It is not the case here, hence P |B
cannot be modelled by a generalised p-box

This example shows that generalised p-box models are
not preserved under Walley’s conditioning. However,
lower conditional probabilities remain easy to com-
pute. Also, conditional probabilities P |B , P |B should
not be further used in iterated procedures (contrary
to P [B], P [B]). Indeed this type of conditioning is tai-
lored to question-answering of statistical knowledge
modelled by credal sets, on the basis of singular in-
formation B [8]. If additional singular information C
comes up, one has to compute P |B∩C , P |B∩C directly
from P , P , therefore the non-preservation of gener-
alised p-boxes under this kind of conditioning is not
really an issue.

7 Merging generalised p-boxes

In this section, we assume that S different generalised
p-boxes [F , F ]1, . . . , [F , F ]S are available to model our
uncertainty about X. They can be provided by dif-
ferent experts, sensors, or any other source of infor-
mation. In such cases, it is desirable to provide rules
to merge uncertain information, possibly taking into
account source dependencies. In the following, we say
that generalised p-boxes [F , F ]1, . . . , [F , F ]S form a

comonotonic set if F i, F i, i = 1, . . . , S, are all comono-
tonic (i.e. all orderings ≤[F,F ]i

are the same).

7.1 Idempotent merging rules

When dependencies between sources are not well
known, it is usual to use merging rules satisfy-
ing the property of idempotence, as this ensures
that the merging of two identical information items
[F , F ]1, [F , F ]2 will result in the same representation
(thus not adding unwarranted information). Given
the strong connections between generalised p-boxes,
p-boxes and possibility distributions, it appears nat-
ural to define idempotent merging rules as follows:

Conjunction: we define the conjunctively merging
[F , F ]∩ of generalised p-boxes, for any x ∈ X as the
following pair of mappings

F∩(x) = max
i=1,S

F i(x) and F∩(x) = min
i=1,S

F i(x). (7)

We say that the conjunction is empty when F∩(x) >
F∩(x) for at least one x ∈ X
Disjunction: we define the conjunctively merging
[F , F ]∪ of generalised p-boxes as the pair of mappings
F∩, F∩ such that, for any x ∈ X

F∪(x) = min
i=1,S

F i(x) and F∪(x) = max
i=1,S

F i(x). (8)

Convex combination: Let λ1, . . . , λS be non neg-
ative weights summing up to one (

∑S
i=1 λi = 1)

and associated to sources. We then define the arith-
metic weighted mean [F , F ]Σ as the pair of mappings
FΣ, FΣ such that, for any x ∈ X

FΣ(x) =
S∑

i=1

λiF i(x) and FΣ(x) =
S∑

i=1

λiF i(x). (9)

One can check that, when generalised p-boxes are re-
stricted to ordinary p-boxes, idempotent fusion rules
proposed by Ferson’s et al. [10] are retrieved. The
merging results [F , F ]∪, [F , F ]Σ and [F , F ]∩ are not
guaranteed to be generalised p-boxes (as comono-
tonicity can be lost), but they can still be inter-
preted as clouds (thus offering a possible answer as
how to merge clouds [16]). However, when gener-
alised p-boxes form a comonotonic set, the fact that
the maximum, minimum and mean operators are non-
decreasing in their arguments ensures that the result
will still be a generalised p-box with the same induced
ordering.

It is also useful to notice that the possibility distri-
bution pairs induced by [F , F ]∪, [F , F ]∩ and [F , F ]Σ
are such that
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• πF∪ = maxi=1,S πF i
and πF∪ = maxi=1,S πF i

,

• πF∩ = mini=1,S πF i
and πF∩ = mini=1,S πF i

,

• πFΣ
=
∑
i=1,S λiπF i

and πFΣ
=
∑
i=1,S λiπF i

.

The proposed idempotent merging rules are there-
fore equivalent to applying the classical idempotent
rules of possibility theory twice (those rules are re-
trieved when p-boxes reduce to single possibility dis-
tributions).

With regard to sets of probabilities, these merging
rules can be used as approximations of exact com-
putations. Let [πF∪ , 1 − πF∪ ], [πF∩ , 1 − πF∩ ] de-
note the clouds resulting from disjunctions, conjunc-
tions of generalised p-boxes [F , F ]1, . . . , [F , F ]S , and
P[F,F ]∪

,P[F,F ]∩
their induced sets of probabilities

(possibly empty). The following proposition holds:

Proposition 2. Let P[F,F ]1
, . . . ,P[F,F ]S

be the sets
of probabilities induced by [F , F ]1, . . . , [F , F ]S. Then,
the following inclusions hold

P[F,F ]∩
⊆

S⋂

i=1

P[F,F ]i
,

P[F,F ]∪
⊇

S⋃

i=1

P[F,F ]i
,

the first inclusion turning into an equality when gen-
eralised p-boxes form a comonotonic set.

Proof. First recall that, if π1, π2 are two possibility
distributions, min{π1, π2}, (max{π1, π2}) their min-
imum (maximum) and P1,P2,Pmin12 (Pmax12) their
induced sets of probabilities, then Pmin12 ⊆ P1 ∩ P2

(P1 ∪ P2 ⊆ Pmax12).

Using the relation between clouds and sets of proba-
bilities, we have, for conjunction:

P[F,F ]∩
= PπF∩

∩ PπF∩
,

and since πF∩ = mini=1,S πF i
and πF∩ =

mini=1,S πF i
, we have

S⋂

i=1

(
PπF i

∩ PπF i

)
⊇
(
Pmini=1,S πF i

∩ Pmini=1,S πF i

)

and since PπF i
∩PπF i

= P[F,F ]i
, this shows the inclu-

sion relation for the conjunction. If we consider now
the case where generalised p-boxes form a comono-
tonic set, then it means that all constraints bear on
the same events Ai, i = 1, . . . , N, and are of the kind
αi,j ≤ P (Ai) ≤ βi,j , where αi,j , βi,j are the lower and
upper bounds of p-box [F , F ]j for the set Ai. Thus,

the intersection ∩Si=1P[F,F ]i
is induced by the set of

following constraints:

max
i=1,S

αi ≤ P (Ai) ≤ min
i=1,S

βi,

and these constraints exactly describe the generalised
p-box [F , F ]∩. So, P[F,F ]∩

=
⋂S
i=1 P[F,F ]i

.

To see the inclusion relation for disjunction, it is suf-
ficient to note that ∪Si=1(PπF i

∩PπF i
) ⊆ (∪Si=1PπF i

)∩
(∪Si=1PπF i

), for any i = 1, . . . , S. The first probability
set is sometimes not convex even in the comonotonic
case.

In particular, Proposition 2 indicates that the con-
junction of sets of probabilities induced by ordinary
p-boxes or of sets of comonotonic possibility distribu-
tions is induced by the result of the proposed merging
rule. The conjunctive and disjunctive merging rules
can also be interpreted in terms of random sets, as
the next proposition indicates. It shows that merging
rules can be associated to a random set merging ap-
plying a commensuration process [9], with a hypothe-
sis of level-wise merging (i.e. correlation between the
sources).
Proposition 3. Consider the set {γ1, . . . , γM} =⋃S
i=1 {F i(x), F i(x)|x ∈ X} of distinct values taken by

the generalised p-box [F , F ]i, i = 1, . . . , S, and in-
dexed such that 0 = γ0 < γ1 < . . . < γM = 1. Assume
[F , F ]∩ and [F , F ]∪ are generalised p-boxes, then they
respectively induce the random sets (m,F)∩,(m,F)∪
having, for j = 1, . . . ,M , the following focal sets:

m∩(∩Si=1Ei,j) = γj − γj−1 (10)

and
m∪(∪Si=1Ei,j) = γj − γj−1, (11)

with Ei,j = {x ∈ X |(πF i
(x) ≥ γj) ∧ (1− πF i

(x) < γj)}
the set obtained by Eq. (5) for [F , F ]i.

Proof. Again, we provide only the proof for [F , F ]∪. If
we consider [F , F ]∪ and the induced pair of possibility
distributions πF∪ , πF∪ , the induced random (m,F)
have, for j = 1, . . . ,M , masses m(Ej) = γj − γj−1

assigned to focal sets such that

Ej = {x|πF∪(x) ≥ γj ∧ (1− πF∪(x) < γj)}

=
{
x| max
i=1,S

πF i
(x) ≥ γj ∧(1− max

i=1,S
πF i

(x) < γj)
}

=
{
x| max
i=1,S

πF i
(x) ≥ γj

}
∩
{
x| max
i=1,S

πF i
≥ 1− γj

}

= ∪i=1,S

{
x|πF i

(x) ≥ γj
}
∩ ∪i=1,S

{
x|πF i

≥ 1− γj
}

=
⋃

i=1,S

{
x|πF i

(x) ≥ γj ∧ πF i
≥ 1− γj

}
=
⋃

i=1,S

(Ei,j).
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This ends the proof. The fourth equality following
from known relation between possibilistic disjunction
with maximum rule and random sets combination
(namely, that the maximum of a set of possibility dis-
tributions boils down to computing level-wise unions
of their α-cuts [9]).

Note that when [F , F ]∩ and [F , F ]∪ are only clouds,
the random sets in the Proposition are only inner
approximations [5]. Finding out a relation between
[F , F ]Σ and the convex mixture of sets of probabil-
ities (i.e. PΣ = {∑S

i=1 λiPi|Pi ∈ P[F,F ]i
}) or of

random sets (the two procedure inducing the same
set of probabilities) looks harder, except when gener-
alised p-boxes form a comonotonic set, in which case
[F , F ]Σ can be seen as an approximation of the re-
sult that is exact on sets Ai (due to the fact that
Pσ(Ai) =

∑S
i=1 λiP [F,F ]i

(Ai) =
∑S
i=1 λiF (xi)).

8 Other merging rules

In cases where the independence of sources or some
dependence structures between them can be assumed,
the property of idempotence can be dropped, and it
is desirable to use merging rules reflecting the known
(in)dependence structure. We are not aware of merg-
ing rules exploiting such information in settings em-
phasising the use of probability sets, but such rules do
exist in the settings of possibility theory and of ran-
dom sets. Exploiting the links between generalised
p-boxes and possibility distributions, we can there-
fore propose an extension of the idempotent merging
rules proposed in Section 7.1, such that conjunctive
and disjunctive rules respectively become

F>(x) = ⊥i=1,SF i(x); F>(x) = >i=1,SF i(x). (12)

F⊥(x) = >i=1,SF i(x); F⊥(x) = ⊥i=1,SF i(x). (13)

with > a triangular norm and ⊥ its dual triangu-
lar conorm, possibly restricted to associative copu-
las [15]3 if a probabilistic interpretation is to be pre-
served. A t-norm is a function > : [0, 1]2 → [0, 1]
that is associative, commutative, non-decreasing in
each variable and >(x, 1) = x, >(x, 0) = 0. The
dual t-conorm of a t-norm is such that ⊥(x, y) =
1 − >(1 − x, 1 − y) for any (x, y) ∈ [0, 1]2. For in-
stance, if all sources can be judged independent, it
makes sense to use the product t-norm and its associ-
ated t-conorm ⊥(x, y) = x+ y − x · y. Note that this
rule is still equivalent to a pair-wise application of the
t-norm to possibility distributions πF i

, πF i
, and that

inclusions in Proposition 2 remain valid and are, in
this case, always strict.

3t-norms > satisfying >(c, d)−>(c, b)−>(a, d)+>(a, b) ≥ 0
for any (a, b, c, d) ∈ [0, 1]4 such that a ≤ c, b ≤ d

A Ac X
B A ∩B Ac ∩B B
Bc A ∩Bc Ac ∩Bc Bc

X A B X

Table 2: Dempster’s rule allocation for Example 4.

As generalised p-boxes constitute particular instances
of random sets, it is also possible to merge their in-
duced random sets by families of rules used in this
setting [3]. For example, one can apply unnormalised
Dempster’s rule if sources can be judged indepen-
dent. Given two random sets with mass assignments
m1,m2 on X , the random set with mass assignment
m12 resulting from unnormalised Dempster’s rule is
such that, for any A ⊆ X ,

m12(A) =
∑

B∩C=A
B,C⊆X

m1(B) ·m2(C).

The disjunctive rule is obtained by replacing ∩ with
∪ in the formula. As for possibility distributions [9],
applying this rule to random sets induced by a set
of generalised p-boxes does not, in general, result in
a random set induced by a generalised p-box as the
next example indicates.
Example 4. Let us consider two generalised p-boxes
as in Example 1, such that the first source provide
bounds α1, β1 on set A and the second source provides
bounds α2, β2 for a distinct set B, such that B ∩A 6=
{A,B, ∅}. Table 2 summarises which sets receive a
positive mass for the conjunctive allocation.

Since A ∩ B, A ∩ Bc, Ac ∩ Bc, A ∩ Bc are disjoint
focal sets strictly included in X , the result is not a
generalised p-box, since there are no weak order on
elements of X such that all focal sets are connected
and ordered. The same argument holds for the dis-
junctive counterpart of Dempster’s rule.

9 Summary and Conclusions

This paper suggests that generalised p-boxes are not
very stable uncertainty representations, in the sense
that most information processing tasks (e.g. propa-
gation, conditioning), once applied to generalised p-
boxes, result in representations that are no longer gen-
eralised p-boxes. However, even in such situations,
using these representations can alleviate the compu-
tational burden (e.g., by using quick approximation).
There are also specific processing tasks (i.e. propa-
gation through injective functions, dempsterian con-
ditioning, merging of comonotonic sets of generalised
p-boxes) where the final result is still a generalised
p-box.
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Consequently, processing information solely by the
means of generalised p-boxes appears of poor interest
when one want to make exact computations, as their
expressive power remains limited (they can be, how-
ever, useful to provide quick approximations). It thus
appears that the main interest of generalised p-boxes
lies in the elicitation and post-processing stages. In-
deed, assigning lower and upper confidence bounds to
a set of nested sets is a quite natural way to charac-
terise and to represent information tainted with un-
certainty. Recent works on comonotonic clouds [11]
also show that generalised p-boxes (which have an ex-
pressive power equivalent to comonotonic clouds, as
they can model the same sets of probabilities) are con-
venient for modelling uncertainty in high-dimensional
spaces and facilitate optimisation tasks (exploiting
the convexity of confidence regions).

Concerning future works, there are still a number of
practical results concerning ordinary p-boxes and pos-
sibility distributions whose extensions to generalised
p-boxes need to be explored. Among these results are
fuzzy [6] and probabilistic [19] arithmetic, respectively
allowing easy propagation of fuzzy sets and ordinary
p-boxes under different (in)dependence assumptions.
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