Incorporating plant plasticity in agroforestry simulation models
Marie Ange Ngo Bieng, Rachmat Mulia, Christian Dupraz, Marilyne Laurans, Gregoire Talbot, Grégoire Vincent, Meine van Noordwijk

To cite this version:
Marie Ange Ngo Bieng, Rachmat Mulia, Christian Dupraz, Marilyne Laurans, Gregoire Talbot, et al.. Incorporating plant plasticity in agroforestry simulation models. 2. World Congress of Agroforestry (WCA2), Aug 2009, Nairobi, Kenya. 25 p. hal-02755229

HAL Id: hal-02755229
https://hal.inrae.fr/hal-02755229
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Incorporating plant plasticity in agroforestry simulation models

Marie Ange Ngo Bieng, Rachmat Mulia C.Dupraz, M.Laurans, G. Talbot, G. Vincent, M. Van Noordwijk
Incorporating plant plasticity in agroforestry simulation models

I. Evidence of plasticity in Poplar / Walnut – wheat agroforest systems

II. Simulating crown plasticity

III. Simulating root plasticity

IV. conclusion
I. Evidence of plasticity in temperate agroforest systems
I. Evidence of plasticity in Poplar – wheat agroforest systems

Crown plasticity

- A higher stretching in east-west than in north-south in orientation

Consequences:
- Productivity of the system because of light availability

\[CW = 14.2\text{m} \]

\[CW = 11.2\text{m} \]

CW = Crown Width

Experimental 13 years old poplar-wheat agroforest
I. Evidence of plasticity in poplar/walnut – wheat agroforest systems

- **Roots plasticity**
 - fine root distribution is modified by association with a winter crop

- **Interest in agroforestry**
 - spatial complementarity for water resource
Incorporating plant plasticity in agroforestry simulation models

Objectives

- Reconstruction by modelling crown / root plasticity
- Exploration of the sensibility of the systems to the plasticity of trees by comparing simulations with or without plasticity
II. Simulating crown plasticity
Incorporating plant plasticity in agroforestry simulation models

II. 1 The model: STReTCH (Vincent & Harja, 2007)
Shape transformation response of trees in crowded habitats

The yearly simulation loop
A combination of 5 modules: growth, mortality, regeneration, light availability, crown deformation.
II. 1 The model: STReTCH (Vincent & Harja, 2007)
Shape transformation response of trees in crowded habitats

Plot radiative conditions

Tree light availability

- Depends on the stem growth
- Depends on individual light availability
- Virtual vectors of branches

Growth of virtual branches
II. 2 Simulation

Incorporating plant plasticity in agroforestry simulation models

Stand initial conditions

Plasticity parameters (Vincent & Harja, 2007)

- **Flexibility**: range of possible deformation of the trees
- **Sensitivity**: reactivity to a light gradient
II. 3 Results

Incorporating plant plasticity in agroforestry simulation models

Reconstruction of the differential deformations between the orientations

A high plasticity of poplar crown

\[
\begin{align*}
\text{Orientation N->S} & \quad \text{Crown radius / time} & \quad \text{Orientation E->O} \\
\text{CWsimulated} & = 10.1 \text{m} & \quad \text{CWsimulated} & = 13.4 \text{m} \\
\text{CWreal} & = 11.2 \text{m} & \quad \text{CWreal} & = 14.2 \text{m} \\
\end{align*}
\]

Crown flexibility = 0.8 (range [0-1])

Crown sensitivity = 1.5 (range [0-2])
III. Simulating roots plasticity
III. 1 The model: Hi-sAFe, an overview

- Tree growth (individual based model)
- **crop growth** *(Stics (brisson et al 2009))*
- 3D modelling of competition:
 - light (ray-tracing)
 - water (matrix flux potential)
 - (and soon: Nitrogen)
III. 1 The model: Modelling root plasticity with a cellular automata

Allocation to voxel ijk:
$$ p_{ijk} = \frac{\epsilon_{ijk}^\alpha c_{ijk}^{-\beta}}{\sum_{ijk} \epsilon_{ijk}^\alpha c_{ijk}^{-\beta}} $$

- p_{ijk}: allocated proportion
- ϵ_{ijk}: water uptake efficiency (L.m^{-1})
- c_{ijk}: fine root cost (Kg.m^{-1})
- α: opportunism coefficient
- β: economic coefficient

Neighbours colonisation:
- triggered by thresholds on fine roots investment in the voxel
- thresholds depends on:
 - neighbour and father voxel positions
 - voxel shape and dimension
 - architectural parameters

Coarse root system:
- topology: colonisation historic
- sections: Pipe-stem model

Constraints on fine root growth
FR/CR allocation

Root plasticity
III. 1 The model: Modeling plasticity in above/below-ground allocation

- Definition of a target shoot/root ratio:
 \[R^* = \frac{C_{\text{leaf}}}{C_{\text{leaf}} + C_{\text{fineroots}}} \]

- Daily allocation tends to reach \(R^* \)

- Allocation toward woody compartments depends on:
 - allometric relationships between stem, branches and foliage
 - functional constraints between coarse roots and fine roots

- \(R^* \) decreases when water stress occurs:
 \[R^*_{t+1} = R^*_t - \delta W_{\text{stress}}^\phi \]

- \(R^* \) upper drifts in absence of water stress:
 \[R^*_{t+1} = R^*_t - \delta \]

\(\delta \) maximal daily variation of \(R^* \)

\(W_{\text{stress},t+1} \) water stress on day \(t + 1 \)

\(\phi \) sensitivity to water stress
Incorporating plant plasticity in agroforestry simulation models

III. 2 Simulation experiments

Hybrid walnut / durum wheat
No water table
Non limitant nitrogen
Climate from Montpellier, France

Root plasticity:
«blind» root system: $\alpha = 0$, $\beta = 1$
opportunistic root system: $\alpha = 1$, $\beta = 1$

Above/below ground allocation:
Rigid tree: $\delta = 0$, $R^*_0 = 0.5$
plastic tree: $\delta = 0.0015$, $\phi = 0.5$, $R^*_0 = 0.5$
III. 3 Results: Opportunistic root system: effect on rooting pattern

« blind » root system: a half-sphere like growth

Opportunistic root system: a growth...
...first in depth... ... then along tree line... ... and finally under the crop
III. 3 Results: Opportunistic root system: effect on fine root distribution

- Under crop
- Under tree line

Graphs:
- Root proportion
- Depth (m)
- Blind root growth
- Opportunistic root growth
Incorporating plant plasticity in agroforestry simulation models

III. 3 Results: Opportunistic root system; effect on tree growth

Above ground biomass +23 %

Below ground biomass +100 %
III. 3 Results: Plasticity of carbon allocation; effect on tree growth

- Evolution of R^*
 - "rigid" tree
 - plastic tree

- Above ground C fraction

- Total growth (Kg C)

+ 5% explained by:
 - total PAR intercepted: -11 %
 - light use efficiency: +17 %
IV. Conclusions
IV. Conclusions

- Our models were able to simulate observed patterns of plasticity
 - Crown plasticity: reconstruction of the observed difference between N-S and E-W orientation;
 - Roots plasticity: higher fine root density below the layers exploited by crop roots

- They were sensitive to the values of parameters governing plastic responses
 - These parameters are difficult to parameterise because they have no simple biological meaning

- Cf communication of Dupraz et al., session 23, Thursday morning
- To be continued…
Incorporating plant plasticity in agroforestry simulation models

Marie Ange Ngo Bieng, Rachmat Mulia C.Dupraz, M.Laurans, G. Talbot, G. Vincent, M. Van Noordwijk

2nd World Congress of Agroforestry, 23 – 28 August 2009, Nairobi Kenya
To learn more… now available…

A Textbook

A DVD
(with English, Spanish and Dutch sub-titles)

Available today at a special discount price

Book: 30 € / 40 US$

DVD: 30 € / 40 US $

Both: 50 € / 65 US $

Contact:
Christian Dupraz
Lydie Dufour
II. 1 The model: STReTCH

Shape transformation response of trees in crowded habitats

Illustration of crown deformation

a fixed vertical light gradient

a fixed lateral anisotropic gradient