Role of the between-plot plant functional diversity in uplandsdairy farms
Jean Pierre J. P. Theau, Mathilde Piquet, Bibiane Baumont, Christophe Chabalier, Benoît Delmas, Clémentine Lacour, Sophie Hulin, Anne A. Farruggia, Pascal P. Carrère

To cite this version:
Jean Pierre J. P. Theau, Mathilde Piquet, Bibiane Baumont, Christophe Chabalier, Benoît Delmas, et al.. Role of the between-plot plant functional diversity in uplandsdairy farms. 15. Meeting of the FAO-CIHEAM Mountain Pastures Network, Oct 2009, Les Diablerets, Switzerland. hal-02755325

HAL Id: hal-02755325
https://hal.inrae.fr/hal-02755325
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Role of the between-plot plant functional diversity in uplands dairy farms

Jean-Pierre Theau, Mathilde Piquet, Bibiane Baumont, Christophe Chabalier, Benoit Delmas, Clémentine Lacour, Sophie Hulin, Anne Farruggia, Pascal Carrère

Introduction

● Context
In upland areas climate or topography structure strongly influence farm systems.
 ✗ need to produce stocks to feed animals during winter season
 ✗ small or medium size structure with a scattered spatial organisation of the plots

● Issue
 ✗ Maintaining the economic viability of the farm requires to search more favourable milk prices and profit margins
 ✗ PDO = a good response to this issue + it sets grassland at a key point of the forage system
Introduction

- The question
 - How can inter-plot diversity of grasslands on the farm be a positive feature in the sustainability of dairy systems?

- The program
 - Research-Development project

- Area and Process of the study
 - Massif Central
 - 2 PDOs: “Le Laguiole” and “Le Cantal”
 - Survey identifying farmers’ practices
 - Botanic composition to assess the vegetation diversity of the plots

Material & methods

- Areas
 - **Laguiole**: 1,900 km², altitude from 700 to 1,300 m, average of 1,300 mm annual rainfall
 - 4 farms
 - **Cantal**: 7,200 km², altitude from 700 to 1,000 m, 600 mm to 1,600 mm annual rainfall
 - 6 farms
 - Representative of pedoclimatic variability
 - Key figures of the 10 farms:
 - total cultivated area: 38-77 ha,
 - 27-50 dairy cows,
 - calving season: fall-winter,
 - intensification level:
 - 2,800 to 7,300 L/dairy cow
 - 2,400 to 6,500 L/ha of forage area
Material & methods

- Identification of farmers’ practices
 - Vegetation survey
 - In every plot: contribution of dominant species account for more than 17% of the botanical composition
 - according to Cruz et al. 2002, each species functional class, defined by the dry matter content of blades

<table>
<thead>
<tr>
<th>Types</th>
<th>Species (examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Holcus lanatus</td>
</tr>
<tr>
<td>B</td>
<td>Dactylis sp.</td>
</tr>
<tr>
<td>C</td>
<td>Agrostis capillaris</td>
</tr>
<tr>
<td>D</td>
<td>Festuca rubra</td>
</tr>
<tr>
<td>E</td>
<td>Brachypodium sp.</td>
</tr>
<tr>
<td></td>
<td>Lolium multiforum</td>
</tr>
</tbody>
</table>

From Ansquer et al., 2004

Material & methods

- Identification of farmers’ practices
 - Diagnosis of forage practices
 - Use phenology to diagnose quality of practices mowing and grazing

![Graph showing the relationship between sum of temperature and the percentage of b + D types of grass.](image)

- Comparison of the diagnosis of forage practices to a reference table to estimate the quality of basis ration
Results and discussion

- Figure 1: Part of each functional type in forage surface
- Figure 2: Diagnosis of mowing production unit
- Figure 3: Comparison of mowing and grazing practices with supplying of concentrates

At farm scale, grassland vegetation is diversified, but with a wide range of potential of production...

In each farm, we described 4-6 different functional types that showed a good functional diversity.

- Productive grasses: 70 to 100 % of A + B + b types
 - varied productive potential

- Among productive grasses, 50 to 85 % are early flowering species
 - varied precocity potential

... flexibility of management and autonomy in uplands farms

Figure 1: Part of each functional type in forage surface
The functional approach allows a diagnosis of the farmer’s practices

3 types of mowing:
1. Mowing before the ear stage (G15)
2. Mowing between the ear stage and flowering (D12)
3. Mowing after flowering (F15)

Diversity of harvested vegetations

Good quality forages
Quality / quantity balanced
Low quality forages

Analysis of the system practices: identifying the part of mowing and grazing practices

Late mowing
Intermediate mowing
Early mowing

F15
C12
B12

Concentrates consumption ++ vs - - // dairy production

Figure 2: Diagnosis of mowing production unit

Figure 3: Comparison of mowing and grazing practices with supplying of concentrates
Concentrates consumption vs dairy production

Decreasing in forage quality

Analysis of the system practices: identifying the part of mowing and grazing practices

Conclusions

- Our study shows that, in upland farms, forage potential of grasslands is under-used.
- Reinforcing confidence of farmers in their grazing practices will let them to improve efficiency of dairy production units.
- Such studies have to supply objective references to encourage grasslands use which provides sustainability.
Role of the between-plot plant functional diversity in uplands dairy farms

Jean-Pierre Theau, Mathilde Piquet, Bibiane Baumont, Christophe Chabalier, Benoit Delmas, Clémentine Lacour, Sophie Hulin, Anne Farruggia, Pascal Carrère