

A new composite likelihood method to characterize demographic expansions: preliminary results from Y-chromosome STR data

Miguel Navascués, Concetta Burgarella

▶ To cite this version:

Miguel Navascués, Concetta Burgarella. A new composite likelihood method to characterize demographic expansions: preliminary results from Y-chromosome STR data. DNA in Forensics, Università Politecnica delle Marche, May 2008, Ancona, Italy. hal-02755469

HAL Id: hal-02755469 https://hal.inrae.fr/hal-02755469v1

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A new composite likelihood method to characterize demographic expansions

Miguel Navascués & Concetta Burgarella

Demographic expansion

Mutation distribution

Pairwise number of mutations (*j*)

Li (1977) Genetics // Slatkin & Hudson (1991) Genetics

$$P(i;\theta_0,\theta_1,\tau) = \sum_{j=i}^{\infty} P(j;\theta_0,\theta_1,\tau) \times P(i;j)$$

 $P(i;\theta_0,\theta_1,\tau) = \sum_{i=i}^{\infty} P(j;\theta_0,\theta_1,\tau) \times P(i;j)$

Distribution of genetic differences

Distribution of mutations

 $P(i;\theta_0,\theta_1,\tau) = \sum_{i=i}^{\infty} P(j;\theta_0,\theta_1,\tau) \times P(i;j)$

Distribution of genetic differences

Distribution of mutations

 $P(i;\theta_0,\theta_1,\tau) = \sum_{i=1}^{\infty} P(j;\theta_0,\theta_1,\tau) \times P(i;j)$

Distribution of genetic differences

Mutation model

Mutational model, P(i;j)

Stepwise Mutation Model

$$P(\delta; j) = \begin{cases} \begin{pmatrix} j \\ \frac{j}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix}^{j} & \delta = 0 \land j \text{ even} \\ \begin{pmatrix} j \\ \frac{j+2}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix}^{j} + \begin{pmatrix} j \\ \frac{j-2}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix}^{j} & \delta \neq 0 \land j \text{ even} \\ 0 & \text{otherwise} \end{cases}$$

Linked loci with different mutation rates

$$P(\{k_{1,}k_{2,}...,k_{L}\};j) = \begin{cases} \frac{j!}{k_{1}!k_{2}!...k_{L}!} p_{1}^{2}p_{2}^{2}...p_{L}^{2} & \sum_{l=1}^{L} k_{l} = j\\ 0 & otherwise \end{cases}$$

1000 coalescent simulations of demographic expansions

1000 coalescent simulations of demographic expansions

Y-STRs population samples

DYS19, DYS390, DYS391, DYS392 and DYS393

groups following Li et al. (2008) Science

Genetic distance distribution

Pairwise difference in number of repeats

Time of expansion estimates

Group	# individuals	# populations	τ̂ (95%Cl)	\hat{t} years (95%CI) ^b
Sub-Saharan-Africa	1183	23	12.53 (1.29-26.18)	17612 (2672-36811)
N-Africa	694	13	13.69 (0.10-24.51)	19247 (441-34463)
Europe	2150	14	9.40 (5.00-12.81)	13213 (7030-18012)
East-Asia	2621	16	11.51 (8.18-15.75)	16182 (11502-22146)
Oceania	293	7	12.04 (6.76-17.45)	16924 (9505-23552)
America	422	8	8.70 (5.10-15.42)	12231 (7171-21682)
World ^a	9182	94	12.85 (9.25-14.41)	18061 (13006-20262)

^a Includes samples not classified in previous groups

^b mutation rate per generation over the five loci, $\mu = 0.89 \times 10^{-2}$ (www.ystr.org); generation time: 25 years

Time of expansion estimates

Group	# individuals	# populations	τ̂ (95%CI)	\hat{t} years (95%CI) ^b
Sub-Saharan-Africa	1183	23	12.53 (1.29-26.18)	17612 (2672-36811)
N-Africa	694	13	13.69 (0.10-24.51)	19247 (441-34463)
Europe	2150	14	9.40 (5.00-12.81)	13213 (7030-18012)
East-Asia	2621	16	11.51 (8.18-15.75)	16182 (11502-22146)
Oceania	293	7	12.04 (6.76-17.45)	16924 (9505-23552)
America	422	8	8.70 (5.10-15.42)	12231 (7171-21682)
World ^a	9182	94	12.85 (9.25-14.41)	18061 (13006-20262)

^a Includes samples not classified in previous groups

^b mutation rate per generation over the five loci, $\mu = 0.89 \times 10^{-2}$ (www.ystr.org); generation time: 25 years

Conclusion

- Analytical description of mutational process for linked microsatellites
- This model can applied in statistical analysis:
 - Estimation of demographic expansion
 - Neutrality test
 - Identity by descent/identity in state probabilities
- Example data set: estimates comparable to those of previous studies (using other statistics and data)

Thanks

Olivier Hardy (Universite Libre de Bruxelles) Frantz Depaulis (CNRS)

Funding:

MAIRIE DE PARIS 🤍

Data:

Alves et al. 2003. Forensic Sci. Int. 134(2-3): 126-133. Alves et al. 2007. Forensic Sci. Int. 171(2-3): 250-255. Ayadi et al. 2006. Forensic Sci. Int. 164(2-3): 249-253. Barac, et al. 2003. Forensic Sci. Int. 138(1-3): 127-133. Barrot et al. 2007. Forensic Sci. Int. 168(1), e10-e12. Berger et al. 2003. Forensic Sci. Int. 137(2-3): 221-230. Bosch et al. 2000. Int. J. Legal Med. 114(1): 36-40. Bosch et al. 2003. Forensic Sci. Int. 132(3): 228-232. Brandt-Casadevall et al. 2003. Forensic Sci. Int. 135(3): 247-250. Cagliá et al. 2003. Hum. Biol. 75(3): 313-330. Carvalho et al. 2003. Forensic Sci. Int. 134(1): 29-35. Chang et al. 2007. Forensic Sci. Int. 167(1): 70-76. Cherni et al. 2005. Forensic Sci. Int. 152(1): 95-99. Coia et al. 2004. Am. J. Hum. Genet. 16(1): 57-67. Destro Bisol et al. 2004. Mol. Biol. Evol. 21(9): 1673-1682. Frigi et al. 2006. Forensic Sci. Int. 160(1): 80-83. Foster et al. 1998. Mol. Biol. Evol. 15(9): 1108-1114. Garcia et al. 2004. Forensic Sci. Int. 145(1): 65-68. Hu 2006. Forensic Sci. Int. 158(1): 80-85.

Kayser et al. 2001. Am. J. Hum. Genet. 68(4): 990-1018. Khodjet el Khil et al. 2005. Forensic Sci. Int. 148(2-3): 211-218. Kumagai et al. 2007. Forensic Sci. Int. 172(1): 72-78. Leat et al. 2007. Forensic Sci. Int. 168(2-3): 154-161. Lecerf et al. 2007. Forensic Sci. Int. 171(2-3): 212-215. Lessig et al. 2006. Forensic Sci. Int. 159(1): 71-76. Li et al. 2007. Forensic Sci. Int. 172(1): 79-83. Park et al. 2005. Forensic Sci. Int. 152(2-3): 133-147. Pereira et al. 2002. Ann. Hum. Genet. 66: 369-378 Quintana-Murci et al. 2004. Forensic Sci. Int. 140(1): 113-115. Rosa et al. 2007. BMC Evolutionary Biology 7(1): 124. Soltvszewski et al. 2007. Forensic Sci. Int. 168: 61-67. Souto et al. 2006. Forensic Sci. Int. 156: 261-265. Trovoada et al. 2001. Ann. Hum. Genet. 65(3): 271-283. Veselinovic et al. 2008. Forensic Sci. Int. 176(2-3): 23-28. Woźniak et al. 2006. Forensic Sci. Int. 164: 271-275. Xin et al. 2008. Forensic Sci. Int. 174(2-3): 244-248. Zhang et al. 2008. Forensic Sci. Int. 175(2-3): 244-249. Zhu et al. 2005. Forensic Sci. Int. 153: 260-263.