Evolution of inbreeding depression in species combining self-incompatibility and partial asexual reproduction
Miguel Navascués, Solenn Stoeckel, Stéphanie Mariette

To cite this version:

HAL Id: hal-02755474
https://hal.inrae.fr/hal-02755474
Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EVOLUTION OF INBREEDING DEPRESSION IN SPECIES COMBINING SELF-INCOMPATIBILITY AND ASEXUAL REPRODUCTION

Miguel Navascués1, Solenn Stoeckel2, Stéphanie Mariette3
1Laboratoire d’Ecologie UMR 7625 CNRS/ENS/UPMC, 75005 Paris, FRANCE
2Laboratoire Ecologie, Systématique et Evolution UMR 8079, UPS/CNRS/INAPG/ENGREF, 91405 ORSAY, FRANCE
3INRA, Unité de Recherche sur les Espèces Fruitières, 33883 VILLENAVE D’ORNON, FRANCE
smariette@bordeaux.inra.fr

INTRODUCTION
The origin and maintenance of self-incompatibility systems in angiosperms are still debated questions. The level of inbreeding depression in species that show a self-incompatibility system is a key parameter for the maintenance of the system. Several studies were developed to predict when the system can breakdown. A decrease of inbreeding depression, but also a reduction in the number of alleles at the self-incompatibility locus and outcross polen limitation, are generally associated with that breakdown. Two studies (Chen et al., 1997; Vallejo-Marín & O’Brien, 2007) have suggested that clonality could relieve the main selective pressures favouring the breakdown of self-incompatibility. In this study, we developed a model to simulate the evolution of inbreeding depression in a diploid species that reproduce both asexually and sexually with a self-incompatibility system. Our aim was to answer the following question:

Does clonality allow maintaining self-incompatibility in plants?

RESULTS
1. Effective number of alleles as a function of clonality

The effective number of alleles at neutral loci (μ_{A}) increases with clonality. Our results show that the effective number of S alleles decreases with mutation rate ($\mu_{A}=10^{-1}, \mu_{A}=10^{-4}, \mu_{A}=10^{-4}$) at the S locus but also with clonality.

3. Inbreeding depression as a function of population size and clonality

For low clonality rates (<0.8), inbreeding depression decreases when population size decreases. For c>0.8, inbreeding depression is higher in small populations than in large ones. Inbreeding depression increases with clonality rate (except for N=25 for which it slightly decreases between c=0 and c=0.5).

4. Linkage disequilibrium between the S locus and the viability locus as a function of population size and clonality

Linkage disequilibrium between all pairs of loci increases when clonality increases. The linkage between the S locus and any other locus was higher than the linkage between the other locus (data not shown).

CONCLUSIONS & PERSPECTIVES
Clonality favours heterozygosity at all loci (Balloux et al. 2003). Inbreeding depression increases with clonality rate (except for N=25 for which it slightly decreases between c=0 and c=0.5). A decrease of inbreeding depression, but also a reduction in the number of alleles at the self-incompatibility locus and outcross polen limitation, are generally associated with that breakdown. Two studies (Chen et al., 1997; Vallejo-Marín & O’Brien, 2007) have suggested that clonality could relieve the main selective pressures favouring the breakdown of self-incompatibility. In this study, we developed a model to simulate the evolution of inbreeding depression in a diploid species that reproduce both asexually and sexually with a self-incompatibility system. Our aim was to answer the following question:

Does clonality allow maintaining self-incompatibility in plants?

Does clonality allow maintaining self-incompatibility in plants?

Does clonality allow maintaining self-incompatibility in plants?