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INVITED LECTURE

On-farm NIR analysis and its role in precision feed ing.
David R. Mertens, Mertens Innovation & Research LBElleville, WI 53508-9727

Introduction

Increased interest in precise feeding of dairy cewelated to three issues: (1) profit marginrfolk production is
narrowing and feed is the major cost of product{@ymilk production per cow has increased to thmfpthat accurate
rations are needed to meet the nutritional andlinealeds of high-producing cows, and (3) excretib@xcess nutrients
negatively impacts the environment. Off-farm anilys feeds provides most of the information abautrient
concentrations in feed that is used to formulateydations. Often the interval between analysdsdslong to
efficiently use feed and nourish animals. On latggies, the amount of feed consumed each dayesaiitin the feed
being completely fed before the analytical rescéils be obtained for ration adjustments. Technolsggh as NIR, can
provide rapid estimates of nutritional value to r@dg the dynamic feeding situation on large dairies

Perhaps the greatest impediment to precise feéslihg daily variation in moisture or dry mattemPof feeds,
especially fermented silages. Not only is therdesyatic variation in silage as a result of charigehe forage during
harvest, but also there are abrupt changes duedtipfiation on exposed silages surfaces. Rairdcamatically affect
the ration that is mixed because water adds weigthte silage without adding nutrients. The greaatas of rapid NIR
analysis on the farm may be the determination efdily changes in feed DM so that the weightseefif can be
adjusted to obtain the same ratio of DM from eagtédient in the ration. The objective of this gr&stion is to: (1)
describe the importance of precision feeding, €f)ng the role of feed analysis in ration formwatiand daily mixing
of rations (3) explain the importance of DM andriaitt analysis on the farm and (4) discuss theevafion-farm NIRS
analysis for precise feeding.

Materials and Methods

Generally, dairy rations are formulated using anthtee forages and three to ten concentrated e®ofmutrients
(grains, protein feeds or mineral supplements). Aitationist uses the nutrient concentrationshef feeds obtained
from a laboratory to calculate the amounts of Dbhireach ingredient that is to be fed per cow pgr This is done on
a dry basis because nutrients are only containdteidM of each ingredient. However, to mix theaaton the farm,
the amounts of DM from each feed ingredient mustdseverted into the actual weight of feed that ningstixed to
make the ration. In most situations, the formulatid the ration and calculation of the amountseafdf to be mixed are
based on laboratory analysis of infrequent sampfi¢ise nutrient density of a feed ingredient chesighe ration has to
be reformulated to provide the same daily nutriezeds of the cows. If the DM concentration chantesweight of
the put in the mixer has to be adjusted.

Rapid NIR analysis on the farm is dependent orattedysis of unground samples. Sample preparatiqurires
additional time, expertise and equipment, whictcludes its adoption for rapid on-farm analysis. ldeer, forage
materials in their native from are very heterogerseovhich necessitates adequate sampling protandiscanning of
large samples to obtain representative spectraauBecon-farm facilities are primitive by laboratstgndards, rugged
instruments are needed that can tolerate vibratimhvariable environments. Many fermented silagesain 60 to
70% moisture. The water peak associated with thesstures creates substantial background interferamen
attempting to use NIR to estimate other constisienfeed. However, DM is the most variable counstit in feeds and
is the one that is needed to make adjustmentsianiounts mixed on the farm.

A HarvestLab diode array sensor (Deere & Co., Mylih) was calibrated and used to predict DM. TlaeuvdstLab is
designed for chopper-mounted applications, but@ansed as a bench-top instrument with a spinnimg httachment
(bowl is 18 cm in diameter and 9.5 cm deep). Catibns were developed using Unscrambler v9.8 (Camo,
Woodbridge, NJ) for reflectance measurements (b=iv@&0 to 1530 nm) with no mathematical treatmefitee
spectra. Reference samples were analyzed at thddiy Forage Research Center, Madison, WI. Refex samples
were collected by thoroughly mixing a daily samplesilage material, packing two bowls of the matkaind saving the
spectral scan for each bowl. Two 70 g sub-samptas €ach bowl were dried in a forced air oven atG%or 48 h and
then at 105 °C for 24 h to obtain DM reference galu

The DM of silages from both bunker and tower sikese measured several times a week over a peripean$ to
determine the typical variation in silages assedatith daily sampling, systematic changes in siaduring feed-out,
and abrupt changes due to rain or snow eventsirkgetails were performed to compare the respoogesecisely fed



dairy cows (the daily mixed ration was adjustedydir changes in silage DM) to cows that were ifations that were
not adjusted for a single, abrupt change in folalye

Results and Discussion

There are many rations on a typical farm; the Gmentutritionist formulates to meet the cow’s neaad gives to the
farmer, the one the farmer modifies and gives ¢of¢ieder, the one the feeder mixes and delivefetoows, and the
one the cow eats. Only the final diet is importét, each of the preceding rations has an impathediet the cow
eats, in reverse order of importance. This realigpresentation of the nutrition cycle of feedamga farm highlights
the importance of rapid DM determination on therfdry NIR. If the nutritionist wants 700 kg of siefM to be fed
and the silage contains 35% DM, the feeder will 2800 kg of silage to the mixer wagon. Howeveit, iidined on the
silage the night before and now the silage conta®¥% DM there is only 660 kg of silage DM in théia. Not only
have the DM proportions of the ration been changatalso the total amount of feed DM deliveredht® cows is
reduced.

Changes in the nutrient concentration of the radind in the amount of DM offered can have serimrsequences to
high producing dairy cows because lactation igjleatest nutrient demand of any animal producfiairy cows
typically eat 3 to 5 multiples of their maintenarieed intake, compared to 1 to 2 multiples for gioand even less for
activity. The range in nutrient concentrations &irg cow rations is very narrow for high producicmws. This occurs
because competing nutritional requirements areganiatic. On one hand, dairy cows require high diessof energy
in the ration, but on the other hand they requineid@mum amount of fiber, but feeds that are higfiber are low in
energy and vice versa. Thus, if a dairy ratiororsriulated to have minimum fiber and maximum enetgysity, and a
decrease in DM of silages (major sources of fihaghe ration) occurs, the proportion of fiber ie ttation is decreased,
which can lead to digestive upsets of the cow.

This problem is magnified when we try to reduceah®unts of nutrients in the ration to reduce feests and
environmental contamination by excretion of exaagsients. In the past, nutritionists have “ovemfalated” rations
to insure that adequate nutrients were fed. Thi®nger acceptable, and rations are formulated nolager to the
actual requirement. This practice increases thethat the ration will be imbalanced for nutrieiftthe dry proportions
of the ration change because the DM percentagetzagjed. In this new feeding situation, technolsgyeeded that
can rapidly provide DM concentrations in feeds loa farm so that the ration can be adjusted afitte af feeding. The
magnitude and consistency of the water peak itNtiRespectral region makes it an excellent candiftateneasuring
DM in feeds quickly and reliably. However, the imshentation must be rugged, the application sirrgoié, the cost
effective.

We have observed that DM can be predicted relig@bB/ %-units) using unground samples with a dioglayasensor.
However, it appears that the calibrations may nedzt evaluated and updated occasionally. Theti@riabserved
(Figure 1) in alfalfa silage indicates that the Pkbportions in a ration containing 30% silage dd\-basis would
change significantly from day-to-day. Trials witictating cows indicated that abrupt changes iDikeof silages
resulted in a 2.2 kg decrease in DM intake on theaf the change and in a .9 kg decrease in madkyoetion for two
days after the change. When combined, these olismry@duggest that precise feeding of dairy cowsd=crease
losses in production due to uncontrolled changekamation, and that on-farm NIR technology caovjite DM results
reliably and quickly enough to make daily adjusttsen rations.
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Figure 1. Variation in alfalfa silage dry matterasared by diode array NIR and its association véith and snow
events @A) at the U.S. Dairy Forage Research Farm, Prairi8at, WI.

The assistance of Jacob Karlan and Paolo Berzagheicollection and summary of data, and of th®BAARS U.S.
Dairy Forage Research Center, Madison, WI for faealysis and animal trials is gratefully acknowledlg
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Testing a new generation NIR diode array instrument s for inlinequality
measurement

P. Reyns, B. Kemps, W. Saey3, Y. Denion-Lair? J.
Sentjens, M. de Winter®, B. De Ketelaerd, J. De Baerdemaeket
YL imagrain Nederland BV, 4411, The Netherlands, Bknpéet.reyns@limagrain.com
ZLimagrain Europe, 49160 France
% Katholieke Universiteit Leuven, 2001 Belgium

Introduction

Since the first tests on the use of inline NIR a@arviesting machines (Dardenne and Femenias, 1999t ptant
breedings companies have been focusing on the'Zeissna 45 instrument. Welle et al. (2003) usdeeer DA
7000 instrument in their studies. Both instrumearts using the 950-1700 nm wavelength range ares@ution of
about 5nm. None of these instruments approachednkasurement precision achieved with laboratoriR NI
instruments. In their study on rapeseed qualitpsueement, Welle et al. (2007) got a similar pieaigor oil and
protein like the lab, but didn’t succeed to meaghesglucosinolate content. Montes et al, (2007T)igferior results for
oil and protein compared to the lab NIR application

From these results, it seems the precision of il @eneration diode-array instruments is infetmmpared to
laboratory instruments. Is it because of the lowesolution, or a lower signal-to-noise-ratio? &ty new
instruments and manufacturers entered the marketirf a higher resolution (2-3nm instead of 5-@)f hlso an
extended wavelength range. In this study we tastedifference between this new generation an@#igs corona 45,
wondering whether we could obtain the same pratiagthe laboratory NIR.

Materials and Methods

5 Instruments are tested in this study (Table The Zeiss corona 45 NIR 1.7 bought in the year 2090@&n old
generation instrument. All others are consideredha new generation, where the corona plus tastadprototype
version. Both the corona 45 and the corona 45 pluse integrated OMK optics, while the Zeiss MCS #adh
Polyte€ devices are rack-based systems with fiber inpMASonnection). The external optics used with Bradytec
systems is a prototype version. It consists of lantating lens (PSS-H-217), surrounded by 3 timewdit halogen
lamps (Figure 1). Both the PSS 1720 and PSS 212@myg are connected to the same optics by usespliteibre
bundle.

All instruments are mounted on a test tube oner &féeh otherRigure 2). The tube is divided in 4 measurement
compartments, each one containing 1 device. Imtfiaf the compartment a valve is mounted to contha
measurement start, and in front of the measuremimtow a metal plate reduces the material speebyhyarrowing
the tube diameter. At the start of a measurenmerd,sample is poured in the top of the tube. Alvgs are in closed
position. To start the measurement for the Polgdgces in the first compartment, the first valw@pened and grain
passes over the measurement window. The sampledied at the ? valve. The T measurement being finished, the
2" valve is opened to start the measurement for ti@S6A1 device. To each spectrometer 1 industrialiC
connected. Measurements are executed with theusendeveloped LINAS measurement program.

In spring 2008, spectra of 614 wheat samples afds@eing barley samples were acquired for the diffeinstruments
by passing them through the test tube. Averagepkmasize is about 500 gram. Samples were colleatduarvest
during the 2007 harvest season. Reference proteitent was determined by analysis with a Fossiedtinstrument.
All calibrations were calculated using the Pls kand 5.5.F under Matlab 7%. The instruments precision is compared
in comparing model precision for each of them.

On the original calibration dataset a principal poment analysis was performed in order to checlsfectral outliers.
Spectral outliers were removed manually. To makairacomparison between devices only those sanfples/hich
good spectra were obtained for all devices werairret! for the significance test. For each devidferént pre-
processings were tested, namely

- No treatment (No)

- Multiplicative Scatter Correction (MSC)

- Standard Normal Variate scaling (SNV)

- Detrend (Detr)

! Carl Zeiss Microlmaging GmbH, 07740 Jena, Deutsuth|

2 Perten Instruments AB, SE-141 05 Kungens Kurva

% Polytec GmbH, Polytec-Platz 1-7, D-76337 Waldbronn

* FOSS Tecator AB, SE-263 21 Hoganas, Sweden

® Eigenvector Research, Inc., 3905 West EaglerockeDWenatchee, WA 98801
® The MathWorks, Inc., P.O. Box 845428, Boston, M2284-5428
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- 1st order derivative, Savitzky-Golay smoothingnd order (1st d)

- 2nd order derivative, Savitzky-Golay smoothingne order (2nd d)
- SNV + 1std

-SNV +2nd d

- SNV + Detr

The window applied for the Savitzky-Golay smoothings set at 22 nm (a total of 11 points, resolufiorm). Model

validation was based on contiguous blocks (7 9plitke optimal number of latent variables was factePLS model
determined automatically using the significance teesscribed by Haaland & Thomas (1988), which & $tandard
procedure in the Grams software. The resulting risofe the different pre-processings were then eginiccording to
increasing RMSECYV. In this way the best model fache device was selected and these models wered Soyte
increasing RMSECV. To determine whether performaddéerence between two devices or pre-processisgs
significant a paired t-test was performed with disolute value of the prediction residuals as Yalde. This test has
been shown to be very powerful for comparing tigmigicance of differences in model performance (€kdist et al.,

2005).

Table 1. Overview tested devices and specificatians

manufacturer model optics wawvelength range #diodes|
Zeiss corona 45NIR 1.7 integrated OMK 940-1700 128
Zeiss prototype corona plus 45 integrated OMK 940-1695 256
Zeiss MCS 611 NIR 2.0 HR external OMK 500-H NIR 1312 256
Polytec PSS 1720 prototype contact optics 840-1650 296
Polytec PSS 2120 prototype contact optics 1090-2110 246

5W lamps

O

Valve
Flow start

Flow speed reduction

PSS-H-2117

| PSS 1720 \J

Figure 1. Schematic drawing Polytec prototypg Figure 2. Schematic overview laboratory measurement
sensor head setup.

Results and Discussion

In Table 2 calibration results of the wheat measrts are shown. Best results were obtained WilCobrona 45 plus
and Polytec PS 1720 instrument with a cross vatidarror of respectively 0.25 and 0.28. Thisaliénce is small, but
significant according to the t-test. The diffezerbetween these 2 new generation instrumentshanold Corona 45 is
larger than 0.1%. This large improvement bringspghecision of the new generation instrumentsyellef the Infratec
laboratory instruments (SEP=0.23, Nils et al., 200The new instruments with extended wavelengtlyeahowever,
perform much weaker (Polytec PSS 2120 and Zeiss MCH. Their precision is even lower comparedhe old
corona 45 instruments, possibly due to a lowerdaigm noise ratio of the high range instrumentshe Thstrument
differences can clearly be seen in Figure 3 as well
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Table 2. Calibration results wheat samples. 1st d =first derivative; SNV= Standard Normal Variate;
RMSEC=Root Mean Squared Error of Calibration; RMSECV= Root Mean Squared Error of Cross Validation.

device Pre-processing #LV RMSEC RMSECV R2 T-test
C 45 Plus g 12 0.23 0.25 0.93 1
PS1720 1%tq 10 0.25 0.28 0.92 1
Cc45 SNV 11 0.29 0.38 0.85 1
PS2120 SNV + P 9 0.34 043 0.79 0
MCS611 SNV + 7' d 12 0.34 0.52 0.72 1
Zeiss corona plus 45 Polytec PSS 1720 Zeiss corona 45
20.00 20.00 20.00
s s s
z A b % b .
§ 1500 § 1500 g 1500 e
'g g & 1 g 54 3
S 1000 2 5 10.00 S 1000 e
5.00 5.00 5.00
5.00 10.00 15.00 20.00 5.00 10.00 15.00 20.00 5.00 10.00 15.00 20.00
reference protein content (%DM) reference protein content (%DM) reference protein content (%DM)
Polytec PSS 2120 Zeiss MCS611
20.00 20.00
g 15.00 * g 15.00 s
5 10.00 Gl S 10.00 KX
g - g o
5.00 5.00
5.00 10.00 15.00 20.00 5.00 10.00 15.00 20.00
reference protein content (%DM) reference protein content (%DM)

Figure 3. Cross validation scatter plots for the iferent instrument wheat calibrations.

Results for Barley are very similar to those of athe Also here the corona plus 45 instruments shthesbest
performance and significantly better then the P®%&0linstrument, the difference between both isdapmpared to
the wheat case (RMSECV of 0.33 and 0.38 respegjivadlowever no significant difference could be ridubetween
the PSS 1720 instrument and the old corona 45e inkvheat, all instruments with wavelength rangaaiabout 1700
nm (corona plus 45, PSS 1720 and corona 45) pesaynificantly better then the extended instruméRSS 2120 and
MCS611). Also for barley, the results for the aqm@lus 45 instrument are highly comparable toghufsthe infratec
instrument (Standard Error of Prediction 0.31).

Table 3. Calibration results barley samples. 2ndd =2nd derivative; SNV= Standard Normal Variate;
RMSEC=Root Mean Squared Error of Calibration; Detr= detrending; RMSECV= Root Mean Squared Error of
Cross Validation.

device Pre-processing #LV RMSEC RMSECV R2 T-test
C 45 Plus 4 11 0.25 0.33 0.85 1
PS1720 SNV + detr 12 0.34 0.38 0.78 0
C45 Detr 16 0.31 0.39 0.8 1
PS2120 Detr 9 0.44 0.54 0.56 0
MCS611 SNV + detr 11 0.4 0.56 0.53 1
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Figure 4. Cross validation scatter plots with barlg results of the different instruments.

For wheat protein measurement the new generatigiruments with lower wavelength range (Zeiss comdna 45 and
Polytec PSS 1720) are as accurate as conventiahatatory NIR instruments. The performance is ifigantly
improved compared to the old generation Zeiss @dmh (RMSECV=0.25 and 0.35 respectively). Howeaternew
generation instruments with extended wavelengtheaerform even worse than the old Zeiss corona 45.

The new Zeiss corona plus 45 shows improved pedoo® for barley protein measurements as well (RMBEC32
and 0.39 for new corona plus and old corona resmdyg). These results are comparable to thoseoofentional
laboratory instruments. The improvement is lessmared to wheat. Results of the PSS 1720 areamfyood as the
old instrument in barley, and also here the PolfR8S 2120 and Zeiss MCS611 instrument performthess the old
Zeiss corona 45.
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Proceedings in Sample Presentation on Harvesting Ma  chines

Dr. L. Urbonas* and H. Kriger
Polytec GmbH, 76337 Waldbronn, Germany, E-maitblamas@polytec.de

[Introduction] Over the past years the importance of analyticathrtelogies has become crucial in many fields of
application in order to achieve a deeper procesenstanding. The realization of different measunmgntasks on a
wide range of individual products (samples) neeidbdst possible system flexibility. In contrastpgess analytical
solutions require a high degree of reliability aard easy-to-use technology by using standard systEnesefore two
fully contradictory demands on analytical technglomeasurement systems have to be combined: flayikdhd
standardization.

Sensor Head Spectrometer Software

PSS-H-A03

PSS-S-POP

PSS-H-B01

PSS-S-HOP
PSS-H-225

PSS-S-AXC

Figure 1. Modular spectroscopic system consisting of stahd@@mponents being flexibly and
optimally adapted to any specific application.

[Materials and Methods] A modular analytical technology system concephwiiber-coupled sensor heads offers a
flexible adaptation to user-specific applicationsing standardized system components exclusivelyfer@nt
combinations of fiber-coupled sensor heads, spedters for different spectral regions and dedicateftware
packages make almost any specific and optimizeatieal possible. For example, performing reflectgpectroscopy
requires specifically adapted sensor heads depgmairsample properties or measuring distance. Heomivestigation
of certain spectral regions, where samples showacheristic responses different spectrometers ragayed. Finally,
various data acquisition, processing, and contfth&re can be chosen also.

[Results and DiscussionModular spectroscopic systems being successfalyl in many fields of application will be
shown. Examples and corresponding results frometlagricultural applications (séég. 2: a) funnel; b) spout; c)
conveyor belt) will be discussed and presented.

Figure 2. Integration of the sensor heads in different agical applications.
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Diode Arrays Optical Resolution, Data Spacing and |  nformation Content

D. Honigs,
Perten Instruments Inc. 6444 South Sixth StreetiR8pringdfield, IL 62712, USA, E-mail: dhonigs@mmericom

[Introduction] Each different NIR instrument type, whether scagnmonochromator, diode array, or Michaelson
(FTNIR) Interferometer uses a different number oings to represent the measured spectrum. Thitcpiar paper
discusses the effect of the spectral representatiothe calibration results. Simply stated, doesnbhmber of data
points in the spectrum affect the result?

[Materials and Methods] Soy meal spectra of approximately 500 different samples were obtained on a FOSS
model 5000. The spectra were measured in refleetasing packed quarter cups. The resulting sge@nge was
pared down to 1306 — 2390 nm (the wavelength rafgiee former FOSS 4500). The soy meal samples aealyzed
for fat and protein. Comparison calibrations frthis data set were created with WinISI(FOSS). Redulr fat and
protein will be displayed.

Additional spectra were obtained on a Perten Instnt model DA7200 lab unit and model DA7300 onlim&trument
to show the wavelength axis detection limit. Irearase the wavelength detection was performed brstgene in
reflectance. To turn polystyrene into a reflectingterial, the polystyrene was first powdered arahtbompressed to
give a white surface. The other wavelength stahdaed was a mercury emission lamp.

[Results and Discussionpeveral things are very important to understaraliathe way spectrometers actually record
the data. The data spacing can be different frioendptical resolution. For Michaelson Interferoenstthe data
spacing is typically 2 points per resolution eletnanless one chooses to add points via an inteipolarocess. This
interpolation process is commonly called zerorfgli When one adds zeros to the end of the inteyfaro one gets
additional data points in the spectrum; howevernew information is added. It is as the name iaglonly zeros are
added.

Scanning spectrometers frequently collect multgaéa points per optical resolution element. Fomgda, commercial
units are available which collect data every 0,52 br 5 nm with a 12 nm optical resolution spetieter. Like with
the Michaelson interferometer, any given opticabiation requires two data points per resolutieamednt. This comes
from the Nyquist criterion (also called the NyquistShannon Criteridji Data collected beyond this frequency is
providing some averaging effect, but does not mtevadditional spectral information according to theoretical
arguments put forward in Shannon Information Theory

NIR spectroscopy provides a simple applicatioresi the theoretical results and see if they atménwith the results
observed by the traditional practices. Table Iwshoalibration data results typical for this prahleAs can be seen,
one can reduce the wavelength spacing by quiteantistill get equivalent or even better results.

To some, these results seem counter-intuitivés ¢dommonly thought that more should always beebetBut, this is
not always the case. When more data points aredatida spectrum, there reaches a point wheredbeywt add new
information and actually may be a hindrance. O this can be visualized is to rearrange the NJBcsum by
grouping every third data point. An example obttyipe of regrouping is shown in Figure 1. In camional practice,
when one collects repeat spectra one coadds th®me does not simply append the second spectrurhetdirst.

However, collecting and using data points beyoradNlyquist sampling frequency in an independent raas1much
like extending the first spectrum with a secontheathan averaging them together.

A second way to view the importance or unimportasfcthe number of points in the spectrum is to gegoe that most
NIR calibration techniques do not regress the chahtioncentrations against absorbances at wavakengtstead they
regress those concentrations against a much sreatleif scores which have condensed a larger wagtblescale into a
much smaller representation of the data. Havingerdata points in a spectrum is only useful toekient that one can
calculate the scores more accurately. As thetseBullable 1 demonstrate, once there is enougipigrtdent
wavelength data to get reasonable scores, thasekuhot improve by adding more. This fact issistent with the
common practice of smoothing. Most NIR calibrataata, even data collected on a Michaelson intemnieter, is
smoothed for calibration. If it were truly importan measure the separate data points, smoothingdvee a hindrance
instead of an improvement.

Another common reason advanced for having moretatds is that more data points will arguably rhattstruments
together because one can supposedly measure tieéewgth scale more accurately. Like the more paiite better
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results concept, the enhanced matching idea alsftiate with the Nyquist — Shannon theory. Once tias all of the
information possible, nothing else that is donesaaidre information.

It turns out that for diode arrays or scanning n@bmomators one can measure wavelength positionwandlength
accuracy far better than the typical data pointspgin the spectrum. This can be done by obsgrsmall shifts in the
spectra and comparing those shifts to the firsivdgve of the spectrum. Using this technique, oae easily see
wavelength shifts of 0.1 nm even with points spagean apart. Similar results are seen for detgqigak positions of
very narrow lines from mercury lamp emission spectfhe limit of wavelength shift that can be detdavas found to
be on the order of 0.02 nm in this study. Thigtlisiobserved even though the spacing is very Wwigleomparison.
The limit of detection for peak position or wavedgim shift for widely spaced data is determinedh®ysharpness of the

wavelength transition being measured and the signabise ratio of the instrument or its abilityrteeasure that sharp
transition.

[Conclusion] The results observed with different manufacturedet® and types of instruments show that NIR

Spectroscopy follows the precepts of the Nyquisaslon theory. This theory informs designers aneidpers of the
limits of the information content in their data.

Typical NIR Spectrum Rearranged 0o Wavelength Shift measured by Polystyrene
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Figure 1. Soy Meal Spectrum Rearranged to Figure 2. Smaller Wavelength Shifts Measured at 5
Demonstrate Redundancy nm Data Spacing

Table 1.Fat in Soy Meal, (Wavelength Range 1306-2390) Gdthples)

Wavelength Spacing in nm 2 4 6 8 16 3P 64
Number of Terms in the Equation 14 14 14 14 14 13 0 1
SEC 0.132| 0.132 0.134 0.132 0.136 0.166 0.193
R2 0.956| 0.955/ 0.954 0.956 0.9%5 0.922 0.864
SECV 0.147| 0.147 0.148 0.145 0.146 0.177 0.203
F 32.82| 32.72 31.4 30.35 28.08 18/11 1501

1-VR 0.945| 0.945 0.944 0946 0.947 0.913 0.876

Number of Points in the Spectrum 543 272 181 136 68 34 17

Footnotes

1 C.E. Shannon, "Communication in the presenceisiefi, Proc. Institute of Radio Engineers, vol. 83 1, pp. 10-21,
Jan. 1949 (reprinted in Proc. IEEE vol. 86, ng-@b, 1998)
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INVITED LECTURE

Chemometric-NIR-technology to identify the quality of biological
individuals exemplified in single seed mass sorting

L. Munck, ** B. Mgller Jespersent B. Lofquist?, H. Andrén? S. Balling Engelseh
Spectroscopy and Chemometrics Group, Departmefbad Science, University of Copenhagen, Roligheid3®e
DK-1958 Frederiksberg, Denmark. E-mail: correspogdiuthor Lars Munckmu@life.ku.dk
2 Bomill AB, Kavlingevéagen 22, SE-222 40 Lund, Swede

Introduction The cereal industry is based on unique individualeeds from wheat and barley varieties- that adgvel
autonomously their chemical composition by growinghe field modified by the environment. In spdé that the
seeds within such varieties are genetically idahtigere is a stunning variation in e.g. proteinteat within one field
from 8-17 % in e.g. wheat. This variation is exfddi by the BoMill TriQ single seed NIR sorter (R&j. based on
patterns in single seed NIR spectra indicativecfigmical composition and complex food functionatitich as baking
quality in wheat and malting performance in barley.

Materials and Methods The BoMill AB TriQ NIR single seed sorter for whedurum and barleywww.bomill.com)
comprises 1) The pilot plant TriQ single seed exuidr plant breeding and laboratory testing wittepacity of 1-10 kg
(seeds per hour). 2) The full scale TriQ singledssarter with a capacity of 2 tons per hour impliespecting 20.000
individual kernels per second fed inside on a rotating iretboylinder (Fig. 1). The seeds in the indentedkptecare
inspected by the NIR sensor. The information istéed computer and subsequently segregated toot @& separated
flows by pushing seeds into fractions by comprésse Four 2 tons units (or more) can be combinéma setup with
a capacity of 8 to 20 tons per hour. In Table blaier model of the pilot TriQ single seed sorte6@ kg per hour) is
exploited to sort spring wheat in three diversifekd lots that are analyzed for chemical composigind baking
quality. In Table 2 a full scale 2 tons unit of f(fieQ sorter is used to sort an Australian batiajch in seed fractions
of different malting quality.

Results The computer in the BoMill AB TriQ single seed N#Rrter uses information from single seed NIR spectr
unsupervised to span the full range of individeddsNIR fingerprints within a batch and to divitkern into fractions
of seeds that have a similar, more homogenous cia¢rmmposition. The result can be evaluated bglsinhemical
analyses e.g. for protein or for more complex ffntttional analyses such baking qualityand malt performance. In
Table 1 (Ref. 2) a sample of the spring wheat wanénjett is sorted in 3 almost equal fractions wgight (F1-F3)
differentiating the original protein content (104 from 8.8 to 11.9 % as well as wet gluten confenginally 19.3 %)
from 14.8 to 25.0 %. The seed sorting has an egpatifound effect on dough parameters. Thus aivelgtsoft wheat
batch can be divided into a harder fraction of iowed baking quality and in a soft fraction suitate biscuits. In the
malting industry(Ref. 3) the homogeneity of barley quality traite of paramount importance to optimize homogenous
germination in the malting process in order to spep wort and beer filtration by keeping 3-glucaw.l At present
malsters may decrease homogeneity by mixing bdéghes in order to reach protein specificatiores.(B). In Table

2 the full scale TriQ single seed NIR sorter isdus® increase seed homogeneity from the origiaalely batch into
four sorted fractions. The original protein contefitLl0.8 % is spanned from 9.0 to 12.6 %. At theesaime wort [3-
glucan (mg/l) originally 121 mg/l is diversifiedoim 81 to 195 mg/l. The sorting also affects maithitity (hardness)
and wort filterability considerably optimizing fréens 1-3 as premium malting quality and leaviraicfion 4 for sale as
feed (Table 2). The disastrous effect on malt perémce to reach the protein specifications 10.1861dn1% through
mixing sorted fractions is demonstrated in Tablé & caused by a decrease in seed homogeneity.

Discussion The modern biometric industry is using mathemadiicaireducible fingerprints to identify human
individuals. Now NIR sorters can be used commdscial identify the chemical fingerprints of seedlividuals from
batches by their unique spectral patterns in otderemove “terrorist” seeds. Karl Norris introducéte NIRS
technology as a non-destructive analysis for watedt protein in cereals. In Fig. 2 single wavelengtisorption
correlations (r) to chemical composition (x-axis)a barley population is shown in the area 1680188. The figure
convincingly demonstrates that NIR spectra arecatilie for a wide range of different chemical bantisis property
can now not only be used to predict for individaaalytes such as protein, starch and R-glucarglbotto characterize
whole single seeds and barley varieties as bicdbgiclividuals just as fingerprints are used faritfication of human
individuals in forensic technology. At the oral peatation of the paper the use of Norris statisiitd chemometric
pattern recognition models will be compared for lgi@al prediction. Chemometric models assists u@reviewing
NIR fingerprints (Ref. 4 and 5) to identify by veduinspection uncompressed spectral patterns freed datches
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indicative for biological individuals and complexdd functions to be used by value added sortingant-breeding and
trade to maximize value and cereal price.

Table 1.Single seed pilot TriQ NIR sorting of spring wheatiety

Vinjett (2-500 kg/h) (Ref. 2)

Sorting fraction

Original F1 F2 F3
Yield % 100 351 328 32.1
Protein % 10.2 8.8 10.0 11.9
Wet gluten % 19.3 148 18.6 25.0
Water abs. % 53.7 52,5 53.6 55.1
Dough:
Development time 1.9 1.6 1.7 2.5
Stability 89 1.7 2.4 8.0
Softening 90 125 85 55

Table 2.Full scale (2 tons/h) TriQ single seed NIR sortirighustralian

malting barley (Ref. 3) Fractions Blends
Original 1 2 3 4 30%4  40%4
70%1  60%2
Protein % 10.8 90 101 111 126 101 111
Wort R-glucan mg/I 121 81 96 119 195 103 170
Friability % 81 95 88 83 74 88 81
Wort filtrability ml/3 min 6.95 770 685 685 480 553 5.60

Conclusion: Blending the low protein fractions 1 ad 2 with the high protein fraction 4 to obtain blerds with identical protein
content as the homogenized sorting fractions 2(104) and 3(11.1%) results in marked increases in worB-glucan and in a
corresponding much slower filterability due to deceased seed homogeneity with little effect on maftiability.
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Figure 2. NIR spectra representing patterns of
Figure 1. Industrial scale unit (2 tons/hour) BoMill AB  chemical bonds. 92 barley spectra are correlated to
TriQ single seed NIR sorter opened showing thereprt  chemical analyses at each absorption wavelength
cylinder and the sensors (Ref.3) 1680-1820 nm (Ref. 4)
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INVITED LECTURE

NIRS Measurement and Calibration Development for On  site
Applications: Software Requirements
Heinrich Prifer:and Peter Tillmann:

The application of Near Infrared Spectroscopy on site is still far from being a ubiquitous routine
tool in precision farming and plant breeding experiments. Besides improvements of
spectrometer modules, their mounting position and sample presentation techniques, the NIRS
operation on harvest engines also leads to more challenging requirements for the data
acquisition and processing software and the calibration development and maintenance tools.
Data acquisition:

1. For online applications a high data rate (up to Mbyte per sec) will be needed for full
traceability. With spectra taken in a few milliseconds and several stages of data processing
the demand for high performance in data processing is obvious.

2. Online spectra are usually collected without full control over the sample. The data
acquisition software needs to be able to filter the incoming raw spectra before averaging and
to detect outliers with appropriate chemometric outlier diagnostics.

3. The NIRS instrument is no longer a stand-alone piece of equipment: spectrometer hardware
and software become integrated modules within an overall process control system. This
modularity has to be reflected by the user interface concept and especially by the connectivity
of the instrument software. For full control of data acquisition, processing and storage
communication, more interfaces are demanded according to industry standards (e.g. different
field-bus types, in Windows systems DDE and OPC).

4. For mobile applications as on harvesters a GPS interface will be needed. Plot harvesters will
integrate GPS interfaces which will either be used by the instrument control software or the
supervising harvester software. Calibration and other supporting software requirements:

1. With online application and long distance management of spectrometers easy and

effective model updates will become more and more important. This means software for
chemometric modeling which is easy to use as well as calibration management tools for

safe handling and controlled calibration updates in a network.

2. To handle the large amount of spectra and other data collected in online applications there
is an increasing need for storing and retrieving these data in databases. The advantages of a
database design will assist in calibration development and management.

3. Due to the importance of filtering and appropriate pre-processing of spectra collected online,
intelligent support tools are required which help to establish the filter parameters and to
characterize the suitability of different pre-processing algorithms.

4. With the large volume of spectra and the inherent redundancy of sample information subset
selection tools become indispensable to keep reference analysis costs reasonable and to avoid
misleading cross-validation results.

5. In some applications with advanced real-time requirements “old-fashioned” MLR wavelength
regression techniques will become important again.

1) SensolLogic GmbH, Hummelsbiitteler Steindamm 78A, D-22851 Norderstedt, Germany;
heinrich.pruefer@sensologic.com
2) VDLUFA Qualitatssicherung NIRS GmbH, Am Versuchsfeld 13, D-34128 Kassel, Germany; peter.tillmann@vdlufa.de
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Comparison between different standardization method s for the quality
estimation of forages in portable NIR spectrometers

P. Facco'’ F. Benozz8, M. Barolo® and P. Berzaght*
'CAPE-Lab, Computer Aided Process Engineering Laboya
Dipartimento di Principi e Impianti di Ingegneridigica “l. Sorgato”
Universita di Padova
via Marzolo, 9 — 35131 Padova (Italy)
2 Dipartimento di Scienze Animali
Universita di Padova
Agripolis, 35020 Legnaro, PD (ltaly)

Introduction

Standardization of near-infrared (NIR) instrumeiotais one of the most relevant issues in specb@acMany sources
(e.g.: electronic tolerances, differences in sangplietc...) may determine dissimilarities between itmg&rument
responses to the same analyzed sample. Therefansfdrring a regression equation from a referémsteument (i.e.,
master) to secondary devices (i.e., slaves) isagdmpount importance. This issue is even more pnadttie when the
transfer of calibration models concerns portabg#riimentation. In fact, in this case the numbesashples on which
the estimation model has to be calibrated shoulshtel to relieve the calibration burden of thelgsia

In this work a cross-validatory methodology is usedelect a method to standardize NIR spectromdtem several
state-of-the-art techniques. This methodology chatikferent standardization methods observing hbey testimate
diverse quality variables in the transfer to simitestruments, also using a reduced number of idn samples.

The cross-validatory method is tested in the caAgmdable instruments with diode array technolégythe estimation
of quality in forages. The results show that thecpwise direct standardization is the most accuratesfer method,
because it usually ensures accurate estimatiordiffeient types of forages in different slaves, at@monstrates
robustness to the reduction of the number of catitn samples.

Materials and Methods

The datasets considered in this study are concenigdtwo different types of forages for bovine diégg: high
moisture corn and grass silage. These data areirsgivo groups: the spectral responses of theaunsnts and the
chemical analysis of the qualitative parametershefforages. In particular, spectra of 4 portabl® ldnalyzer (one
master and three slaves) are available. The speetess are AgriNIR™ (Dinamica generald®oggio Rusco — MN,
Italy) equipped with diode array technology, whts8aAs sensors measure reflectance spectra wittange of 1100-
1790 nm. For every instrument, the spectra arecit inX (1xJ) matrices, wheré=13 is the number of the samples
analyzed in each instrument, add= 71 is the number of measured wavelengths. The tyualithe samples are
characterized by) = 6 quality variables (Table 1) measured througbnubal analysis and collected inYa(I1xQ)
matrix.

Table 1.Quality variables of the forages.

Quality variable Acronym
dry matter (%) SS
crude protein (%) PG

acid detergent fiber (%) ADF
neutral detergent fiber (%9) NDF
ash (%) CEN
crude fat (%) EE

A cross-validatory methodology is used to testedléht state-of-the-art transfer techniques. Thedstalization strategy
adopted in this study is based on the transformadiothe spectra by the means of either: 1) a dapriion of the
patented method PM of Shenk and Westerhaus (188% original form; 2) direct standardization (D&8ang et al.,
1991); 3) piecewise direct standardization (PDSngvet al., 1991) with a window size of 5 wavelesgth) double
window piecewise direct standardization (DWPDS, &4sd Gallagher, 1998) with window sizes 5 and @elemgths;

5) projection to latent structures (PLS, Forinalet 1995); 6) orthogonal signal correction (OSGplelvet al., 1998)
with one latent variable. The cross-validatory tefygt evaluates different standardization methoddrdasfer the
calibration equation between the master Agrinir'thd@ae data are collected X,) and three slave Agrinirs™ (whose
data are collected iKg;, Xs, andXsg), for the prediction of all the quality variabl®¥s The proposed technique goes

" The correspondence could be addressed eitheietanffonio Facco, emaitii er ant oni 0. f acco@ini pd. i t ; or to: Paolo
Berzaghi, emailpaol 0. ber zaghi @ni pd. it
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through three fundamental stepsanalysis of all the combinations Xfdata in 10 calibration samples and 3 validation
samplesiji) calibration of a model on 10 samples for a widees of the combinations, uniformly distributedviaeen
the entire set of permutations of the availableda) evaluation of the performance of the estimatiadei on the 3
validation samples. The variability of the resigtinspected also for reduced numbers of calibnatjpectra (8, 6 and 4)
selected with the criterion of the highest leveragee standardization is operated on the row spextd is performed
prior to pretreating data and to calibrating thignestion model.

After standardization, the spectra are pretredtemligh standard normal variate, and then filteretth by a mean filter
within a window of 4 wavelengths, and by a firstidative filter within the same window. After thatdouble stage
principal component analysis (PCA) removes possléers. Finally, projection on latent structufisS is utilized as
estimation model.

Results and Discussion

Results are presented both in terms of averagemean square error of prediction (ARMSEP) and imgeof average
mean relative percentage error (AMRE). These pardoice indicators are averaged throughout the taliddataset at
every step of the cross-validatory procedure ard ttveraged also throughout all the steps of theeplure. Also other
directions of the error variability are inspectad this study, namely: variability between differemambers of
calibration spectra, variability between differestdves, variability between different quality vénlies, and variability
between different forages. When one of these daestof variability is analyzed, the other ones averaged to give
more general results.
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Figure 1. General results of the cross-validatory strateyythe selection of the most appropriate standatidia
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Figure 2. Evaluation of different types of standardizationdals applied to two different forages (high maistaorn
and grass silage).

The transfer strategy which guarantees the low&MBEP and the lowest AMRE is found averaging a8l énrors
throughout the directions of forages, quality vialés, number of calibration samples and slaveaurBig shows that
OSC is inadequate in this case, probably becaeseatibration dataset is not redundant and no coemts are present
in the predictor variableX that are orthogonal t%. The most accurate methods highlighted from bd®WSEP and
AMRE are PM, PDS and DWPDS, slightly outperformthg other ones.
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Quality estimation is much more difficult in theseaof the grass silage (Figure 2), which is the ¢hat determines a
advantage of PDS an DWPDS. Furthermore, examitiagffect of different transfer models on the dyalariables
(Figure 3), it is noticeable that SS and EE areneded with great accuracy, while PG and ADF aeertiost difficult to
be estimated. Figure 3 also highlights that thé pegformance are obtained with PDS and DWPDSHergrediction
of almost all the quality variables.
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Figure 3. Accuracy of the estimation of the forages qualfjgure 4. Effect of the number of samples used for the
parameters with different standardization models. calibration of different models on the estimati@ew@acy.

Finally, Figure 4 shows that PDS and DWPDS arentbst robust to the reduction of the calibratioredat, especially
when the dimension of the calibration dataset @& 8 samples, whereas the performance is degratied too few
calibration samples are included into the estinma¢iquation.

In summary, PDS is recommended as the most appteptiansfer method, because of its piecewise tateic
Although it does not outperform dramatically thbestmethods, it is suggested because of its gaodat®on accuracy,
its greater robustness to the reduction of théation dataset and the simplicity of its algoritfahich determines its
advantage on the DWPDS).
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[Introduction]
This paper is a review of the research activitiethe Walloon Agronomic Research Centre of GembI(@RA-W) in
the field on-line NIR or MIR measurements, reactioonitoring and embedded NIR applications. It cevarwide
range of applications:

- on line or in the field measurements of fruitairy products, tissue...

- reaction monitoring (hydrolysis, fermentatiomrnéthanisation)

- embedded NIR (on the harvester measurementexedls, oil seeds and forages)

[Materials and Methods]

For on-line applications, or for the monitoringrefctions, several NIR or MIR instruments wereggstccording the
specific applications among them: Anadis MIR (1BB®O cn'), Delta Lactoscope MIR (2500-25000 nm), Foss
NIRSystems 6500 or XDS (400-2500 nm), Phazir (98061nm; 1600-2400 nm). Forr these applicationsioootis
flow cells or fiber optics were tested and compahdst of the embedded NIR applications were aadewith a Zeiss
Corona instrument (950-1700 nm). Most of the tilme $pectra were acquired with the program linketthéo
instruments. The data treatment was performed thih-oss WinISI package.

[Results and Discussion]

Lots of applications were performed in the field arfi-line measurements, monitoring of reactions iag NIR
embedded technology (on the harvester measurements)

Figure 1 shows the results obtained for the moimigoof a biomethanisation process using an atrieasurement with
a Foss XDS spectrometer and predicting volatily fatids (VFA). With a VFA concentration of lesath50 meq/l the
digestion reaction is doing well (green light). VRAlues between 50 and 120 meq/l lead to a wargyielpw light).
When values exceed 120 meq/l actions should be takavoid blocking the reactor (red light).

Figure 2 shows the on-line monitoring of the cakaapeseed is mechanically crushed. The predidfidhe residual
fat content in the cake allows the fine adjustn@@nihe crushing machine as well as the seed patrtient.
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INVITED LECTURE

Portable NIR Instruments for Agriculture Applicatio ns
John S. Shenk

Introduction

There are many places a portable NIR instrumentidvbe useful to analyze agriculture products. st
obvious short list of places would include on-faimestock feeding operations, whole grain analysiforecast field
harvesting quality, and liquid manure field applicas of nurients. With the current status of tealbgy development
in diode arrays, miniature computers, and softwaogtable systems may be ready to fill these néetise agriculture
marketplace.

To be successful with a portable instrument, mamgortant factors must be considered. First oftladl
instrumentation needs to be customized for speajfiglications. These instruments will not be npuitpose as we
now have with laboratory bench type instrumenthe $hort list of factors that must be taken intcoant the hardware
component costs, instrument accuracy, sample vigwiathods, light sources, and battery life. Saféwaill be key
because product database development at the Ipassible cost is a requirement as well as netwgrkimultiple
instruments across the application.

Unity Scientific has begun development of the @lolé instrument concept using their background and
experience gained in related applications over magays. At the center of the development is tHevsoe, UniStar.
This development was important to precede the ecg¢ranto this application area. What followed whe tinking
together of the hardware components from many rdiffesources to meet the application requiremebitslike bench
top instruments, portable systems used in the fraldt be carefully designed for the application,lge cost.

Software

The software serves three purposes. First, itt rnassimple with easy to use options and displaytlie
operator, second instruments must predict alikd,thind low-cost product database will need to bealoped with the
most efficient calibration techniques. In mosttable applications, sampling will be handled bg tiperator. In a
bench system, the sample is collected from a numblexcations, dried and ground, with a carefulhpsen subsample
presented to the instrument. The portable so&wauist be able to solve the sampling problem.

The second software requirement involves instrunséendardization or minimization files or both.heke
procedures need to be imbedded in the routine tipereoftware. The third requirement is for theut be able to
automatically select samples during routine openatd expand the database. This activity of chapsiamples for
expansion is critical to minimize the cost of dexghg the product database. Portable systems dbave the luxury
of large numbers of samples with expensive refereradues to build the product database. All oéhsoftware
features are essential to make the analysis vakmgate for the user.

The third software feature relates to productalibcation database development. Some will intiat only
laboratory reference values be used. This is fiyeu can afford it. A second method often rejddby many is to use
the predicted values from a well calibrated bengte instrument. This will be covered in more datader the section
of application.

Hardware

The selection of the right hardware is very impott A diode array with no moving parts is an drce
choice. Selecting the scanning range is the nesisibn The cost of the diode array is the single most espe item
in the portable systemThe cost goes up as you go from 400 to 2500 nnthelfapplication is reflectance, you can try
the lowest cost silicon detector region 400 to 1469 but unless the measurement is to be madeesindlor region,
accuracy may be a problem.

The second possible region is 900 to 1700 nm witbooled InGaAs detector. But now the instrument
becomes expensive. The cost of the instrumentabwer a silicon detector instrument can be as nasc§10,000
USD. This cost escalation can make a portablesyanpractical for the application. The other part the hardware,
(light source, battery, electronics, instrument arairying case) must be carefully chosen to optmize final
configuration.

Application
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Our investigation into this area of portable instentation became focused when Renaissance Nuofriio
Pennsylvania based dairy nutrition company reqdeste help. They wanted to know what was the falityi for on-
farm analysis with a portable NIR instrument. Aftensideration of the hardware/cost and accurasgipilities, we
decided to try two instrument configurations: are@t Optics USB4000 (OO) scanning 600 to 1200 nmeaBdySpec
x100 (BS) with cooling scanning from 900 to 1700.nfhe application could only be accomplished ftecdance

We planned a three phase development approachwMel obtain samples from a reputable forage rigsti
laboratory for reference values for three produess/, corn silage, and haylage. The samples woellftom farmers,
dried and ground, and predicted values would baioéd from the samples using a high quality NIRrimaent with
accurate databases. As was said earlier, evegyfiussible had to be considered to cut the codeéeélopment. Since
the samples used for the calibration came from éasirusing the predicted values as reference vétudke portable
instruments was a major cost cutting feature. dditeoon the reference laboratory then becomes #et of the
analytical hub for a portable instrument network.

Over a period of 8 weeks we scanned 100 samplésieaiiunground samples of each product. Four
subsample positions were scanned for each samptbebywo instruments. The calibrations developadtiie BS
instrument for all three forage products were naweurate than the OO instrument. These resulte metra surprise,
but we had hoped the lower cost OO instrument ntighte adequate accuracy.

Having selected the instrument, the second phegarb That was evaluating the calibration perforceavith
farmer samples taken from local Pennsylvania Reaaise Nutrition customers. This phase will be iooetd on into
the summer but our first comparisons are very eraging.

The software will continue to play and importaoter It will be used to select samples with cdostits
needed to expand the calibration database. It lvéllused to standardize additional portable ingtnim for the
dairy/forage industry, and the minimization file lwbe used to minimize any remaining differencegweaen
instruments as well as control analysis variatioa th temperature variation during the day.

Summary
We are working on the development of a low-costtgide instrument that will be accurate enough for
formulating rations for dairy cows from on-farm &msas. This effort was made possible by combinthg right

software, hardware, and experience along with b bigality reference lab and the funding and suppbRenaissance
Nutrition.
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On-site, on-line determination of total solids, nit rogen and phosphorus
in liqguid hog-manure

Phil Williams, Diane Malley and Erik Eising
PDK Projects, Inc., Nanaimo, B.C. Canada
philwilliams@pdkgrain.com

Abstract

Hog (suino, Schwein, cochon, varken) productionsouthern Manitoba, Canada, is a major industry,
involving about 10 million animals. It is located &an important grain-growing area, where the ppaki
crops are canola, barley and wheat. The hogs braiséd in barns. Hogs produce about three tirhes t
volume of feeces of other domestic animals. The meaisuwashed into lagoons, which hold up to 5 wnilli
litres of liquid manure. From time to time the lags must be emptied by pumping. The grain farmers
require nitrogen and phosphorus fertilizer for thgiowing crops. When the hog-producers have their
lagoons pumped out, the manure is distributed ergthin farms, over a radius of up to 5 Km from llog
farms. The manure is cultivated directly into tlé.SThe manure represents a cheap source of bathd\P

to the grain farmers. The liquid manure varies Wwide total solids (TS), ranging from as low as 0#to
over 11% TS. Consequently the nitrogen and phosghoontents also vary, and together with the total
solids, increase abruptly toward the end of a ponip-The grain farmers need to supplement the neanur
with commercial fertilizer, and need to know thengmsition of the manure that has been pumped bmeip t
land. The present method of estimating this isake tperiodical samples during the pumping operatod
test them on small hand-held instruments, suchhas Agros Nova-meter. This paper describes the
application of NIR spectroscopy, using a flow-thgbucell interfaced with a diode-array-driven NIR
instrument. The NIRS method provides a system dmtinuous monitoring of manure composition during
the entire pump-out. This makes it possible for iteure applicators to give the grain farmers ateur
advice on the total amounts of N and P that haes la@plied to their fields, and the amounts of cenuial
fertilizer that they will need to purchase to s@mpént the manure application. With the current $oon
Precision Agriculture, as fertilizer prices conento increase, the greatly-increased accuracy gedvoy on-
line NIRS testing results in very significant fircal benefits to the grain farmers.

30



Nutrient based Slurry Application by Near-Infrared Spectroscopy

C.R. Moschner* A. Zimmermann and E. Hartung*
Ynstitute of Agricultural Engineering, Christian{#echts-University Kiel, 24098 Kiel, Germany,
E-mail: cmoschner@ilv.uni-kiel.de

Abstract:
The objective of the project “Nutrient based Sluaygplication” was to test a system to quantify rrits concentration

on line during slurry application. To protect théR$ spectrometer against rough conditions duringglapplication a
specially adapted protective housing was developeding measuring near infrared spectra, slurrgnaice samples
were taken out of a sampling valve from the sluanyker. The NIRS calibrations for different nutteDM, Ntotal,
NH4-N, P and K) are all calculated by PLS regressiand validated by test set. The whole NIRS systers
successfully adapted to the rough conditions omrangercial 18 m3 slurry tanker. The developed NIR&suring
system showed a reproducible and stable performasseiting from a steady state optical signal dwrsiurry
application. In general a distinct correlation be¢w the NIRS spectra-based calculated nutrientecdrations and the
concentrations detected by the chemical analysthefeference samples was found. However, theracgwf these
calculated “on line NIRS calibrations” is not alvgagatisfactory. Therefore, it would be best to iower these
calibrations based on even larger data set ofesfer samples in order to span the complete variatithe population

of manure samples and further check the suitatdlity quality of origin specific NIRS calibrations.

Introduction
The objective of the project “Nutrient based Slufgplication” was to develop and test a systemuardify nutrient

concentrations during slurry application. Such steay is an essential necessity, if slurry is supgas be applied in an
efficient, economically and environmentally way;edto the composition of slurry shows a very didtimariation
(table 1) depending on the slurry origin, feedingtion of the animals, degree of slurry (post) pssoay,
homogenisation before application, etc.. Therefreapid on line analysis-technique for determiniiogiid slurry

nutrients, such as a Near-infrared spectroscopgosdIRS), is strongly needed.

Table 1: Review on variation of slurry composition

Slurry Cattle slurry Pig slurry Fermented slurry
Composition/Nutrients [1-3] [4-6] [7]

DM [%] 1.4-38.6 1.8-175 2.9-10.2
Ntotal [kg/m3] 0.9-9.5 0.6-14.6 24-9.1
NH4-N [kg/m3] 0.2-4.7 0.3-10.9 15-6.8

P [kg/m3] 0.2-8.6 0.1-11.0 0.7-6.0

K [kg/m3] 0.3-84 1.13-11.3 2.0-8.8

Since other researchers - general under laboratmmglitions - have used different sample presemtatiodes for the
spectroscopic analysis of slurry and in additicstad the effect of the transflectance or refleateasample presentation
modes on the performance of the spectroscopic reasamposition measurements, the development ahdftasNIR
spectrometer under practical conditions on a coroig@esivailable 18 m3 slurry tanker (including tten“the go” sensor

calibration) has been investigated in the curreséarch work.

Materials and Methods
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In this project a commercial available 18 m? sluagker was equipped with a self constructed NIfsselocated in a
horizontal slurry transport pipe, so that dynamieasurements during the filling, mixing and applywigthe slurry
were possible (figure 1). To protect the NIRS spmuoeter against rough conditions during slurry agion a
specially adapted protective housing was developbhd.used NIR-spectrometer (Polytec PSS 1720)ugppgd with
an InGaS diode-array detector in a wavelength radng® 850-1650 nm with a fibre optic cable lightput. To
reference the spectrometer the dark spectrum wiecta automatically, while the white referencecdhad to be
referenced manual at the beginning of each meagyrémiod. Due to a special self made software adiapt the
integration time of the spectrometer could be detifferent values, to optimise the spectrometerfquenance

depending on the “working conditions”.

During the measurement of the near infrared spgbtsubscans per sample), slurry reference sanyges taken out
of a sampling valve from the tanker. The compositid the taken slurry reference samples were détednby wet

chemical analysis.

S, N\

Valve for reference
samples

NR—sensor
! optic

Figure 1: Location of valve to take references dampnd the NIR-sensor optic at the horizontalrgltransport line
(left). Measuring head: 1. light source, 2. pathigtit, 3. sapphire window, 4. measurement spatd@ving sample, 6.
light uptake, 7. power unit (right)

The calibration development was performed withdchemometric-software SL Calibration Wizard v0.95@1soLogic
GmbH, Norderstedt, Germany). To detect outlier THD, S} in the database a preliminary calibration usirgphrtial
least square (PLS) algorithm andderivative (segment 3, gab 1) of the absorbancetspeas used. Samples were
removed from data set if they were detected aseout least in two calibration processes for ttifeigent constituents
(DM, Ntotal, NH4-N, P and K). Subsequently, the péarset was split into a calibration (n = 125) aest set (n=38)
by the use of Gauss Jordan algorithm (using abogationed data pretreatment) to select significa@csa for
calibration. The whole data set contains 28 sampigslurry and 135 samples mixed slurry (mainlg pnd cattle).
The configuration of the calibration and test setgiven in table 2. The calibration was developsthg PLS algorithm
and f'derivative (segment 3, gab 1) of the absorbaneetspwithout new outlier elimination. The optimumumber of

PLS factors was determined by full cross-validatibne developed calibrations were validated withtdst set.

8 For explanation please see SL Calibration Workdrapbook or the similar definitions at [8]: Naesiet 2002: A
User-Friendly Guide to Multivariate Calibration a@thssification
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Table 2: Formation of the calibration and test gatshe slurry constituents DM, Ntotal, NH4-N, RdaK

DM [%] Ntotal [kg/m3] NH4-N [kg/m?3] P [kg/m3] KKg/m3]
Cal Test Cal Test Cal Test Cal Test Ca Test
Range 1.3-7.0 14-68| 18-54 18-54 0.7-32 08-8323-®4| 05-24 17-49 18-3|6
Mean 4.0 4.2 3.2 3.1 1.5 1.6 1.3 1.4 3.0 2.9
SD 1.2 1.3 0.8 0.8 0.5 0.8 0.4 0.6 0.5 0.4

Results and Discussion
The whole NIRS measuring system (spectrometer,iptexer, optics, fibre cable, etc.) was succesgfatlapted to the

rough conditions on a commercial 18 m3 slurry tan&ad a 12 V electrical power supply. In pre tesis ideal
mounting position of the NIRS measurement optics determined. The developed NIRS measuring systemed a
reproducible and stable performance resulting fransteady state optical signal during slurry apfitice [9].

Furthermore the system proved the general feagidiir a site specific and nutrient based slurrypleation, if

connected to a D-GPS-system.

Table 3feature the results of the NIRS calibraticalkeulated for dry matter (DM), total nitrogen (%l), ammonium
nitrogen (NH4-N), phosphorus (P) and potassium (K).general good correlations were achieved betwiben
reference and predicted values.

Table 3: Statistics of calibration and validation different slurry constituents

Calibration Validation
SEC RMSECV RSQcal RMSEP bias RSQvdl RPD
DM [%] 0.50 0.59 0.83 0.55 -0.09 0.81 2.32
Ntotal [kg/m?3] 0.22 0.25 0.93 0.23 0.03 0.77 2.09
NH4-N [kg/m3] 0.13 0.15 0.93 0.14 -0.03 0.97 5.40
P [kg/m?3] 0.18 0.20 0.82 0.26 0.03 0.81 2.23
K [kg/m?3] 0.15 0.18 0.92 0.16 0.05 0.88 2.69

Concerning the range of the different slurry cdostits (table 2) the achieved standard errors (SBMSECV or
RMSEP, respectively) are low. The validated methsiidsw RPD values greater than 2; the case of theigtion of
ammonium nitrogen (NH4-N) the RPD value is everatgethan 5. Williams [10] characterises RPD vaktesve 3 as
an indicator for an efficient NIRS calibration fagricultural products. Moreover, the author classiNIRS methods
with an RPD value higher 5 as “good” and therefappropriate for quality control. The validation plwr the

prediction of ammonium nitrogen content as welladry matter content is shown in figure 2.
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Figure 2: Validation plot for the prediction of armmum nitrogen content, NH4-N [kg/m?3], as well as €iry matter
content, DM [%]

In table 4 NIRS methods with highest RPD valuesébin literature for the prediction of differenusly constituents
are shown. Ranking and assessing the quality afifferent NIRS calibrations achieved in the cutnesearch work, it
has to consider that opposite to all literatureghesented NIRS methods are one of the first, waiehonly based on
an “online calibration” under practical conditions slurry tanker. All reference samples have beéen during the
online spectroscopic measurement of manure in i#ld, ftherefore these “on line calibrations” havet no be

recalibrated to use them on the go directly ondloery tanker. However, the accuracy of these oa kalibrations
could improve furthermore. Therefore, it would besbto build calibrations based on even larger datan order to

span the complete variation in the population ohuara samples.

Table 4: Review of highest RPD values found irréditare for the prediction of different slurry cohsgnts

RPD Standard Error RSQ Range Origin n Author
DM [%] 6.1 0.42* (2) 0.97 0.85 - 13* Pig + Cattle 255 [11]
Ntotal [kg/m?3] 3.38* 0.29* (1) 0.95 5.9-11.7% Pig 143 [12]
NH4-N [kg/m3] 5.76 0.073 (1) 0.97 1.01-2.6Y Pig 64 [13]
P [kg/m?3] 8.46 0.055 (1) 0.99 0.043-1.43 Pig 64| 13][
K [kg/m?3] 2.78 0.061* (1) 0.87 1.01 - 1.6% Pig 64 | 13]

* calculated; (1) SEP; (2) RMSECV
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Introduction

Biogas offers attractive opportunities to utilizerbass for meeting renewable energy needs. Typgratultural biogas
feedstocks originating from organic waste, animahore and energy crops are highly heterogeneousatwye. The
fermentation process is exceedingly complex andmdepth understood in its various steps by thepex consortia
of microorganisms involved. Due to the lack of agpiate monitoring and/or managing by poor conitngll the biogas
process can slow down, be severely disturbed or bxeak down completely.

Near infrared spectroscopy (NIRS) is a desirabtgyaical technology for monitoring and process cohin the biogas
process. This work reports some field experieaeesresults of a new NIR sensor system (TENfernthigsector.

NIRS-System

TENferm: TENferm is a NIR process measurement system fofitgtige online analysis of organic materials in
agricultural processes and facilities. It comprisasdware, software and full application servigaesluding calibration
development and on-site predictor control.

The hardware is a two component system consistingpoto four sensor heads and a central unit coimgithe
spectrometer (TRISTAN OEM NIR-HR-U, 900 — 1700 r&t2 pixel), an optical multiplexer (Leoni 1x4), #Q with
data interface and touch-monitor (Fig. 1). The seieads are connected by hybrid cables whichfeatise optical
measuring signal to the central unit and providestnsor heads with energy (24 V) and control comisid he sensor
heads are equipped with NIR light sources (5 W, iecessary optics to record the diffuse reflectiora sapphire
window of 8 mm diameter. Automated self referenciwgh an internal white standard allows to elim@at
environmentally induced variations. The measuriegds can be installed with 2” screw threads in egav pipes (Fig.
2) or lines (Fig. 3), so that continuous and repmégtive measurement in the process is securedltRes the in-line
measurement are passed to the process controhsydt¢he plant, where the data is available for ioeimg and
process control.

TENferm is connected via VPN to a centralized nmannilg location at the m-u-t headquarter, wherepttoger function
and the performance of the system is monitored tel;m@nd action is taken if necessary. Spectralvel as local
sampling data are automatically synchronized with tentral calibration database at the m-u-t headey where
comprehensive data sets containing all TENfermesgstbuilt up the basis for calibrations as welfaassoftware and
model updates.

Figure 1. TENferm central unit Figure 2. TENferm measuring Figure 3. TENferm measuring
with the touch-monitor displaying head mounted in a pipe (top), head installed in a silage auger
actual results on a biogas plant  sampling valve (below) (top), sampling plug (below)

Biogas Plant: The presented case-study is implemented on a coeciahdull-scale biogas plant with mesophilic
operation in a 1.5000 m3 fermenter. Feedstock stmsif 65 % liquid cattle manure and 35 % maizegsi] premixed
prior to feeding into the fermenter. Except for #ilage feeding line, all substrates are pumpeddantral main line -
manure tank > pre-mixing tank > fermenter > effiutamk. Thus, with only two measurement points, ahthe silage
auger (MP-SA) and the second after the central p(Mp-CP), it is possible to completely monitor suétes in the
entire biogas process.
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In the first approach it was aimed to monitor chedstics and changes in organic dry matter (ODiYm raw
feedstock over fermenter up to the effluent. Anmeplary subset of results is presented here.

Measurement setup and data collectiéteflection spectra are beeing recorded continyoasithe mean of 10 sub-
scans in time-multiplex with a switch intervall b® sec at MP-SA and MP-CP. Since different typesutifstrates are
flowing in a rather short sequence across the mieagsline, spectral classification of the actuabstnate is necessary
prior to substrate specific application of specificedictors for the assigned parameters. Referesaceples for
calibration and validation were collected in theganted time series every two to threee weeks oeeded. Correct
assignment of spectra to reference data of the Issmpas automatically secured by recording timeapg at the
beginning and at the end of each sampling procediitea barcode scanner. All spectral, measurerardtreference
data is stored in the on site TENferm database syrichronisation with the m-u-t central databagigich normally is
performed once a day.

Representativity of sampling was achieved by takingemental subsamples over a sampling time o8Imin at MP-
SA and 5 -10 min at MP-CP. About 1 | of the blendatbsamples was frosted right after sampling ametdtat -18°C
until chemical analysis in a commercial laboratory.

Calibration:

The methods in TENferm for classification and cailon are using support vector machine (SVM) dthors based
on LIBSVM and common pre- and post-processing n#th8VMs have been introduced recently in chemaoseaind
have proven to be powerful in NIR spectra clasaifan tasks (SVC), as well as for regression andtivaviate

calibration (SVR). The advantages of SVM-based oudhare that nonlinear regression can be perfoeasily as an
extension to linear regression. In order to model-linear processes, the Gaussian radial basigidtn@RBF) kernel
was chosen here. The tuningyadindo parameters was performed using cross validation

Results and Discussion

ODM measurement on the biogas plant required tiibrasion models. One for maize silage (ODM MP-Sd and
one for the suspensive biogas substrates (ODM MR-@Rt were liquid manure, fermenter and premifestistock
(Table 1). For ODM MP-SA 18 maize silage sampleshef specific biogas plant were taken and supplésdewith
228 silage samples from the m-u-t global databagectease range an variety. The data set for theQ® ODM model
contains 48 samples of the specific biogas plavenky distributed across liquid manure, fermented @remixed
feedstock and supplemented with 209 spectrally Innagcsamples from the m-u-t database.

Some pretesting on the selected calibration datadeiwed advantages for the combination standambatosariate
(SNV) as preprocessing and application of the RBFé&l. The tuning of andc with leave-one-out cross validation
was optimized towards decreasing the RMSEC to ibatpwhere no further improvement of the RPD cdel
achieved, which was at 3.39 and 3.45 for ODM MP&®d ODM MP-CP, respectively.

Table 1. SVM calibration statistics for organic dry mattemmaize silage and suspensive biogas substrates

maize_silage suspensive_biogas_substrate
(ODM MP-SA) (ODM MP-CP)
n 246 257
Range ODM [%] 16.1-45.7 1.9-185
Y 0.015 0.001
c 11.2 300
RMSEC 0.7 0.5
RMSEP 1.3 0.8
RPD 3.39 3.45

A further challenge for in-line measurement on gliige (MP-CP) was to securely discriminate the sabst when
different types are beeing pumped in sequence. Harthe measurement point one common prediatiodel can be
applied, it still is necessary to assign the measwalues to the specific substrate. Since indaligumping intervalls
are rather short, information from the pump undlye switching) is not sufficiently precise withetipresence of the
new substrate in front of the measuring head .lRpé&ngth dependent time-lags and mixing procegs¢he pipeline
lead to inaccuracies in substrate assignment. Tdretebased on the calibration data-set, a siteifspespectral

classification with SVC has been installed (Fig. 4

The long-term stability and performance of the T&N mesurement system is shown in Fig. 5. The latioa of the

reference samples for validation are in good acamrd with the general ODM course. Especially tegdent internal
referencing with the white-standard prevents dinigitdue to changes in the measurement equipmentageing of the
lamp, or environmental changes.
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Figure 5. Long-termNIRS in-line measurement of
ODM for maize silage, mixed feed, fermenter andrglu
on a commercial biogas plant (values interpolated o
daily average as curves, reference values as ddpigt
symbols, monitoring intervall 25 weeks)

A basic conclusion of the results presented hetbat NIRS is well suited for process monitoringhiimgas plants.
Future important topics are calibration developmfamt further parameters, improvement of a robusilibcation
databases, calibration transfer and automatiomaafgss control especially considering feeding styiat.
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Using NIR spectroscopy on milk for the traceability of cows feeding

M. Coppa,t? B. Martin, > C. Agabriel,**1. Constant? G. Lombardi,*
and D. Andueza*
'Dep. AGROSELVITER, University of Turin, Via L. daiiti 44, 10095, Griuglasco, Italy
2INRA, UR1213 Herbivores, Site de Theix, F-6312Z58nes-Champanelle, E-mail: donato.andueza@clerimeantr
3Clermont Université, VetAgro Sup, UR EPR 2008.02,18-63012 Clermont-Fd Cedex 1

*INRA, USC 2005, F-63370

Introduction

Consumer’s demand of information about the wayleatte fed is recently growing, in relation to éfect on milk
nutritional quality and taste. Consumer’s appréamfor dairy products derived from traditional aedvironment
sustainable production systems, such as the gesssibones (mainly mountain or alpine extensiveesysis also
relevant. In fact, cow feeding affects the quatifyderived milk for human nutrition, especiallytiaticids (FA) profile
and micronutrient contents. As compared to maiagesj grass-fed cows produce milk with lower levfesaturated FA
(SFA). Grass-fed cow milk is also richer in polyahsated FA (PUFA). Herbage in cow diet improvesoflcarotene,
A and E vitamins milk content. Botanical compositiand agronomical practices, both changing withirenmental
conditions, such as altitude, have an importantéotfbn herbage characteristics, influencing milk prdfile and
terpenoids content. NIRS, allowing the predictiémmlk gross composition and FA profile, could Heaa useful tool
to provide information about animal diet and milligin. This work aims at discriminating the milkquuced feeding
cows with maize silage dies. pasture diet. Among pasture-based milk we algedete possibility to distinguish their
origin in discriminating between lowland, mountaimd alpine vegetation grazed by cows.

Materials and Methods
Bulk milk samples (455) were collected from 172arin France and northwest Italy, during 2007 ab@B2 Farms
were selected to cover a wide variety of milk prctéhn conditions. During sampling, data about céeesling,
concerning forage quantity, type and conservagohrnique were surveyed (Table 1). As far as thievis
concerned, we selected milk samples produced itewderiving from maize silage-fed herds (% of meaiz
estimated > 70% of forage dry matter (DM)) and rsiéimples deriving from pasture-fed cows (100% cdde
DM). With regard to vegetation, samples were aggign one of the following classes of origin: lomdagrassland,
mountain pasture, alpine pasture (Table 1). Gelyaraetation diversity increased with altitude.

Table 1.Characteristics of the two datasets (mean valugsmum and maximum values in brackets).

Dataset characteristics  Maize silage Pasture Lowland Mountain Alpine
grassland pasture pasture
number of samples 37 124 69 82 78
Altitude (m a.s.1.) 253 1439 112 859 1986
(1 - 850) (2 - 2500) (2 - 400) (420 - 1100) (1200 - 2500)
Animal feeding
Preserved forages (%) 18 (0 - 34) 0 7 (0-30) 9(0-31) 1(0-19)
Maize silage (%)* 82 (70 - 100) 0 2 (0-26) 1(0-20) 0,0
Grass (%)* 0 100 90 (70 - 100) 90 (70 - 100) 99 (81 - 100)

*: % of preserved forages total dry matter

Milk samples were stored at -18°C until analysi&eA2 h at room temperature, 0.5 mL of milk welacped on a
glass microfibre filter (Whatman GF/A, 55 mm, Qdb. 1820 055 (Whatman International Ltd, MaidstddK)),
and oven-dried at 40 °C for 24 h. Then each filies placed into a 50 mm-diameter ring cup and sah2 nm
intervals from 400 to 2498 nm using a Foss NIRSystenodel 6500 NIR scanning spectrometer (Foss
NIRSystems, Silver Spring, MD, USA). NIR spectroaratvas controlled via ISlscan software version 2.21
(Infrasoft International LLC, State College, PA, A)SEach reflectance spectrum was time-averaged 88 scans
and it was compared with the 32 average-measurasméatceramic reference. Discriminant analysis was
performed using the PLS-DA technique, and model®wested using a cross-validation procedure. €genent
between 400 and 2500 nm was used. The standarchheanite and detrend (SNVD) scatter correctimcpdures
were applied to the raw data. The spectra werettiamsformed using a mathematical first-order gafivation
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(1,4,4,1). Winisi Il version 1.60 software (Infrdstmternational, South Atherton St. State Colleigé, 16801, USA)
was used.

Results and Discussion

Model classification performances are reportedablé 2 and 3. The correct classification rate okeskfor maize
silagevs. pasture model exceeded 99%, with 160 sampleeatyiclassified. Differences in milk FA compositio
between maize silage and pasture-fed cows’ milkbdesh already studied; maize silage-milk had highéres of

SFA and lower values of PUFA (Engalal, 2007) than pasture-milk. According to the apitif NIRS to predict
these FA (Coppeat al, 2010) they could have highly contributed to discrimination. Moreover herbage is also

rich in B-carotene resulting in more yellow milk than masidage (Noziéret al, 2006). Lucagt al (2008) could
reliably predict3-carotene and yellowness of cheeses, which mayestigitat these two parameters could contribute
to milk discrimination by NIRS.

The vegetation type model correctly classified 8 samples out of 229, with a 39.9% error ratéfdbences in
milk composition among the different vegetationdgpeduced as compared to the ones between pastlreaize
silage were probably at the origin of the low reiliidy of such a prediction. In fact, differenceskA profile
according to vegetation altitude are mainly relategd-linolenic acid, which has higher values in moumtaind in
alpine pastures in particular (Enggtlal, 2007). This FA was not satisfactory predicted\bRS (Coppeet al,
2010). Dairy product colour is also less influenbgdotanical composition than by sward phenolagyich
depends on the grazing management, but only slightiegetation type.

In conclusion, NIRS could discriminate betweendgli@haize silage and pasture milk), as shown byothe
classification error, but did not allow the prediatof the pasture type grazed by cows.

Table 2. NIRS classification of milk samples according tows feeding expressed as number of samples ctabsifi
each category and in percent (in brackets).
Predicted group
membership
Maize silage  Pasture
Maize silage 37 (100.0%) 1 (0.8%)
Pasture 0 (0.0%) 123 (99.2%)

Animal
feeding

Table 3.NIRS classification of milk samples according tagsland type expressed as number of samplesfiddgsi
each class and as percent (in brackets).
Predicted group membership
Vegetation Lowland  Mountain Alpine
grassland  pasture pasture

Lowland grassland 44 (63.8%) 22 (26.8%) 5 (7.4%)
Mountain pasture 15 (21.7%) 33 (40.2%) 11 (14.1%)
Alpine pasture 10 (14.5%) 27 (32.9%) 62 (79.5%)
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Efficient Recirculation of Liquid Farm Fertiliser a nd Biogas Substrate
using NIRS-NANOBAG®
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Introduction The proper recirculation of about three-fourthghef nitrogen being utilized in animal husbandry ot
being used in the product gains more and more itapoe. Liquid manure represents a valuable submstasc
agricultural product on the one hand. On the oliaerd liquid manure can cause a lot of problemgfimironment, as is
generally known. For an appropriate utilization tbé recyclable materials nitrogen, phosphor andagigt which
become more expensive all the time, and avoidahexaeeding stress for environment in terms of gagdcultural
practice (GAP) proper storage and processing afidignanure as well as proper output and distrilbbutim the
agricultural sites are necessary. A more accuraterahination of the nutrients” contents in the itigmanure (N,
ammonia, P205, K20, ODM) by means of the NIRS-NAN@®-procedure can therefore bring an improvement of
the fertilization and especially of the nitrogeridme and it can also enforce a reduction of sti@sthe environment
concerning water and air.

Materials and Methods

Using a beaker, the homogenised liquid manurémgplg added to a sample bag which contains a gastibstance
(Image 1). The special mixture of minerals, baseddctivated clinoptilolite zeolite, holds onto thaid and absorbs all
of the nutrients. So that it was possible to storesend the substance in an earth-moist conditighirwairtight
packaging in a hygienic and unproblematic way.h&t laboratory the sample, consisting of the ma&Odf g of carrier
material and approx. 25 ml of liquid manure, isntiveeighed and dried for 3 hours at 55 ° C. Theddrtter, ash
content, nitrogen, phosphorous, calcium and magnesire immediately measured in the NIR spectroraef€@SS
XDS and/or UNITY SPECTRASTAR 2400. Kalibrations weyerformed with UNSCRAMBLER®, SENSOLOGIC®
and VISION® software.

Image 1.. NANOBAG® containing activated clinoptite
Results and Discussion We faced two challenges: Firstly, to find atabie mineral carrier material and optimise its
grain size and secondly, to create calibration nsofter the near infrared spectroscopy. The chosamnier was a
carefully selected and activated mineral, clinafité zeolite, which has a nanoporous crystal stmgc(diameter of
pores: 0.4 nm, inner volume per cm3: 0.47 cm3) iarghrticularly well suited for the absorption betaqueous phase
and the volatile ammonia in the alkaline regionisTik a decisive factor, as three quarters ofigllidd manure has an
alkaline pH value.

The calculation models created for different liquidnure samples, either separately or togethew she following
correlation values and standard deviations forpttegection with regards to the connection betweeth lmeasurement
techniques in Table 2:
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In addition to the total nitrogen values accordingrOSS-KJELDAHL decomposition, those readings ioleté with the

help of an alkaline distillation were also used.the case of this alkaline decomposition, the tgmanure amides
(mainly carbamide) are decomposed, but the patbiclend nitrogen is not compromised. The resultsaghibthat a

differentiation between carbamide and ammoniumgugtics method is quite possible. The subtractiotot#l nitrogen

and ammonium therefore gives the total level okaigally bonded nitrogen, while the deviations tesw the alkaline
distillation and the colorimetrically determined mwnium indicates the amount of carbamide.

Pradictad and Wfeasured

Wodell fur N-DEST aller Proben
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T
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Figure 3. Cross-validated calibration model for cattle and liquid manure for the content of nitrogen foliagy
alkaline distillation in FOSS KJELTEC and spectasgin FOSS XDS

Mean value g/kg FM N-total NH4-NESSLER NH4-KJELTEC N-nitrogen * N-organic remainder*
Cattle liquid manure 2.47 111 1.58 0.47 0.89
Hog liquid manure 3.88 2.59 3.39 0.84 0.49

Table 1.Comparison of the N fractions, * N-nitrogen andNjanic remainder, calculated as a difference

Parameter Liquid manure R2 SEP
Dry all samples 0,863 3,45
mass Biogas liquid slurry 0,810 3,81

Cattle liquid manure 0,787 3,58

Hog liquid manure 0,843 2,47

Total all samples 0,918 0,16
nitrogen Biogas liquid slurry 0,941 0,13
Cattle liquid manure 0,910 0,11

Hog liquid manure 0,929 0,15

Ammonia | all samples 0,888 0,09
nitrogen Biogas liquid slurry 0,952 0,06
Cattle liquid manure 0,782 0,07

Hog liquid manure 0,883 0,09

Table 2.Regression coefficients of dry mass and organiterds

Raw all samples | 0767 | 0,96
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ash Biogas liquid slurry 0,682 1,08
Cattle liquid manure 0,501 1,18
Hog liquid manure 0,819 0,80
Phosphate Hog liquid manure 0,990 0,143
Cattle liquid manure 0,926 0,080
Potassium Hog liquid manure 0,941 0,195
Cattle liquid manure 0,883 0,555
Calcium Hog liquid manure 0, 877 0,365
Cattle liquid manure 0, 894 0,172
Magnesium Hog liquid manure 0,972 0,147
Cattle liquid manure 0,967 0,057

Table 3.Regression coefficients of raw ash and anorgamitents

Conclusion The more precise determination of the liquid mamutgients using the NIRS-NANOBAG® process can
contribute to an improvement in fertilisation and particular the balancing of nitrogen and a reidactof
environmental contamination of water and air. Thethad can also be used for process control in Biggaduction
and in the targeted treatment of liquid manure.
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Variation among days in the dry matter of silages i n bunker and tower
silos measured using diode-array NIRS.
J. Karlen, University of Wisconsin, Madison WI.

Introduction

Precise feeding of dairy cows requires that theesgnoportions of nutrients and feed dry matter fack each day.
Rations for dairy cows are formulated on a dry $iasowever, the amount of forage mixed in the ratlaily depends
on forage DM concentration, which is used to catthe as-fed amounts to be added to the rati@armResearch
suggests that abrupt changes in silage DM by pitatign events can result in 1 to 2 kg of lost nplioduction per cow
per event. Variation in silage DM has multiple smms: random sampling variation, systematic chamgake silage
during harvesting, and abrupt changes due to exft@mecipitation events. Tower silos are more pramsystematic
changes because each harvested load is stratifiedpoof the previous load. Bunker silos are fed aaross filling
stratifications, but they often have an exposed fhat can be contaminated by water from rain owsn

Each source of DM variation in silage has differenpacts on the rations and on the animals beidg Random
variation is simply noise around the true mean OiNhe ration. Because the cow eats the true DM enination of the
silage, these random variations have no impacthencow and would create random fluctuations in rtugon.

However, systematic or abrupt changes in DM refleettrue concentration of the silage on a speddig and should
be taken into account when mixing rations. The cibjes of this research were to use diode array ndeared

reflectance spectroscopy (NIRS) to measure amowggvddation in the DM concentration of silages () identify

sources of variation in DM concentrations of sikmgé€2) determine the long-term accuracy of moistoreDM

calibrations using NIRS, and (3) to determine thagnitude of the various sources of variation iraggl DM in

different types of silos.

Materials and Methods

Over 770 samples were collected from 25 silos betw&ugust 2008 and December 2009 at the U.S. Darpge

Research Center (USDFRC) farm at Prairie du SacWelather data was obtained from Wisconsin State&ttlogy

Office for the Prairie du Sac, WI area. The farmvemas instructed to collect a handful of sampdenfi8 to 10 places
in the silage that was defaced from bunker sildereefeeding or 8 to 10 times during unloading@fer silos. These
samples were mixed in a 15-50 L bucket and two saples were scanned to evaluate within-sampleytioal

variation. During parts of the experiment, the crenllected two separate buckets of samples to atalwithin-day

sampling variation. These results will not be pnésé and only the average of all samples and agmlydthin a day
were used to evaluate variation among days inrépert. Some samples were collected during shamt-timal trials

and only the data from 8 silos with the most obastowns are presented.

A HarvestLab diode array sensor (Deere & Co., Mylih) was calibrated and used to predict DM. TtaudstLab is
designed for chopper-mounted applications, butbmansed as a bench-top instrument with a spinnimg bttachment
(bowl is 18 cm in diameter and 9.5 cm deep). Catibns were developed using Unscrambler v9.8 (Camo,
Woodbridge, NJ). Calibrations were developed fdteotance measurements (between 950 to 1530 nnh) mat
mathematical treatments of the spectra. Referemeples were analyzed at the USDFRC laboratory idiste, WI.
Reference samples were collected by thoroughlyngivd daily sample of silage material, packing tweavis of the
material and saving the spectral scan for each .bbwb 70 g sub-samples from each bowl were traredfieto tared
aluminum pans and were dried in a forced air ouesba’C. After 24 hours, one sample was removethfthe oven,
equilibrated to ambient laboratory temperature lamehidity, weighed, and then ground for further gaal not related
to this experiment. The second sample was driedcafioadditional 24 hours, after which the sample waighed
without equilibration, and then placed in a 105d¥&n for an additional 24 hours. The 24 and 48 &u°C DM
values were regressed against their respective’COflues to detect suspect data. Using thesessigns, the one
direct measurement and two predicted values for MIM were averaged to obtain reference DM reswith
improved precision.

Results were statistically analyzed to obtain urata means and standard deviations for DM among déthin a silo.

Local regression analysis (LOESS) was used to axtcfon systematic trends and to estimate residifédrdnces.
When applicable, precipitation data was modelednatjgesidual differences.

Results and Discussion

Dry matter was routinely recorded during experirserinducted at the USDFRC and these results werktasupdate
and evaluate the DM calibration. The DM calibratimas updated twice, resulting in a total of thredibcation
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equations (Table 1). All calibrations had accemadthndard errors of prediction. The initial caltimn was based on
DM determined for both fresh and silage sampleg fist update improved performance by eliminafirggh material

spectra and adding silage spectra to make theieguabre specific for silages. The second upddtied both fresh
and silage materials to increase the DM rangeettiibration set.

Table 4 — Calibration Statistics for DM equations wed with a HarvestLab sensor (Deere & Co., Molindl)

Calibration N No. of PCA R SEC SEP
Initial 375 8 .929 1.75 1.86
Update 1 396 9 927 1.64 1.70
Update 2 548 8 .923 1.88 1.92

After the last calibration update, 66 corn andl&failages were analyzed for DM by the referenethod (DM range
from 25 to 65%) and used as an independent data sghluate the accuracy of the calibration equat{Table 2). The
initial and update-2 calibrations had a significamative bias and under predicted DM at an inangasagnitude
starting at about 25% DM. Update-1 calibration &htb over predict at <36.5% DM and under predietnaincreasing
magnitude above 36.5% DM.

Table 5 — Evaluating the accuracy of DM equationssing a set of 66 reference values collected at thied of the
experiment that were not used for any calibration.

Calibration SEP Bias Intercept Slope ‘R
Initial 2.41 -1.22 2.71 0.89 .88
Update 1 2.49 -0.09 4,74 0.87 .90
Update 2 2.43 -1.32 2.73 0.89 .88

Univariate statistics for the eight silages indéctitat the among-day standard deviation (SD) of l2hyed from 1.5
to 5.0 %-units (Table 3). When systematic variatioas removed by LOESS analysis, the residual vaniawvas
reduced to 38% of the univariate SD for tower silmgt was reduced to only 57% of the SD for burdieges. This
suggests that much of the variation in DM in tow#os is related to stratification during fillingpdt is detected and
removed by LOESS analysis leaving a residual vanathat is due to sampling. Systematic variati@tedted by
LOESS analysis is a smaller proportion of totaliatgsn in bunker silos. In bunker silos, the LOE&Sidual
differences were negatively relatd@l€ .00001) to precipitation events indicating tregtidual variation in these silos is
relate to sampling and abrupt contamination.

Table 6 — Variation in silage dry matter concentraion by forage and silo type.

Forage Silo Sample Sampling Mean Standard LOESS
number period (days) deviation Residual SE

Alfalfa Tower 48 109 43.12 3.32 0.79
Corn Tower 32 79 38.57 3.03 1.37
Corn Tower 41 94 36.97 1.39 0.85
Alfalfa Bunker 38 88 43.91 2.40 2.19
Alfalfa Bunker 33 75 40.07 3.65 1.83
Alfalfa Bunker 104 254 35.75 5.04 2.24
Corn Bunker 28 65 31.09 1.77 0.70
Corn Bunker 67 147 33.12 1.76 1.42
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Application of FT-NIR for determination of wood pro venance

A. Sandak,' J. Sandak,! M. Negri*
Y VALSA/CNR, 38010 San Michele, Italy, E-mail: ansandak@ivalsa.cnr.it

[Introduction] Norway spruce is an important wood species growinigrge areas of forests all around Europe. It is
primarily raw resource for the wood and paper indess. Several wood characteristics, such as densitith of annual
rings, chemical composition, and in consequencehamdcal strength, aesthetical properties or dutgpbiamong
others, are related to environmental and genetiofa. FT-NIR technique has already been succégsipplied for
predicting chemical, physical, anatomical and maa# properties of wood (Tsuchikawa 2007). Studiesthe
application of FT-NIR to differentiate the origifiwood were also earlier work undertaken by thénau{Sandak et al.
2010). The research presented here is therefoattampt to exploit the potential of near infrargpe&roscopy toward
wood assessment in relation to varying tree provess

[Materials and Methods] Wood samples investigated in this project werdNofway spruce (Picea abies L. Karst.)
growing in different locations and representingdess of the spruce range in Europe. Five sites baea selected for
sample collection: central Finland, southern Estpnorthern Poland, southern Poland and northaly The summary
of samples collection and range of Norway spruce sammple locations are presented in the Table dmFReach
location 30 samples have been collected. A smatikb(~20mm width) was cut out from each undercab shssuring
the opening of the radial plane. The samples warefally conditioned to guarantee constant moisttwatent
(~12%MC), minimizing an effect of differences iretlvater signal measured by the NIR.

Table 1. Summary of samples collection.

Country Location Geographical coordinates Elevation
latitude: longitude: (m.o.s.1)
Finland Lieksa 63° 22' 0” 30°42' 0" ~140
Estonia Tartu 58° 18’ 0” 27° 16’ 0" ~70
Poland north Rynkow 53042’ 0" 18° 30’ 0” ~135
Poland south Krzeszow 50° 43’ 59” 16° 4’ 0” 4906
Italy Juribello 46° 18’ 0” 11° 49’ 59” 1700-1800

All the experimental samples were measured by uBmgrier transform near infrared spectrometer VEGTZ2-N
produced by Bruker Optics GmBH, equipped with andtad fiber-optic probe, germanium-diode detectud ¢he
thermoplastic resin Spectralon as a reference.speetral resolution of the spectrophotometer was'8and spectral
range was 4000-12000€mEach spectrum has been computed as an aver&@esatcessive measurements. Dedicated
tests have been performed in order to determineutine procedure of sample measurement, since oludet
heterogeneity of wood; the scanning procedure cgrédtly affect the results obtained. Five sepsspéetra have been
measured on the radial plane of each wooden safiplemeasurement location has been selected rapdbawever
any visible abnormalities of wood surface (suchessn canal, knot or discoloration) were intentignamitted. OPUS
6.5 and National Instruments LabView 8.6 softwaaekages have been used for signal processing daadidalyzes.
Signal preprocessing included computation of theosd derivative, and in some cases smoothing arudove
normalization. Derivatives were calculated accagdito the Savitzky-Golay algorithm. For the mathdozt
management of the spectra and then for the evatuati the results Principal Component Analysis (PCQ8luster
Analysis (CA), Identity Test and Partial Least Sgsa(PLS) techniques were applied.

Traditional “wet” chemical analyses were perforniegarallel to the spectroscopic measurements.cbimeentration
of cellulose was determined according to the Seifeocedure (by using acetylacetone-dioxane-hydooichacid).
Holocellulose content was obtained by wood deligatfon by sodium chlorite with addition of aceticid (Browning
1967). Amounts of lignin, solvent extractives asti avere determined according to Tappi standard$ @A

[Results and DiscussionAverage NIR spectra were computed for each lonatioorder to envisage the differences
between woods harvested in different countriegprasented in Figure 1. The shapes of the curveseamsesimilar;
however there was evidence of differences afteseckexamination of some characteristic spectrabregiThe band
assignments correspond to the work of Tsuchikaved ¢2005).

Cluster analysis was performed on spectra collefctad powdered wood (Figure2). It was found thasamples were
clearly separated, creating five main clusters dageFinland, Estonia, Poland North, Poland Soutth Baly. None of
the spectra were miss-classified. Similar resuisawobtained by PCA. All of the wood samples wdearty separated,
and fitting spheres were not overlapping. The ldgftest (Opus manual) was adopted for validatibthe provenance
determination algorithm. 80% of samples were uswdnfodel generation, and the remaining 20% of sasplere
taken for validation. In all cases the hit qualigiculated was lower than the threshold; and athefsamples were
positively classified. The Identity Test might etefore applied for sorting timber in relationt®origin.
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Figure 1. Second derivative of the averaged spectra for Figure 2. Cluster analysis of powdered wood

milled wood sample from different locations. fraction <0.5mm obtained form samples from
different provenance. Note: Ward’s algorithm,
preprocessing: iderivative, 7500-4300cth

PLS models for the chemical components of wood Wwesed on the spectra of powdered material (fra€tib-1 mm).
Reference data were obtained during the standagchichl analysis. One averaged spectrum for eaddtitoc was
included in the learning group. In addition, a teag group has been enriched with twin spectraefextracted wood
powder (identical content of lignin, cellulose, do¢llulose and ash, but zero extractives). Basetti@above reference
data separate models for each of the main chemiraponents of wood were developed. Models were Viadidated
and validation parameters are shown in Table 2y\&curate models were developed, especially fpini and
extractives content%98.7 and =99.1 respectively).

Table 2. Summary of parameters characterizing PLS modeloofl chemical components.

component lignin cellulose holocellulose solvertraotives| ash

range (cm-1) 7004-6557 9463-6171 9469-7440 7477655 9469-7440
6175-5662 4663-4363 7004-6171 5338-4339 5338-4616

4937-4339

preprocessing| min/max min/max 15" derivative + | MSC T derivative +

normalization | normalization | MSC baseline
correction

r2 98,67 84,98 79,99 99,13 77,24

RMSECV (%) | 0,102 0,0638 0,765 0,0877 0,00711

RPD 8,86 2,58 2,24 10,8 2,1

bias -0,00079 0,00176 -0,0384 -0,0132 0,000225

rank 5 9 5 8 7

[Conclusions] FT-NIR spectroscopy, a non-destructive, fast avd-dost technique, in combination with appropriate
data managing procedures, offers an effective tookeparate groups of wooden specimens of diffeceigfin.
Although trees of the same wood species, but gpwinvarious locations, have only slight differeada chemical
composition, FT-NIR spectroscopy is sensitive efiot@gdetect such differences. The method presentéus paper
has an interesting application in wide areas ofégtiwood industry, for tracking wood provenanced as a technical
tool for detecting logs coming from protected ar@egal logging detection).
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[References]

Browning B.L. (1967) The Chemistry of Wood. Intaestce Publisher, USA, p. 407

OPUS Reference manual (2004) Bruker Optic GmbH

Sandak A., Sandak J., Negri M. (2010) Relationgbgtween near-infrared (NIR) spectra and the gedigap
provenance of timber Wood Sci Technol DOI 10.1000226-010-0313-y

TAPPI standards: T 222 om-06, T 204 cm-04, T 20708nT 211 om-07, T 212 om-07

Tsuchikawa S., Yonenobu H., Siesler H.W. (2005)amMNafrared spectroscopic observation of the ag@iragess in
archaeological wood using a deuterium exchangeadethnalyst 130:379-384

Tsuchikawa S. (2007) A review of recent near irfdaresearch for wood and paper. Appl Spec Rev 4743

48



Precision Feeding: NIR on line & TMR consistency

Initial for first name. A. Barbi, ** A. Ghiraldi, * M. Manzoli,*
and P. Berzaght
! dinamica generale, 46025, Italy, E-mail: albertcbb@dinamicagenerale.com
2 Department of Animal Science, University of Pad?&020 ltaly

[Introduction]
Totally mixed rations (TMR) technique mixing alktfieeds together and making it available 20-22 fhper day has
the intent to obtain the best ruminal environmemhbining specific proportions of nutrients in thetdBut many
problems are still unresolved. Differences betwibeoretical and prepared TMR and effectively corsdimMR by
the cows were widely reported (Leonardi e Arment@@®3§. The differences, are due to errors loading fé¢atisng
weight, ecc...) and change in water content that it amounts of dry matter of feed loaded intovtlagon
(Buckmaster 1998; Ishler 2001%).
Animal producers are beginning to realize the ingooee of their feeding systems in terms of cobtsysands of
dollars can be lost annually through:

- Ingredients inventory shrinkage;

- Inaccurate weighing of components in the ration

- Lack of knowledge of the actual Dry Matter and rutts of the feed that are being fed.
Due to the current heavy crisis, it is a real basguirement for all the farmers to optimize thetslj providing a more
consistent TMR, controlling the accuracy of the enixperator, measuring on line the actual Dry Ma@tentent of
feedstuffs and monitoring the inventory of ingredgée This paper will focus on a new integrated esystleveloped
specifically to help farmers to feed animals inelinwith precision animal nutrition milestones. Theg d
precisionFEEDING™ is a kit constituted by a Feedingnagement software package (DTVR009), scale indicator
(Top Scale Indicator) and a near-infrared reflectafiNIR) analyzer.

[Materials and Methods] The near-infrared reflectance analyzer is basea spectrophotometer working in the region
900-1800 nm, with a pixels dispersion of 8 nm andide temperature range [-30 °C; +50 °C] thanks foowerful
temperature compensation mechanism. Samples ¢f fioesges are read directly in the front loaderketiovithout any
human intervention thanks to a mobile multi-windoasanner able to scan an extended surface of tmplsa
The Top Scale Indicator is connected on to the miv@gon and it is the real control unit for thedo®y process: it
does control the sequence as well as the targeghivir each ingredient. The scanner unit is cotatewireless with
the Top Scale Indicator, so it is informed by Tamal® on the current ingredient in the loading pleasd does transfer
predictions in real time: predictions are availabl@about 20 seconds.

Top Scale, adjusts the target weight on the baskeoNIR predictions evaluated in real time durihg loading phase.
In case of massive ingredients, analysis are paddron each single bucket and the weight adjustiseetvaluated
accordingly. All predictions are saved on the Tapl€ indicator and transferred on the Feeding nemagt software
(DTM™ 2009) by memory card or wireless.

Figure 1. Scanner Unit inside the bucket of the Front Figure 2. Front loader and Mixer wagon during a

° Leonardi C. and Armentano L.E. , (2003#ect of quantity, quality, and length of alfalfay on selective
consumption by dairy cow3. Dairy Sci. 86 (2): 557-564

2 Buckmaester D.R. (1998)FMR Mixer Managemenbairy Feeling System: Managements, Components, and
Nutrients, Camp Hill, Pensylvenia, Natural Resourgricolture and Engineering Service (Nraes)

M |shler V. (2001) The case for taking weekly silage dry mattetsards Dairyman (May, 10): 341
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Loader.

[Results and Discussion]
Here below some data about the quality of calibratiurves developed till now for the NIR analyszer:

Ingredient: CORNSILAGE

phase of TMR preparation.

Est. Est.
Constituent | samples| Mean SD Min Max SEC 1-VR SECV | 1-VR Cv RPD
SS 360 34,2 4,1 22,0 46,4 1,3 0,89 1,35 0,9 3,9 3,0
STARCH 360 11,0 2,3 4,0 18,0 1,2 0,75 1,18 0,7 10,7 2,0
NDF 360 14,70 1,46/ 10,32 19,08 0,70 0,76 0,72 0,76 4,87 2,04

Ingredient: GRASSSILAGE

Est. Est.
Constituent | N Mean SD Min Max SEC 1-VR SECV | 1-VR CVv RPD
DM 196| 41,44/ 13,51 0,90 81,99 2,37 0,97 2,48 0,97 6,0 5,45
CP 196 4,31 2,12 0,00/ 10,69 0,80 0,85 0,82 0,85 19,0 2,59
ADF 192| 14,47 4,63 0,56| 28,37 1,30 0,91 1,39 0,91 9,6 3,32
NDF 194| 23,44 7,30 1,55| 45,32 1,98 0,92 2,11 0,92 9,0 3,47
HASH 194 4,23 1,59 0,00 9,01 0,64 0,82 0,68 0,82 16,0 2,35
EE 198 0,88 0,24 0,17 1,59 0,13 0,67 0,14 0,67 15,6 1,72
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Tailored NIR Reflection Spectroscopic Methods fort  he Advanced
Characterization of Nanomaterials

C.W. Huck*

Institute of Analytical Chemistry and Radiochemjsti.eopold-Franzens University, Innrain 52a, 602@sbruck,
Austria, E-mail: christian.w.huck@uibk.ac.at

Introduction: In general “nanomaterial” is the collective namerfmatter on a scale between 0.1 nm and some 100 nm.
Due to its wide distributed usage, characterizatibphysical, chemical and morphological properigesssential. Until
now, particle size is determined by electron micopy (ELMI), light scattering or the Coulter-Counteethod, surface
area by nitrogen adsorption experiments (BET), plmeension by mercury intrusion porosimetry (MIPyr chemical
characterization nuclear magnetic resonance (NNdBgtsoscopy and elementary analysis are appliedsWistitute all
these time-consuming and expensive routine metbgddIRS and determine both physical and chemicaperties
imultaneously.

Experimental: NIR spectra were either recorded with a scanningrization interferometer Fouriertransform NIR
spectrometer (FT-NIR) (Buichi, Flawil, Switzerlanal) a Spectrum™ Spotlight 400 combined with a SpeetM GX
IR/NIR spectrometer (Perkin ElImer, Rodgau, Germaiyle FT-NIR instrument offers a resolution of 12 an
absolute wavelength accuracy of + 2.camd a relative reproducibility of 0.5 emnthe imaging system a signal-to-noise
ratio of > 12000:1, a spectra collection speed@ff 4pectra per second at 16-camd a maximum number of spectra
per image of > 260,000. Chemometric software NIRECa1 (Bichi), Unscrambler v9.6 (CAMO, Oslo, Noryay
SpectrumIMAGE-Spotlight R 1.6.0 were used for dreathe principal component analysis (PCA) and iphtéast
squares (PLS) regression models. For testing thaelmdhe collected spectra were divided into aniegrset (c-Set, 67
%) and a test-set (v-Set, 33 %) both consistingndépendent samples. Measurements were carriecitorgom
temperature (23 °C) from 4000 — 10,000-¢m

Results: The suitability of NIRS to determine particle semed molecular weight is demonstrated by the ingatitn of
derivatized silica, fullerenes, nano-crystallinardond, polymer particles, early, mid and late dieneir generation’s.
For PAMAM-NHz2 dendrimers analysis guest-host interaction withopsrsilica surfaces were investigated (Figure 1).
The loading capacity of the silica material withsatbed PAMAM-NH was evaluated by means of capillary
electrophoresis (CE), particle size and moleculaight (MW) by gas-phase electrophoretic mobility lecolar
analysis (GEMMA) and matrix assisted laser desorgibnisation time of flight mass spectrometry (MBI
TOF/MS). NIR spectra show a distinct band at 4982 ¢nsym (NH) + amide Il) due to the adsorbed dendrimers. On
this basis multivariate calibration was performeithwhe theoretical data and those from CE, GEMMA MALDI-
TOF/MS resulting in better results for the NIRS huet. Near-infrared chemical imaging in diffuse eefion mode was
implemented as a novel tool to simultaneously aeitez the physical and chemical parameters of aysopmly(p-
methylstyrenezo-1,2-bis(p-vinylphenyl)ethane) (MS/BVPE) monoliththv an inner diameter of only 150m. The
amount of MS/BVPE (%, v/v), and the quantity (%)noicropores (d < 6 nm), mesopores (6 nm < d < 5P aimd the
macropores (50 nm < d < 200 nm) could be determivild one measurement. The implication of theseltess that
FT-NIR spectroscopy is a suitable technique for fkmt screening of samples with varying physciorgical nano-
properties. These methods are of high interesti®mpharmaceutical industry, their efficiency i®wh and discussed
in the proposed presentation.

Figure 1. Guest-host interaction of PAMAM-NH:z denrimers and porous silica
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NIRS on-site vs. at-line: Transferability and robugness of
chemometric models on fresh silages

A. Martinez-Fernandez, A. Soldado, A. Gonzalez, Ricente and B. de la Roza-
Delgado
Regional Institute for Agro-Food, Research and Dguaent (SERIDA), Department of Animal
Nutrition, Grasslands and Forages, E-33300, Sgamail:broza@serida.org.

Introduction

Ensiling is a forage preservation method based spamtaneous acid lactic fermentation under anée@nditions.
However, oxygen can enter the silo through holehénpolyethylene cover or during exposure to azeothe cover is
open. In these situations, undesirable microorgasisan develop in the forage. The quality of thegsi is currently
evaluated through fermentative parameters (pH, amard, lactic acid and volatile fatty acids) ang dnatter content.
Due to the adverse effects of non-optimal ensilomgcess on animal nutrition, analytical methods raeeded to
estimate fermentative process at country levelrNdeared spectroscopy has been used succes&uliyany years in
the determination of major chemical and fermentafparameters on dried and wet material by usingrédbry pre-
dispersive instruments. The implementation of quaontrol sensors at farms and country level fiassible by using
diode array on-site NIR instruments, more adaptedldrse conditions. However, to develop calibratioodels is not a
simple task, it needs large data base, it is teliexpensive and time consuming.

Although there has been a lot of progress in NI&ruments, there still exist differences that makpossible the
direct transfer of calibration models from one instent to other one. Being necessary to estabtestdardization
models to transfer NIR calibration from laborattwyinstruments more adapted for on-site analyss, @liode array).
The objective of the present study has been talatdize two NIR instruments, one pre-dispersive amother one an
on-site post-dispersive diode array, to transfemflone to other calibration models to predict fartagon parameters
of wet silages.

Material and Methods

Instrumentation

Instrument 1: Foss NIRSystem 6500 scanning monochromator (RtRSystem, Silver Spring, MD, USA) provided
with a transport module in the scanning range @& #®02500 nm at 2 nm interval. The spectral dateewecorded in
reflectance mode (log 1/R) with WINISI 2 softward @5 (Infrasoft International Inc., Port MatildaA, USA). The
analysis were carried out using natural cells; thifferent charges of each sample were scannedpticdte, averaging
the resulting spectra.

Instrument 2: On-site CORONA 45 VisNIR 1.7 (Carl Zeiss, Incipdk array spectrometer with a scanning range from
400 to 1680 nm with data recorded every 3 nm ilec&ince mode (log 1/R).The analysis was carrigdising a Petri
dish to contain the wet samples. With an integratime of 100 ms, 20 scans were averaged for eaetsunement. All
spectra were recorded using CORA software versipr? Carl Zeiss,Inc.).

Samples

This study has been developed with three hundrddaty four (N=344) grass silage samples, collédtem different
farms, across North Spain. The total samples wistelilited in two sets. The set one with 240 samptdleted from
2002 to 2008 (Set 1) was used for calibration dgwekent. The spectra of Set 1 were recorded usmm&rument (1).
A second sample set (Set 2) containing 104 sansplected from 2009 to 2010 were scanned in boR Mbktruments
and served to standardizate and to validate NIFRBrations.

The same portion of the sample used to collet sp&es used for reference data. The chemical dsaligs performed
using traditional analytical methodologies: Dry kéatcontent (DM) using dry-forced oven (60for 24 hours),
fermentative parameters were analyzed in juiceaektio determine pH, ammonia-N (by destillationyl dactic acid
and volatile fatty acids by HPLC.

Calibration development
NIRS calibrations were developed using SNV&D (Barret al., 1989) transformations to remove multadlice
interferences of scatter, MPLS and second derigadis regression model (WinISl, 2000). This mode$ welected
taking into account the lowest standard error akstvalidation (SECV) and highest coefficient ofedmination in
cross-validation (1-VR).
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Standardization

According to Fearn (2001), who indicates that teetloption in standardization procedures is toraaé samples, in
this work we have evaluated three different masrideveloped using, one, five and ten wet silaggtesrand we have
applied the patented algorithm by Shenk and Westesr(i1995).

Standardization samples were selected applyingCETER algorithm (Shenk and Weserhaus, 1991) froimi SV 11

in Set 2 and three outlier samples were eliminafgterwards, the algorithm SELECT was applied (NL@or
choosing the most representatives spectra/samplasibg Mahalanobis distance among all pairs otspeusing 1.0
as cut off value in both instruments. A total ofsinples scanned in pre and post-dispersive institanwere selected
to develop the standardization matrices. And theaieing 91 samples of Set 2 were utilized for \eiioh.

Results and Discussion

As first step we applied the calibration model deped on instrument 1, after trim, on 91 validatgpectra analyzed
on instrument 2 before standardization and aftplyapg matrices developed with one, five and temgies. Table 1
compares the GH and NH values. The calibration ldpeel on instrument 1 (Table 2) provide good restdr
validation spectra scanned in same instrument{Betverage GH= 1.55 and NH= 1.06, respectively;lbst results,
based on the lowest GH and NH values for spectrarsd in instrument 2, were obtained with the stedidation
matrix developed using five samples; the averagea@®HNH were 4.93 and 3.21 respectively.

It is clear that statistics (GH and NH) have desegawhen applying standardization matrices, howéwese result
show statistics higher than established limits (BHand NH<1.2) avoiding the direct transferability this
chemometric model between these instruments.

Previous researchers (Ferndndez Ahumada et al) 2@98 evaluated the possibility of increase thmistness of the
prediction model including spectra collected witle tsecondary instrument in the calibration set r@odlculating a
new calibration. This idea was applied to our stadgl 40 samples of the validation set (Set 2) weendomly selected
to be included in a new calibration set contairangtal of 280 samples to update the model andetimaining samples
were used for external validation (N=51). The stats show in Table 2 that the accuracy was notrowgd in the
recalculated model. However, increasing the speaarability updating NIR calibration model to bensferred, the
external validation statistics were improved. GHd aNH values became acceptable within the contnolitdi
Calibration models to be transferred between &-nd on-site instruments must include spectra footh types of
instruments. Furthermore, it is necessary to rerttaakthis study demonstrates that calibration rhabteady available
for laboratory instrument on wet silages, the nifficult sample type due to sample presentatioet(and large
fibers), to predict fermentative parameters, preselow amounts, can be transferred to on-siteléiarray instruments
allocated in different country or farm points aaléme sensors to fermentative process control.
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Table 1 Global and neigborhood H Mahalanobis distancd$ é8d NH) values from spectra of Set 2 (N=91)
collected on instrument 1 and 2 before and aft@lieation of different standardization matricesngsia calibration
model developed on Instrument 1.

Instrument 1 | Instrument 2

No STD STD-1S STD-5S STD-10S

GH | NH GH NH GH NH GH NH GH NH
155 | 1.06 79.36| 7438 48.74 4264 493 321 3012hk.22
STD: Standardization matrix: 1S: one Sample; 5& Bamples; 10S: Ten samples

Instrument 1: Foss NIRSystem 6500 scanning monaoedtar; Instrument 2: On-site CORONA 45 VisNIR 1.7

Table 2 Calibration and external validation statisticieabtandardization with calibration model devebbpe
Instrument 1 and update with spectra from Instrur@en

EXTERNAL
CALIBRATION VALIDATION (N=51)
RSQ | SEC | 1-VR | SECV | SEP | GH | NH
Calibration model (N=240)
pH 0.87 0.220 0.82 0.257 0.776 52 3.3%
DM (%) 0.99 0.856 0.98 1.077 7.17 5.29 3.34
N-NH3 (mg/100ml) 0.91 19.76 0.86 25.8 1655 496 3.1p
Lactic acid (g/100 ml) 0.89 0.384 0.85 0.448 2.79 .764 | 3.01
Acetic acid (g/100 ml) 0.74 0.168 0.63 0.203 1.00 .764 | 3.01
Butiric acid (g/100 ml) 0.85 0.189 0.80 0.221 1.634.79 | 3.04
Update calibration model (N=240+40)
pH 0.74 0.298 0.66 0.338 0.4083 096 0.30
DM (%) 0.97 1.56 0.96 1.74 3.80 0.9¢ 0.30
N-NH3 (mg/100ml) 0.84 23.9 0.78 28.5 33.9 0.76 0.28
Lactic acid (g/100 ml) 0.80 0.461 0.75 0.508 0.89®.71 | 0.19
Acetic acid (g/100 ml) 0.58 0.210 0.50 0.231 0.359.71 | 0.19
Butiric acid (g/100 ml) 0.75 0.253 0.68 0.287 0.458).72 0.20

Instrument 1: Foss NIRSystem 6500 scanning monaoedtar; Instrument 2: On-site CORONA 45 VisNIR 1.7
RSQ and 1-VR: Determination coefficients for caditton and cross validation; SEC; SECV; SEP: Stahdamrs of
calibration cross validation and prediction resjpwety. Global and neigborhood H Mahalanobis diseen(GH and
NH).
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Drip loss determination in pork chops with NIR

S. Ampuero Kragten and G. Bee
Agroscope Liebefeld-Posieux Research Station Al/R5IPosieux, Switzerland

Introduction Drip loss (DL) is an important meat quality traitat is finally perceived by consumers as juiciness,
appearance and color of meat. Therefore it is etigh interest for breeding schemes, meat proogseiustry and
retailers. Limited results have been obtainedtarditure for the prediction of DL by NIR [1], witlatios of prediction
(RPD) lower than 1.45, independently of the typenefat (beef or pork), the sample preparation (hanizgd, minced
or intact meat slices) or NIR using transmissionliffuse reflectance spectroscopy. The aim of shigly is to evaluate
the ability of NIR to predict drip loss in intacbgk-chops.

Materials and Methods From 94 carcasses of castrated and female Swigg Mhite pigs 25 mm thick pork loin
samples were collected 1 and 24 h postmortem (ph®y were kept at 4°C until NIR and drip loss asayDrip loss
was determined after 48 h using the bag method.aMleeage drip loss percentage amounted to 4.381%d with
minimum and maximum values of 0.94 and 11.35% mspdy. The samples were also analyzed with défus
reflectance NIR spectroscopy (FT, NIR 500, Buchijt®erland) at 1, 24 and 48 h pm, at room tempegatintact
slices were placed on a special flat accessorypdsing a sampling window of 3.5 cm in diametere&pa were
recorded at 4 different spots on each slice, f@heaaturation time. Spectra were recorded scanfiorg 4000 to
10000 crit, at 8 cnt intervals. A total of 32 scans were averaged fachespectrum. Calibration models were
established with ~2/3 of the samples, evenly distdd over the available DL range, the other ~¥/3amnples was
used as an independent set for validation. The HIRGftware, provided by Bichi with the instrumevds used to
establish predictive models. 1h pm: PLS model witlitiplicative scatter correction full (mf) and' tlerivative BCAP

4 points, 5 PCs; 24h pm: PLS model with derivative BCAP 4 points, 5PCs; 48h pm: PLS mosigh mf and
derivative BCAP 4 points, 8PCs; 48h pm (first spet sample): PLS model with mf, 13 PCs.

Predicted-Property-vs.-Original-Property

AlSpecira .

Predicted:Property-driploss

Figure 1. Predicted vs. original drip loss of 94 intact
LD pork slices, 48 h after slaughter.

Results and DiscussiorComparable to literature results were found fap tyss in intact pork slices when an average
of 4 scanning spots per sample were used, talifowever, the prediction quality could be considéraimproved by
using only the first scanning spot per sample. Thuslope of 0.8 together with an R of 0.81 (Tablevere found for
the validation set of samples analyzed 48h pmt(§pot only, Figure 1). Furthermore, in this cas8EP of 0.93
enabled the value of 1.95 for RPD. Some authorstiored the lack of homogeneity of intact meat di@s a
determining factor for the poor quality observed\dR predictive models for meat quality paramet@seto et al. [1]
mentioned the possible scattering action of muibkers or myofibrils in intact meat slices acting aptical fibers.
Hence they stated the improvement of NIR predistiop homogenizing the meat samples. However, honioagon
of meat samples will severely disrupt the structfréhe muscle, thus altering the water holdingacéy of meat and
thereby affect the drip loss. Furthermore, theitgbdf NIR to predict the chemical composition aslmas the meat
quality traits in intact samples is of great impoite to meat industry and research. To broadeDlth@nge could help
improving NIR predictions, however this is not easyachieve with natural samples. Finally, NIR lgeén secondary
procedure is directly dependent on the referencadeused for calibration. In this respect, theerefice method for
DL determination needs to be strongly standardizextder to reduce the method uncertainty and talide to compare
results between different laboratories.

These results show the great potential of NIR &t drip loss in intact pork slices which coulel firofitable to
selection studies as well as to the meat industry.
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Table 1.NIR model characteristics for the prediction apdoss in intact pork-meat slices.

NIR DL #Ség?rt];ger rangefeni] | Rea. Rua  |Slopaa | Bias | SEC | SEP
1 h postmortem 4 4000-900( 0.67 0.54 0.4 -0.16 1.251.31
24 h postmortem 4 4000-900( 0.79 0.53 0.b -0.16 819 1.43
48 h postmortem 4 4000-900( 0.79 0.64 0.4 -0.11 21.0 1.13
48 h postmortem 1(first) 4000-10000 0.84 0.81 0.8 0.24 1.04 0.93

#spots per sample: number of spots analyzed pegslsataken as sample replications.

[1] N. Prieto, R. Roehe, P. Lavin, G. Batten and®lrés, “Application of near infrared reflectarsggectroscopy to predict meat and meat products
quality: A review”, Met Science 83 (2009) 175-186.
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Quality Assessment of Small Grain Accessions by Mea  ns of Near -
infrared Reflectance Spectroscopy on a Mobile At-li ne System

V. Hahn', M. Gowda, and B. Ohnmacht
YUniversity of Hohenheim, State Plant Breeding ns#i, 70593 Stuttgart, Germany,
2 Julius Kiihn-Institute, Bundesallee 50, 38116 Bsatmveig, Germany
E-mail: volker.hahn@uni-hohenheim.de

Introduction

In plant breeding programs mobile at-line NIRS syst offer the opportunity to determine dry mattentent and
quality traits promptly after harvesting withouetheed to mount each combine harvester with aych$RS system. In
a joint project of diverse German plant breedingnpanies with the Julius Kihn-Institute and the @nsity of
Hohenheim the potential of NIRS on a mobile atdisgstem (figure 1) was assessed for determinafiainy matter,
crude protein, and starch content of wheat, badag,triticale grains.

Figure 1. Combined at-line system with Zeiss Corona andteol¥IR spectrometer.

Materials and Methods

In 2008 and 2009 samples of wheat, barley, antéhit were investigated at diverse locations frdffexent plant
breeding companies promptly after harvesting. Sarsjle was about 0.5 to 1.0 kg. The at-line syste® equipped
with a Zeiss Corona 45 near infrared diode arracspmeter (Carl Zeiss Jena GmbH, Jena, Germang)a&olytec
PSS-2120 near infrared InGaAS diode array spectemi{folytec GmbH, Waldbronn, Germany). NIR speetee
collected in the 960-1690 nm (Zeiss) and 1100-21@QPolytec) spectral range. For the Zeiss speatspectral filter
was used to eliminate spectra indicating the engptyveyor belt, by removing all spectra with absodeavalues
higher than a threshold set for defined wavelendith® to different software packages this was mstsible for the
spectra collected with the Polytec system. Mathamaktprocedures on the spectral information andbrcation
development were performed with software packagdib@sion Wizard 0.8.9 (Sensologic GmbH, Nordersted
Germany). Calibrations models were developed ugiagial least squares (PLS) regression and crdgiatiag
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techniques. A total of 60 mathematical spectrarpattnents were tested for each calibration. Abdutod of all
samples were randomly selected and used as validatt. Reference values were provided by the feedding
companies mainly based on laboratory NIRS.

Results and Discussion

Both NIRS systems showed comparable results foinedistigated traits (table 1). Among the traitgeistigated, dry
matter content showed the highest potential foemeination by NIRS followed by protein content. Weuld not
develop good calibrations for starch content. Addal investigations have to show whether this r@blem of the
reference values or of the NIRS technology.

The results demonstrate that the addition of difiefocations and breeding materials can enharmcddtelopment of a
calibration method. As an example, figure 2 showthar different values for protein content at th&edent
environments, or breeding companies, respectivgbwever, the reference data originated from difieérereeding
companies, and thus from different labs. Suppleargratudies have to show whether there is an irapbrmpact of
the reference labs.

Table 1: Calibration and validation statistics for the matia¢ical treatment with the lowest SEP value.

Loc. Loc. Calibration Validation
Crop Trait (% DM)  Range 2008 2009 N Ra SEC N SEP RPD Ry
Zeiss-Corona
Wheat Protein content  9.4-14.3 4 3 1720.87 0.54 192 049 2.15 0.88

Wheat Starch content 62.2-71.6 4 1 1533.87 0.76 171 0.70 2.05 0.87

Wheat Dry matter 12.0-221 1 3 850 098 043 95 039 577 0.99
Barley Protein content  8.0-15.5 4 2 449 096 50.3 50 0.30 3.84 0.97
Barley Dry matter 11.8-16.2 1 2 223 097 024 25 0.19 524 0.98
Triticale Protein content  9.9-17.7 5 2 890 0.980.28 100 0.31 455 0.98

Triticale  Dry matter 8.5-15.1 1 1 448 0.98 0.28 51 025 6.64 0.99

Triticale Starch content  63.5-72.9 5 1 1136.89 0.68 127 0.73 2.05 0.87
Polytec-PSS2120
Wheat Protein content  9.4-14.3 4 3 1726.88 0.52 192 044 235 0.90

Wheat Starch content 62.2-71.6 4 1 1533.87 0.77 171 0.74 1.93 0.85

Wheat Dry matter 12.0-221 1 3 849 098 049 95 045 494 0.98
Barley Protein content  8.0-15.5 4 2 350 0.96 80.3 39 0.35 3.80 0.97
Barley Dry matter 11.8-16.2 1 2 223  0.96 0.26 25 0.19 521 0.98
Triticale Protein content  9.9-17.7 5 2 892  0.980.29 100 0.33 4.40 0.97
Triticale  Dry matter 8.5-15.1 1 1 452 099 026 51 0.25 6.86 0.99
Triticale Starch content 63.5-729 5 1 113990 0.67 127 0.72 2.09 0.88

DM = dry matter, Loc. = location, N = number;,R= correlation coefficient of calibration; 2= correlation coefficient
of validation, SEC = standard error of calibrati8kP = standard error of prediction, RPD = ratipefformance
deviation.
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Figure 2: NIRS prediction (predicted) vs. reference valuesu@) of protein content for wheat grains, invgated at
six locations/breeding companies. Different symlmolsolors show the different locations. NIRS speetere collected
with the Polytec spectrometer.
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Soil Carbon Monitoring with NIR: Potentials and Cha  llenges

J. Miltz,* A. Don'
! Johann Heinrich von Thiinen-Institute, Institutedgficultural Climate Research,
Bundesallee 50, 38116 Braunschweig, Germany
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Introduction

The NIR spectroscopy technique for measuring aljtial soil properties is an investigation methbdittis relatively
new. In the last decades NIR was mostly used terdee the quality of field crops, eg. silage maine whedt**

But the soil itself plays a very important rolef ooly as a basis for agricultural crops productioterms of supply and
retention of nutrients and moisture but also fer¢hmate. The global carbon cycle shows thateanil store carbon and
also set carbon free, whereupon the emerging catimoide is one gas of the greenhouse dadéiR spectra can be
used to estimate several important soil paramsteris as organic carbon, nitrogen, texture and hdraagons

(lignin)®. Global agriculture produces big amounts of treeghouse gas. The Kyoto protocol sets binding tsifige
industrialized countries to reduce the greenhoaseegnissions and all greenhouse gas emission fremgricultural
sector have to be reported on a annual basis tO&#eCCC. Up to now, most of the Annex | countri@sd not
reported data for carbon stock changes in soilthisds an insufficiently determined factofhe heterogeneity of soils,
the monitoring on different scales and time consuniield and laboratory measurements hamper a ijication of

soil carbon stock changes on regional and natisceales.

The Johann Heinrich von Thiinen Institute is resimbam$or the German greenhouse gas inventory fioerand use
sectors and acts a consultant for the German fedhéméstry of food, agriculture and consumer prai@e. The
development of NIR on the go techniques to mordtrbon in agricultural soils is one of our insetsit projects. Our
intention is to find out the areal distributionazrbon in soils near to the surface and down tonosier on field scale.
These investigations should go fast so that vaffields can be examined. The expected output \ilalbetter
understanding and estimation of carbon stocks hAadges in soils in lower Saxony and Germany.

Materials and Methods

In order to investigate carbon in soils we usedvikible (VIS) and near infrared (NIR) spectroscapy measurement
range from 350 to 2200nm in absorbance mode wigsalution of 8nrh Two sensors could achieve the mentioned
nm-range: one for the VIS-range and one for the-NiRge. Therefore we worked with the ocean optifsvare for
the VIS and the Hamamatsu software for the NIRhBwbgrams were integrated into one software, thasv
spectrometer software, so that the handling wag a&ad fast

Spectrophotometer and software are from the Vecisrtologies enterprise in Kansas, USA. They produtavative
sensors that measure important soil variabilityimifarm fields.

The very special feature within our field analyisishe on-the-go-measurement with two techniguesshank for
analyzing the upper part of the soil (spatial viawig and the probe for the vertical distributidrsoil carbon down to
one meter. Our spectrometer-shank is being dir@aetiynted onto a drawbar with the tractor (Fig.1)eveupon the
probe shows a direct connection to the tractorauthusing a front tongue (Fig.2).

Figure 1. The Veris-shank with optical unit, the Figure 2. The Veris-Probe with the foot as a robust
subsoiler chisel, six blade coulters for measuring  column that connects the hydraulic arrangement with
electric conductivity, the spectrometer and ausjlia  the NIR-drilling rod and window, the spectrometada
case, two closing discs, the GPS. auxiliary case, the GPS.

61



The subsoiler of the shank penetrates the soirémaired depth (5-12 cm) and the optical sensotbeapulled
throughout parallel lines with e.g. 8m distancengen the lines. A chisel in the front makes a thetierough which
the optical unit gets smoothened. During these oreasents the NIR-window is directly in contact witte soil all the
time through a self-cleaning sapphire window. Drgvivith 4 km/h the spectrometer took one spectta@oil every

6 cm. The closing discs in behind close the trendteep a relatively planar surface without signfit trenches. The
GPS, that is mounted upon the auxiliary case piates information about the position of the shartke advantage of
this method is the rapidness of doing measuremsathat you can reach field scale measuremerssilgbroperties
without being limited in a certain number of s@hsples, as you are in laboratory NIR-measureméntshermore the
low costs analysis, the direct contact betweerofiteal window and the soil, establishing a se#facling system, and
also examinations that can be done after a simoet ¢if practice are remarkable characteristics @Méris shank
indicating the high potential of this instrumentaioply NIR on the go techniques for mapping of igpdistributions of
soil characteristics on field scale.

The probe facilitates the characterization of paiffiles by adding to the Veris-shank data thedtkiimension. The
spectrometer collects NIR reflectance as a prolte avi optical window that is pushed into the sailfje. The same
spectrometers can be used for the probe as thaysadein the shank system. The force to reach th @épaximum

95 cm is being generated by the hydraulic arrangéwfethe tractor. As an additional parameter,firee that is
needed to push the probe into the soil is recovdtda cell at the bottom of the probe. Duringdi@heasurements the
optical sapphire window is in direct contact witie tsoil, as it is for the shank. At the bottomtaf probe there are also
electric conductivity (EC) contacts, collecting ti€-data. Both instruments combined, the shanklaagrobe, lead to
a three-dimensional view into the soil.

The spectrometer software from Veris provides oneenspecial function: it can combine the informatid the
spectra, taken with the shank, with the GPS daterins of filtering and clustering and calculatéga fuzzy
algorithm the most representative locations oftteasured field, where soil samples should be tai@rering the
whole measured spectra range. The soil data issacefor the following calibration and validatithrat has to be done
for each measurement campaign in order to accoumsefisonal changes in soil moisture. Soil sanfptesalibration
and validation of the probe results were takermv@hine driven coring (8.7 cm diameter).

The above mentioned auxiliary case provides additidata along with the spectra measurements. dthidéianal data
is the soil temperature, the achieved coring depthdriving speed of the tractor, the force needigtihg the drilling
process, the EC-data.

Results and Discussion
Ouir first investigations on a 9 ha cropland siteensiccessfully performed. Via the shank we measiu@dines with a
distance of 8m, got 4806 spectra and took 36 lior soil samples. Via the probe we used a 24*gdd) got 3116
spectra and took around 100 calibration soil sasfstam 12 locations via a 24*72m grid.
The next step will be the carbon and nitrogen asislgf the calibration samples in the lab usingamnbustion
technique. A calibration for the recorded NIR spettas to be generated using also the additionasanements such
as electric conductivity. New calibration technigusich as booted regression trees are going tovbstigated in order
to explore the full potential of the Veris instrume
The project is in its starting phase and will ainaaswering the following questions:
Temporal dynamic of soil organic carbon:
1. How is the reproducibility of soil parameters sashorganic carbon with the NIR on the go instrummémm
Veris (precision, accuracy)?
2. Can the temporal dynamic of soil carbon stocksdtenated with NIR on the go (Minimum detectable
difference in soil carbon)?
3. Can the seasonal dynamic (soil moisture) be captara global calibration (beyond calibration otkdield
campaign)?
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3 Orman, B.A. et al., 1991, Comparison of nearairdd spectroscopy calibration methods for the ptiedi of protein,
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Introduction

One of the main challenges in plum crop is to hsiréle fruits at their optimal stage of ripenedeveihg transport,

storage and market distribution while ensuringetasid flavor that meet consumer’s preferences. Nays optimal

harvest dates are mainly based on personal/indilidualuation of skin color, fruit size and softaekeaving these
critical decisions to subjective interpretation Iiap that some fruits are not harvested at theimmy ripeness stage
and reach consumer markets in poor condition. Smegitoring and controlling of quality parameteileelfirmness,

total soluble solids or acidity help to determihe pptimal harvest date we decided to evaluat®&tRetechnology as a
non-destructive tool for the ripening monitoring plums. Two approaches were tested. (a) Partiat lsquare

regression (PLS) was evaluated to quantitativebdijat total soluble solids, firmness and acidity) Discriminant

analysis (DA) was tested as a tool to classify pfuuits according to their picking date.

Materials and Methods

Plum fruit

Plums of the varieties Fellenberg, Jojo and Toghitwn in 2009 in the experimental orchards of thgro&cope
Changins-Wéadenswil ACW research station (SwitzefJamere used for this study. Sets of 20 fruitsaatr fdifferent
stages of ripeness were picked for calibration n®dgving a total of 240 plums. On-tree measuremenmere
performed on the same 20 fruits of the variety Tiogirring the whole ripening period.

NIR Spectroscopy

Spectra were collected using two NIR-instrumentfs gJportable MEMS based spectrometer (Phazir, Rodynix,
USA) and (2) a diode-array Vis-NIR spectrometerRN0ase, SACMI, Italy). The Phazir is equipped veittreflectance
configuration and covers the wavelength range f8@® to 1700 nm. Fruits are illuminated by a tungdight source
and the reflected radiation is measured by a sihg@aAs photodetector. Two spectra were collecteanfboth
opposite sides of each fruit along the equator. fbhe spectra were averaged and the mean spectaswsged for the
statistical analyses. On-tree measurements weferperd only with this instrument.

NIR Spectra of plums were also acquired in the fatowy using a Visible-NIR spectrometer measurimgransmission
mode in the wavelength range of 600 to 1000 nm (RHRe). Fruits were placed on the fruit holderhwifite stem-
calyx axis horizontal, and illuminated by 4 halodigits. Two spectra were collected from both ojjgosides of each
fruit along the equator and averaged.

Quality measurements

Firmness was measured with a texture analyzemimsint (TA-xT2i, Stable micro System, plexiglas gan diameter

25 mm, speed 6.7 mm/sec, compression depth 2 mraasilements were performed on the two opposites side
corresponding to the location of NIR-measuremehtier firmness measurements, each plum fruit wasusely kept

at -20°C before overnight thawing. Then the fruitre mashed and centrifuged (10 min. at 4000 rpaitifdge 3SR+,
Heraeus). An electronic refractometer (Atago PR823 used to measure total soluble solids (TSSx}Bfitratable
acidity was determined by titration (Mettler TimatDL67) with 0.1 M NaOH to the endpoint of pH &fd expressed
as g malic acid/L.

Data analyses

Calibrations were established by means of the soévpackage ‘The Unscraiarl (version 9.8, CAMO, Norway).
Calibration models for total soluble solids, agidind firmness were developed using partial legeai®e regression
(PLS) with full cross validation. Several pre-tmeant options were investigated including spectrabathing, SNV,
MSC and first derivative. Phazir calibrations wdme on the spectral range between 930 and 1658hile for NIR
Case models the wavelength range from 650 to 97@vasmtaken into account. Calibration performance assessed
in terms of R and RMSECV values. Principal component analysi8APand discriminant analysis (DA) were
conducted on the spectral data resulting of thé&rem-measurements of the variety Tophit. Pickingslavere used as
grouping variable. PCA were performed in ‘Thestlamblerl] while XLSTAT (Addinsoft, Ver. 2009.4.03) was used
for DA analyses.

64



Results and Discussion

Fruit quality

Measurements of quality parameters using classleatructive methods helped to monitor plums ripgrémd to
determine the optimal ripeness stage in termstaf smluble solids, acidity and firmness. Figurshbws the evolution
of these three quality parameters for the variaiphit during 20 days. Acidity and firmness decréadering ripening
while total soluble solids continually increasece$e results are in accord with observations madetioer plum
cultivars (Usenilet al, 2008 and Crisostet al, 2004).

Calibration models

We next compared the quality parameters calibrate@hazir and NIR Case spectra for the cultivailefleerg, Jojo
and Tophit. Based on the values &fahd RMSECYV the Phazir instrument shows a sligotilyer performance in terms
of accuracy compared with NIR Case (table 1) bus i portable device and therefore allows fruilamegements
directly on the field. For total soluble solids tbalibration models yielded higher precision basadNIR Case vs.
Phazir spectral data tR= 0.97 and 0.88, RMSECV = 0.40 and 0.85, respelgliv This might be due to the spectral
range of Phazir which doesn't include the bandsveeh 600 and 900 nm related to C-H bonds and asdcwith
sugars. This conclusion is supported by Pérez-Maral. (2010) who compared a Phazir instrument (16000024m)
with a diode-array instrument (400-1700 nm) meagufirmness and soluble solid content of plums. Ii&se spectra
were also better for calibrating acidity and firrasdtable 1). This may be because NIR Case meaisu@sismission
modus while Phazir is equipped with a reflectanmefiguration and measures a considerable smaligropahe fruit.
Pazet al. (2008) analyzed a total of 720 plums in the regl60-1700 nm and obtained better calibration moftels
TSS (R = 0.77) as for firmness (R 0.52). The same observation was made on apBlsigudet al, 2007). In spite
of these findings calculating the mean per batatiekd-20 fruits enhanced the performance of thécations (R [
0.9).

On-tree measurements

During 7 weeks, the same 20 plums of the varietphitowere weekly measured directly on-tree usirg prtable
Phazir spectrometer. A PCA was performed on thetsgedata pre-treated with a multiple scatteriogrection. The
score and the loadings of the first two PCs arewshim figure 2. The spectral variation along thestfiprincipal

component accounted for 82% of the total variabdibhd was mainly related to harvest dates and fitveréo ripening.
The second principal component explaining 9% ofttital variability improved the discrimination betan harvest
dates. These results showed that changes duriegimgp can be detected using a Phazir spectrometer.

We next confirmed this by doing a discriminant gsed (DA) where fruits were classified accordingtheir harvest
date (H). Stepwise forward model selection wasqueréd on the significant wavelengths only. Exceptthe first

harvest date (H1), the confusion matrix of a futissvalidation shows that all the groups were péyfelassified (table
2). Wavelengths around 900 and 1400 nm were highiselated with the factorial scores (data not sijo@ur results
are consistent with findings from Pérez-Magiral. (2010) who tested discriminant models to clasgifyms by variety
using Phazir 2400 and obtained 96.5% correctlysdiad samples.

Conclusions

Monitoring plum ripening by means of a portable anwh-destructive technique yielded promising resuttowever,
for single fruit analysis the prediction models fotal soluble solids, acidity and firmness weré yet satisfactory.
Though using sample means according to commercagitipe significantly improved the quality of theegdictions,
reaching similar (TSS) or even better (TA, firmngssrformances than obtained using a lab dioderapactrometer
working in transmission mode. Moreover, NIR-teclogyl has been successfully used to classify plunteefariety
Tophit according to the harvest date. Further studficluding analyses of other cultivars, origingl gears should be
conducted to improve models robustness.
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Figure 1. Ripening monitoring of plums cv. Tophit based ba évolution of total soluble solids (TSS), acidity;)

and firmness using classical destructive methods.

Table 1. Comparison of the performance of NIR predictiordedls for total soluble solids (TSS), titratabledityi (TA)
and firmness obtained by means of two differentrimsents (Phazir and NIR Case) for the cultivarbeRéerg, Jojo

and Tophit. Evaluation in terms of Rnd RMSECV after full crossvalidation. SG-1-5-25= Golay ' derivative,

smoothing 5 points 2nd order.

Phazir NIR Case
Quality Pre- single fruit batch single fruit
Parameter treatment g2 RMSECV R RMSECV Pretreatment °R RMSECV
TSS
o MSC 0.88 0.85 0.98 0.29 MSC 0.97 0.4
[°Brix]
TA [g/L] SG -1-5-2 0.58 1.46 0.92 0.57 SG -1-5-20.74 1.15
FIrmness o 1.5 0.75 0.31 0.96 0.11 MSC 0.8 0.28
[kg/cn]
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Figure 2. PCA analysis of spectral data (930 — 1650 nm)Jof @phit plums weekly measured on tree. H1 = 2002

H4 =11.9.2009, H7 = 2.10.20009.
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Table 2 Confusion matrix based on spectral data obtavitdthe portable NIR-instrument Phazir: classifica of
Tophit plums according to harvest date (H1 to H7).

correct
from\to H1I H2 H3 H4 H5 H6 H7 Total classification
H1 19 1 - - - - - 20 95%
H2 - 20 - - - - - 20 100%
H3 - - 20 - - - - 20 100%
H4 - - - 19 - - - 19 100%
H5 - - - - 19 - - 19 100%
H6 - - - - - 17 - 17 100%
H7 - - - - - - 17 17 100%
Total 19 21 20 19 19 17 17 132 99%
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Use of NIRS for the prediction of the chemical comp  osition of sainfoin
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Introduction

Sainfoin is a forage legume adapted to cool clisatieriving well on basic and dry soils. It is muappreciated by
farmers due to its high palatability, high nutnitad value and non bloating properties. Sainfoinbhge contains
variable amounts of condensed tannins that areieohph its nutritional characteristics and conferthelmintic
properties. Thus, their precise quantificationnaglavith others parameters of chemical compositiecolmes crucial.
The use of NIR technology for this characterisaimparticularly relevant, especially since hugenbers of sainfoin
samples are being generated by the efforts undetavaelect accessions from different European itiomd. The aim
of this work is to evaluate the suitability of NIR& predicting the chemical composition and thateat of condensed
tannins of a collection of sainfoin samples

Materials and Methods

A total of 186 sainfoin samples obtained from savétals were used. Samples were oven-dried atB@r 48 h to
determine dry matter (DM), ground through a 0.8 sureen and then stored at environmental laboratongitions.
Approximately 5 g of ground sample were placed BDamm diameter ring cup and scanned in reflectamode at 2
nm intervals from 400 to 2498 nm using a Foss NB&ys model 6500 scanning visible/NIR spectrom@tess
NIRSystems, Silver Spring, MD, USA) controlled b8ld¢can software version 2.21 (Infrasoft InternaiprPort
Matilda, PA, USA). Each spectrum was time averdgech 32 scans.

Forage samples were analyzed for ash and crudeip(@P) according to AOAC (1990), for neutral dgént
fibre (NDF), acid detergent fibre (ADF) and acidetgent lignin (ADL) according to the method delsed by Van
Soest et al., (1991). Analyses of condensed tamnéns performed according to Porter et al., (1986).

Calibrations were developed using WinISI Il versib®0 (Infrasoft International, Port Matilda, PASH).
The modified partial least squares (MPLS) regressiethod was used to obtain NIR equations for tadl $tudied
parameters. Spectra were subjected to standarcahgamate and detrending (Barnes et al, 1989tates correction,
and transformed through a mathematical first odkivatisation (1,4,4,1) where the first digit letnumber of the
derivative, the second is the gap over which thiesdéve is calculated, the third is the numbedafa points in the first
smoothing, and the fourth is the number of datatgdin the second smoothing. Critical values fanaging outliers
were T=2.5, and two passes of elimination werewadlh The obtained models were evaluated by theficizeft of
determination in calibration @&) and cross-validation @V), the standard error of calibration and crosidasion
(SEC and SECV) respectively and the residual ptiedideviation (RPD) that was defined as the rbgowveen the SD
and the SECV (Williams and Sobering, 1996).

Results and Discussion

The descriptive statistics for ash, CP, the partitig of structural carbohydrates by the deterggstems and CT were
shown in Table 1. A wide variability was observadll studied parameters.

Table 1: Descriptive statistics for ash crude pro(€P) neutral detergent fibre (NDF) acid detetdére (ADF) acid
detergent lignin (ADL) and condensed tannins (Qil§ainfoin samples (g/kg dry matter (DM))

N° Min Max Mean SD
Ash 145 65.2 159.5 108.2 17.35
CP 164 135.5 307.5 206.11 36.89
NDF 171 138.4 522.0 347.3 98.95
ADF 173 160.6 375.0 255.3 49.09
ADL 170 58.1 1245 83.3 13.05
CT 136 0.65 4.32 2.05 0.712
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N°= number of samples; SD: standard deviation; Mifisimum value; Max = Maximum value; SD = standard
deviation

Table 2 summarizes the statistical values for tlibi@tion equations obtained for the differentedetinations. R2C,
R2CV and RPD values obtained for CP, NDF and Alkciate that the prediction models have a very gmedision,
whereas prediction models obtained for ash and ABLnot capable of predicting these parametersuadiely.
Statistical results obtained for CT were also adesgd satisfactory, although RPD values did nathréx the obtained
value was considered acceptable for screening pagpas well. Similar coefficients of determinati@iues were
found by Smith and Kelman (1997) for the predictidrCT concentrations ihotus uliginosusschkuhr.

Table 2. NIR calibration and cross-validation stiéts for ash, crude protein (CP), neutral deterfijere (NDF) acid
detergent fibre (ADF) acid detergent lignin (ADL)dacondensed tannins (CT) of sainfoin samples (BiKg

NO SEC RC SECV R'CV RPD
Ash 145 10.37 0.64 11.29 0.58 1.54
CP 164 8.58 0.95 9.37 0.94 3.94
NDF 171 20.8 0.96 23.3 0.95 4.25
ADF 173 12.4 0.94 13.8 0.92 3.56
ADL 170 7.08 0.71 7.62 0.66 1.71
CT 136 0.27 0.86 0.32 0.80 2.23

°= number of samples; SEC= standard error of klin; RC= coefficient of determination in calibration; SEE
standard error of cross-validation’@/ = coefficient of determination in cross-validati RPD=residual predictive

deviation;

We conclude that NIR equations developed for datetion of CP, NDF, ADF and CT were adequate fer¢hemical
characterization of sainfoin accessions. The uséftechnology may increase dramatically the tamd cost
efficiency of sainfoin germplasm screening, thuslitating the current pre-breeding programs unsay.
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Title: Online Near Infrared Classification of Iberi  an Pigs Carcasses
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[Introduction] The quality, sensory characteristics and healtopgxties of the Iberian pig products are highlated
with the fatty acid profile of the meat and fat.eTgenotype, age, rearing conditions and mainlyfékding regime of
the animals during the final period of growing ughce in that quality. The Spanish legislation detees different
commercial categories depending on genotype, ptmtusystem and feeding regime. According to trealfieg regime,
there are three main categories: Acorn-Bellota,eReand Feed-Cebo which have some differencesinfttty acid
composition. On-farm inspection and gas chromafugraare officially used for classification purposé®wever
industry and consumers demand fast, accurate, tolgeand low cost authentication methods that im®individually
of each animal. Near Infrared Spectroscopy (NIR& shown its viability to be a suitable at-lineltfoo this purpose.
The aim of this work was to evaluate the perforneamed accuracy of a handheld NIRS instrument tesiflalberian
pig carcasses according to the feeding regime efahimals during the final period of growing in an-line
application.

[Materials and Methods] One hundred and twenty five Iberian pig carcasse® used (41 of the category Acorn-
Bellota, 34 of Recebo and 50 of Feed-Cebo). Reftext spectra were taken with a handheld microrelecechanical
(MEMS) spectrometer (Phazir 2400, Polychromix IMilmington, MA, USA) from the subcutaneous adipdissue
located in the tail insertion area in the coxalioagf the body directly from the carcasses tworkaifter the animals
were slaughtered. The instrument measures from-2800 nm. Chemometric calculations were carriedioWinISI
ver 1.50 (Infrasoft International, Port Matilda, PBSA). Principal Component Analysis (PCA) was usedisualize
the structure of the data set, possible categastel and outlier samples. The data set was dividaslo: a training set
(N=95) and a validation set (N=30, 10 samples pehecategory). These samples were selected usn§EhECT
algorithm by Shenk & Westerhaus included in the MSinsoftware. Discriminant analysis based on Phatt@ast
Squares (PLS2) was used to develop the discrimimattiodels. First (1,10,5,1) and second (2,5,5,diyaléve together
with Standard Normal Variate (SNV) and DetrendiBJ ) was used as spectral pretreatments. Crossati@idwith 4
groups was used to optimize the number of modébfac

[Results and Discussion]The spectra of the adipose tissues analyzed inc#reasses show a similar pattern
independently of the animal category. It was obs@rdifferent absorption peaks related to fat (12260, 2150 and
2310-2340 nm) and water (1940 nm). The PCA scare(ftD PCs explaining the 99.09% of the variabiidy a second
derivative) showed three different clusters, altffouhere was slim overlapping between them (Fig)reTable 1
shows the prediction results of the training séhgiLS discriminant for a second derivative second derivative
showed better classification results comparedfisderivative (not shown)he prediction as Acorn-Bellota category
showed 96.77% of samples correctly classified, A& Feed-Cebo and 100% for Recebo. Table 2 shiosvexternal
validation of the above models. A second derivagivavided larger number of samples correctly cfassithan a first
derivative with only two samples misclassified afeld-Cebo as Acorn-Bellota. These results indidatevtability of
on-line authentication of Iberian pig carcassethatslaughterhouse according to the feeding regifrthe animals.
However, models with highest number of sampleshairg developed. Furthermore, the handheld speeteyrmeeds
further investigations to optimize its applicalyildand accuracy.

Dpto. Producciog Animal é j 003
ETSIAM-UCO i

PC 2 (17.24%)

0.04 L
-0.06 -0.04 0.02

0 0.02 0.04 0.06
PC 1(85.50%)

Figure 1. On-line measurement of Iberian pig carcasses Figure 2. PCA score plot for the two first principal
components (¥ derivative)
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Table 1.Classification results obtained by PLS Discriminfam a second derivative

- - Classified as
Training prediction Number of samples Acorn-Bellota Recebo Feed-Ceh
Acorn-Bellota 31 30 0 1
Origin Recebo 24 0 24 0
Feed-Cebo 40 1 0 39
Table 2. PLS discriminant validation performance for a setderivative
o Classified as
External validation Number of samples Acorn-Bellota Recebo Feed-Ceh
Acorn-Bellota 10 10 0 0
Origin Recebo 10 0 10 0
Feed-Cebo 10 2 0 8
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Development of a graphical user interface (GUI) for on-line NIRS
analysis of feed ingredients at the reception level in a feed mill plant.

F. Javier Sevilla-Pérez*, Ana Garrido-Varo*, Dolores Pérez-Marin*, J.E

Guerrero* and Augusto Gomez-Cabrera*
*Faculty of Agricultural and Forestry Engineeringniversity of Cérdoba. Campus de Rabanales
Edificio Produccién Animal. 14071 Coérdoba. Spaimmail: pa2sepef@uco.es

[Introduction] Real-time NIRS analysis of feed it is by far mooenplex that the development of an application ter a
line laboratory analysis. A key issue that mustcbasidered in the implementation of NIRS instrumfamton-line
analysis is the need of a simple software platfdion,fast generation of analytical and statistiogborts after one
spectrum is read. This paper describes a graphssl interface (GUI) developed in the LabVIEYMenvironment to
control a CORONA NIRS instrument and performs o lanalytical predictions and statistical dataeeff ingredients
at the reception level in a feed mill plant. Sintigla and real time results will show that the depeld GUI produces
very fast useful results by using a friendly andgpical interface. The idea of this work was to elep a flexible
software tool for online prediction, capable to trohdifferent spectrometers with the same program.

[Materials and Methods] The device used to scan the samples was the COREINASNIR (Carl Zeiss, Inc.), diode
array spectrometer that took reading from 380nmMi@80nm, every 2nm. The spectral region used wa@rihito
1690nm. Absorbance values were recorded as log(itdre R was reflectance. Dark and white referemeere taken
manually by requirement of the program. LabVi¥vProfessional Ed. version 8.6 (National Instrumelmts.) together
with MCS5xx32 libraries (release 1.05) provided ©&warl Zeiss Gmbh were used to develop the applicatio
Chemometric calibrations were obtained by using B PLS algorithm and global (GH) and neighbors YNH
distances were calculated by means of Principal goorent Analysis (PCA) and Mahalanobis distances \Miased
on eigenvalues. The PLS, PCA and MD algorithms wemelemented under LabViéW Environment. MATLAB
(version 7.0, the Mathworks, MA, USA) was employed compare results. First and second derivativerr{slo
derivative), SNV, detrending and smoothing (Savitzklay smoothing) were applied with different cignirations.
Leave-one-out was used as cross-validation method.

[Results and Discussion]A new software application presented like a usenfily and easy to use GUI for the on-line
prediction of chemical composition has been dewsdodt was implemented to work together with a CORO
spectrometer. The selection of this spectrometduésto his fast acquisition time, wide measuringagwindow) and
the availability of libraries for applications déepers. These characteristics are quite interestingase of online
measurements because they allow the building ofrobwst applications adapted to the requirementseoproblem.
MSC5xx32 libraries can run under LabViBvenvironment. These libraries are the basis fonei applications and
they manage physical and configurations paramefettse device. LabVieW is a quick and powerful tool to develop
new software. Its Visual programming allows a véamgt development of applications and gives the ipii¢g to
control easily all the process. The developed apptin manages the configuration (acquisition tineavelengths,
averages, etc.), spectra collection, pretreatnuahtulations, results showing, data storing anantspgeneration (Fig
2). The selection of different pretreatments argtifotion models is easy and automatic in some casébis case the
PLS algorithm is used for predictions. GH and NEl ealculated after Principal Component AnalysisARC

With this kind of software there is possible to gete quickly new subroutines (VIs) based on diff¢ralgorithms,
like PLS, LWR, Bayesian, etc., and to incorporatese models into the program easily. Spectra dalgccalibration,
implementation of new algorithms and online praditican be done in the same software. Further warksieeded to
implement new prediction models and spectral pattnents.
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Non-destructive non touch Visible-NIR transmittance spectroscopy for
identification of Fresh and Frozen-thawed Fish
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Introduction

The online evaluation of the quality and freshnesthe seafood is usually done through the emplaoynoé trained
operators. This practice is costly in economic ®and requires a period of training of technicidf. certain frauds
(eg. defrosted as fresh) also are not yet availabiective assessment criteria, particularly fooducts already
processed, sliced or filleted. The handling of greduct reduces the shelf-life by making the fistsceptible to
microbial growth. This study was carried out to leate the discrimination power of a portable VieiNIR

transmittance spectroscopy on fresh and thawedfistiucts.

Materials and Methods

Two products were studied: whole red mulldtu(lus barbatu¥ and swordfish cutletsX{phias gladiuy For each
product 80 fresh (F) and 80 frozen—thawed (T) samplere used as a calibration set, while anothewas used to
build up a validation set (F = 71; T= 71). The n@mN) of samples for validation was chosen acecaydo the
formula N = (1.96/e)d (1- 6) wheree is the accepted error of 0.07% afids a presumptive sensitivity (se) and
specificity (sp) value of 0.9. T samples were almdi by quickly cooling down to -80 °C and then stbat -20 °C for
6, 5 and 4 weeks respectively. Visible-NIR speutesie collected in transmittance mode between 3@Mirh using a
diode array spectrometer MMS1 (Zeiss) customized portable device. The absorbance data have hesidered
between 700 and 1080 nm and developed by the MSdltifilicative scatter correction) algorithm usints@ a
derivative treatment of"2 degree with a gap of 5 nm and a 5 points smoothiegtment. All calculations were
performed using WinlISI Il (Infrasoft Internation&prt Matilda, USA). Discriminant analysis was jpenfied by PLS2
(Partial Least Squares) multivariate analysis nmetthsing cross-validation. The robustness of cdiibnamodels was
evaluated on the external validation data sets.daoh sample (whole fish or whole cutlet) was amziga dummy
dependent variable according to cold treatmento(1F Fresh and 2 for T Frozen-thawed), using aoffutf 1.5 to
classify samples. During validation tests a thrébt@tween 1.65 and 1.35 was also chosen to igethtd uncertain
classification of samples. The positive predictwadue (PPV) and negative predictive value (NPV)eavealculated by
using a free software WinEpiscope 2.0. PPV caddseribed by the following formula: n° of true pgos&s/(n° true
positives + n° of false positives) and is alsoamlprecision. The NPV consider the proportion afaive samples
correctly classified.

Results and Discussion

The study of calibration data sets by principal ponment analysis (PCA) showed the presence of tetindt clusters
(Fresh vs. frozen thawed) in both calibration go(figures 1-2).

The results of both validations are reported ietdb The positive predictive values PPV (the phility that a positive
test reflects the correct identification of positisamples) were very high with similar upper angelolimits. However
it is necessary to highlight that this validatioargmeter depends on the prevalence of the studisesnumber of
thawed samples; T). In this trial the prevalences@f% of positive case (T) was taken as assumptioterms of
Sensitivity (se) the validation on whole red mudlgrovided the best result (9dullus barbatus97.2 % vs. 90.9 %
Xiphias gladiuy This suggested some lacks of Visible-NIR trantmite in the classification of processed seafobd. T
Specificity (sp), the proportion of negative saemp(Fresh; F), is similar between validations (98)ameanwhile NPV
is lower in the swordfish (table 1). The performmaf classification between Fresh and Thawed sssnpére reported
in Figures 3-4. The Scatter plot reported the v@lokVisible-NIR transmittance prediction accordirmgthe dummy
variables in the PLS analysis. The threshold eviddnan high number of uncertain samples in swdrddigtlets
validation sets. This result corroborates the tkub identification among sliced fish products.h@t authors have
tested the ability of Visible-NIR spectroscopy tsaliminate between fresh and frozen-thawed fismalestrating
interesting performances on whdagrus major(100% of 108 fish tested) classification (1). floe fish analysis the
authors used a surface interactance fiber-optibouit MSC correction treatment on spectra (raw datag model
applied in the present calibration considered 80as for each treatment (Fresh vs. Thawed) anairdng set of 142
samples. This higher number of tested samples eserithe the effectiveness of the NIR in autherniticadf fish. In the
surface interactance measurements (1) it was ragassmove the mucus and moisture on the skin, iemthe use of
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transmittance avoids the surface contact and pexrsibntinuously acquirement of the spectra. Thdseacteristics

could be easily applied in industry.

These results show the feasibility of Visible-NIRmntouch non destructive analysis in authenticatb fresh and
frozen fish products. The validation parametergesgthat Visible-NIR could be utilized as a sciregmmethod for the

quality control on-line.

Figure 1. Score plot of PC1, PC2 and PC3 of the
calibration set for Whole Red Mullet.Fresh ;o Thawed

Thawed

MMS1 Prediction of Whole Red Mullet
Fresh &

0 Fresh 15 Thawed 8
Samples

Figure 3. Scatter plot of Visible-NIR transmittance
classification for Whole Red Mullet. Black spotsreve
misclassified samples; The dotted lines evidenaed
uncertain threshold between 1.65 and 1.35.

w

Figure 2. Score plot of PC1, PC2 and PC3 of the
calibration set foSwordfish cutlets: Fresh; o Thawed

w
)

MMS1 prediction of Swordfish cutlets
Fresh & Thawed
cm:ﬁ:am

o

0 Fresh 15 Thawed 3
Samples

Figure 4. Scatter plot of Visible-NIR transmittance

classification for Swordfish cutlets. Black spotsrey

misclassified samples; The dotted lines evidenaed
uncertain threshold between 1.65 and 1.35.

Table 1. Performances of validation (at 95% Confagelnterval)

Number of samples Validation parameters (%)
Product Groups
C F U T PPV NPV
Whole red mullet Fresh 70 1 9 71 98.6 97.2
Thawed 69 2 6 71 (90.3-99.7) (92.4-100.0)
Swordfish cutlets Fresh 64 7 20 71 98.6 90.1
Thawed 70 1 14 71 (92.3-100.0) (80.7-95.9)

C: correct; F: False; U: Uncertain; T: total samspd@alyzed; PPV: Positive Predictive value; NPV &g Predictive
value. PPV and NPV were expressed as percentalyéomier and upper limits.
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Introduction

Although organic soils cover a relatively smallaia Denmark they can contribute significantly be tcarbon
balance. More detailed information on the fieldlsaariability of total organic carbon (TOC) is easial for improved
carbon management.

The current study represents the first attemptpalyathe mobile VIS/NIR system to the mapping ofiamic soil in

Denmark with the focus on investigating it's potehés a rapid analytical method for real-timemastion of the spatial
distribution of TOC. The crucial approach of thimject is based on the hypothesis that VIS/NIR &hde a lucid

method for TOC estimation and organic soils deliio@adue to the organic nature of the majority ®idthis region.
The possible effect of different field conditions the spectral measurements will be investigatedth& main part of
this work comparison of conventional mapping mettwthe new mobile VIS/NIR mapping was reported.

Materials and methods

A part of a 12 ha highly variable agricultuiiald in Central Jutland, Denmark was selectethasstudy site. In the
first step 162 soil samples were collected on ar2§rid (Figure 1, map a). Samples were dried 8€88ver night;
sieved (< 2mm) and subsamples were ground usiradl anill. Samples were analysed for TOC using ad_gwuction
furnace (CN-2000 instrument, LECO Corp., St. Joséfi. TOC values obtained from those analyses wesed for a
reference map generation by interpolation usingifg.

Spectral data were acquired using an orgthshank based VIS/NIR spectrophotometer systeraldeed by
Veris Technologies, KS, USA. The system includes $yectrometers measuring soil reflectance in i1&#NIR
regions (350-1000 and 1100-2200 nm) (Figure 2).
In order to increase the robustness of the caldiratvo data sets from different periods varyindiéhd conditions
were employed. First data set (3565 spectra, frorh2m spaced transects) was obtained in very uiimeisture
content (Figure 1, map b). In order to verify tloewracy of the first measurement and TOC predidtiensecond set of
data (2144 spectra, from 25m spaced transectsyammrier field conditions was collected (Figurevigp c).

In order to create calibrations for TOC potidns, a number of 15 representative soil samflegach data set
were obtained. Samples were taken from a depthl& ©m within the field. Each sample included 6sarbples taken
within 2.5 m of the sampling point.

Before regression analysis, the spectral informatvas compressed by calculating principal companenitliers were
determined by mahalanobis distance and removed @lostering using of a fuzzy c- means algorithns wanducted.
Within each cluster a location with the minimal splavariability was selected. This way a map of répresentative
sample locations was proposed.
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Figure 1. Sampling methods. The figure shows thiferent sampling methods: a)- manual samplirid,dy)- 1'st
mobile VIS/NIR measurement- in wet conditions, Zj3d mobile VIS/NIR measurement- in dry conditions

The collected spectra were correlated to TUdg multivariate regression techniques (UnscremBl7; Camo
ASA, Oslo, Norway). The calibration process invalibe correlation of TOC content of the 15 samfiles both data
sets with their spectral data.

Three types of calibrations on both data sets \weréormed: using only spectra, using spectra withduxiliary data:
soil electrical conductivity EC-SH, EC- DP and seiéctrical data with soil temperature. Six differespectra pre-
treatments (Table 2) were conducted: (1) only spe¢R) Savitsky-Golay smoothing over 11 wavelengtints and
transformation to a (3) 1'st and (4) 2'nd Savitzkyd Golay derivative algorithm with a derivativeeirval of 21

wavelength points, (5) with or (6) without smoothirBefore auxiliary data were included they weredified by

autoscaling (mean centred and scaled by 1/Sde) calibration equations were computed using thegpectral data
(log 1/R). Calibrations of TOC from spectral datares developed using the full cross-validation médtba centred
data. The best treatment was considered to berthenith the lowest RMSEP, the highe&tfar calibration and for
validation data set.

The system acquired also soil electrical catigity for two soil depths: shallow conductivigxC-SH (0- 30 cm),
deep conductivity EC-DP (0- 90 cm). During the 2field campaign real-time soil temperature measer@s were
also collected with the use of a temperature sdpsated in the shank.

(EC-SH,EC-DP;
temp.)

Spectrophotometers
- (350-2200nm)
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Figure 2. The Veris VIS/NIR shank based system.

Results and discussion

The carbon content from the laboratory anslg$ the reference samples ranged from 1.44 t@ ¢2100g with
Sdtv=13.06.
The best calibration model for the first VIS/NIR aseirement using smoothed spectra with the 1'svatire and EC-
DP resulted in RMSEP=6.17=0.81, while for the second model with the addiioruse of temperature
(RMSEP=5.39, %0.86) (Table 2). The statistical differences ire thalibration results of the two VIS/NIR
measurements are most likely due to different catiibn samples used in both models and differéed tonditions.
There are two visible trends in the 1'st and thed2alibration model (Figure 3). In the first calibon model samples
with the lower TOC content were worse predictechttieose with a higher OM content. The error of proh of 5-
6g/kg can be a problem for the areas with very T®C resulting in negative values of predicted carb@he second
calibration model in turn shows no obvious linearrelation between TOC and VIS/NIR data within veigh values
of TOC (>25g/kg). From the prediction point of vi¢he second calibration model with lower correlatin the higher
TOC range seems more suitable.
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Figure 3. Results from the best calibration modetn the 1'st VIS/NIR measurement (top graph) &oedn the 2'nd
measurement (bottom graph).

The two predicted TOC maps and a similar tmaged on manual sampling show the same generafpatt TOC
distribution (Figure 4). The maps based on VIS/NiRasurements (maps b, ¢) are more detailed duehigher
amount of data points and more closely spaced measmts. The overlaid 15 calibration points fronthbmobile
measurements correlated well with the VIS/NIR presl TOC maps.
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Table 2. Calibration/validation results of spectrathematical pre-treatments and accuracy of piiedifor two
VIS/NIR measurements.

Spectra smoothed 1'st derv. Smogthed, st 2'nd derv. Smoothed, 2’nd
erv. derv.
I'st| 2nd | I'st | 2’nd | 1'st | 2'nd 1'st 2'nd I'st | 2'nd 1'st 2'nd
RMSEC! | 8,02| 6,59 539 664 6,79 647 532 6,47 917 789 ,7 8 6,76
RMSEP' [ 930 9,49 859 954 12,34 946 8,20 956 13,36 3lf1,012,21 9,13
rict 0,64 0,76( 0,84 0,74 0,74 0,7]7 0,84 0,77 oJs3 065,570 0,74
ript 0,57 0556 0,64 054 026 056 0,67 056 013 (41,270 0,59
RMSEC? | 4,13| 5,02| 4,01 504 556 6,07 556 6,0/ 556 6,07 ,565| 6,07
RMSEP? | 6,61 6,92 6,40 6,99 6,17 7.3 6,17 7,3 617 7|30 76,1 7,30
r’c? 0,90| 0,86 091 084 083 079 0,83 0706 0/83 (,79.,830| 0,79
r2p? 0,79 0,77 0,84 0,74 0,81 0,74 0,81 0,74 ojs1 074 810 0,74
RMSEC® | - | 468 - | 468 - 4,75 - 4,75 - 4,7b - 4,75
RMSEP? - | 641 - 6,39 - 5,39 - 5,39 - 5,3p - 5,39
r’c? - 0,88 - 0,88 - 0,87 - 0,87 - 0,8f - 0,87
r’ps 0,80 0,80 - 0,86 - 0,86 - 0,8p - 0,86

RMSEP - is the expected predictiemor
RMSE - is the calibration error

rC - the raw R-square of the model
rP- adjusted R-square for future predictions

L calibration using spectra only

%_ callibration using spectra and auxiliary data

3. calibration using spectra, auxiliary data andgerature

1'st- 1'st sampling campaign with the mobile VISRN$ystem
2'nd- 2’'nd sampling campaign with the mobile VISR$ystem

Additional statistics have been calculatedatidate the feasibility of the mobile system megicting TOC content
(Table 3) by comparison with the reference map.

Table 3. Statistical validation of TOC predictedana. reference sampling grid.

RMSEP |  SEP RPD RER R2 bias
VStVISINIR | ¢ 250 6.312 1.576 6.154 0.768 0.906
measurement
2'nd
VIS/NIR 5.876 5.844 1.815 8.437 0.786 1.037
measurement

The results support previous hypothesis thathe second measurement with the mobile system perfoed
better presenting a lower RMSEP, SEP and higher RPDr? in the general prediction of TOC. Calibration
representing a better fit within the lower values & TOC delivered more accurate prediction. Most impeotantly,
when comparing the TOC final prediction maps by theVeris it shows that the system performed well in @th low
(TOC content <7%) and high (TOC content >40%) areas
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Figure 4. Maps of TOC

The figure shows three maps: a - kriging map of TiSed on manual sampling (at the top), b- cotkgighap of
predicted TOC- the 1'st VIS/NIR measurement, wittilration points (left bottom), c- co-kriging mayb predicted
TOC- the 2'nd VIS/NIR measurement, with calibratjpzints (right bottom).

The main differences in those two calibration medek the time of VIS/NIR measurements, varyintgl feonditions-
moisture conditions and different sampling stratdggspite of some discrepancies between the ctbbrenodels from
wet and dry field conditions they have not affecthd prediction maps seriously and still correlasl with the
reference map suggesting a minor effect of moistargent on spectral data.

When working on calibration models with high RMSEmR suggested to use models with better fits wwithe lower
values of TOC as those seem to deliver more aapradictions.
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Using of LOCAL calibration for predicting feed valu e of fresh forages
from faeces samples
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Introduction

The prediction of forages feed value is importantestimate the ruminant performances. Near infraediéctance
spectroscopy (NIRS) has been used to predidhtkizro digestibility (OMD) and voluntary intake (V1) obfages using
both, forages and faeces samples. Prediction magelasually built using multiple linear regress{MLR), principal
component regression (PCR) or partial least sq(RES) regression techniques. Because of the laaghility of
fresh forage population and source, LOCAL calilmmatcould be well adapted for their applicationte prediction of
forages feed value. The aim of this communicat®oi evaluate the potential of NIRS to predict, fibed value of
fresh forages using the LOCAL algorithm on fae@ssles.

Materials and Methods

A total of 1220 faeces samples of different speaigs-grassl(olium perenne)italian rye-grassLlium multiflorum)
cocksfoot Dactylis glomerata) tall fescue Festuca arundinacea}imothy (Phleum pratense)soft brome Bromus
mollis), lucerne KMedicago sativg)red clover(Trifolium pratense)rye-grass + white cloverT(ifolium repen¥ and
permanent grassland were used. Forages samplesfanmeligestibility and intake measurements avédadt INRA
Clermont-Ferrand/Theix which has been largely dbated to develop the tables of nutritive valudesfds (Andrietet
al., 1989).

Samples were oven-dried at 80° C for 48 h to deterrdry matter (DM) and then ground through a 018 streen.
They were stored at environmental laboratory comust

The determination of OMD and VI were determined &ach forage sample on 6 sheep wethers, according t
Demarquillyet al, (1995). From a digestibility trial a faeces séanpas constituted by weighting a subsample ofdaec
of each animal taken daily. In each digestibilitialt forages were offeredd libitum to measure OMD and VI at the
same time. A refusal of 10 percent of the offeradrdity was allowed. Forages were offered choppedength of 5-7
cm twice a day, at 0800 h and 1600 h. During theedrmental period, animals had free access to veatdrvitamin-
mineral blocks.

After samples homogenization, forages were planeml 50 mm diameter ring cup and scanned in refieetanode at
2 nm intervals from 400 to 2500 nm using a Foss }Ykems model 6500 scanning VIS/NIR spectrometesqF
NIRSystems, Silver Spring, MD, USA). Spectra anfgnence values were recorded with the NIRS3 sofvanfrasoft
International, South Atherton St. State Collegk, 18801 USA). Each spectrum was time averaged f8@nscans. A
reference scan (using the internal ceramic referdibe) was performed before and after each safmpéereflectance
(R) values were converted into absorbamgevélues using the formula A=log (1/R).

Calibrations were developed with WinISI Il versidr60 software (Infrasoft International, South Atbe St. State
College, PA 16801 USA). The samples were randoriged into calibration (n=1085) and validation {85) sets
accordingly to the number of samples of each pajpuniasamples. The LOCAL approach was used. Differsadels
were obtained for each sample according to diffeoptions in order to find the optimised modelsdé@ket al, 1997).
The options included: number of samples used; 4D<26ps of 40, number of PLS factors used; 10-4p Stand
number of PLS factors removed 1-10 step 1. Thedwdting of each determination was retained amd# then used to
predict the validation set. All models were perfednusing NIR wavelengths (700-2500 nm) on firstivddive
transformation of the spectral data and a scatteection pre-treatment; standard normal variatk detrend (SNVD)
(Barneset al, 1989). Validation performance for each model wasessed by the coefficient of determination of
external validation (R/), by the standard error of prediction (SEP), hy bias and by the residual predictive deviation
(RPD) which is defined as the ratio SEP to the $Batibration set.

Results and Discussion

The samples used in this study (n=1220), all ofrthiested forin vivo OMD and VI according to the methodology
described by Demarquillgt al, (1995) were considered as representative ofebdé value of the most fresh forages
found in temperate regions. The calibration anddesibn sets covered similar ranges for each compbrMean and
standard deviation values were also similar fohtzsetts.
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Table 1: Descriptive statistics for tlire vivo organic matter digestibility (OMD) g/g and voluntaintake (VI) g/kg
BW? within calibration and validation sets.

Calibration set (n=1085) Validation set (n=135)
Min Max Mean SD SEM Min Max Mean SD
OMD 0.48 0.85 0.70 0.06 0.01 0.58 0.84 0.72 0.06
\ 225 115.2 68.1 11.8 5.35 38.7 1011 706 10.9

SD: standard deviation; Min= Minimum value; Max =akimun value; SEM = standard error of the method

Calibration statistics are shown in Table 2. Fahl#eterminations, OMD and VI, the best LOCAL modeés not use
a large number of factors for predicting the vdimia set. A total of 25 factors were selected wiité first four not used
for the prediction of the OMD and 15 factors foe fhrediction of VI.

Table 2: Validation statistics for prediction obanic matter digestibility (OMD) g/g and voluntangake (VI) g/kg
BW®®using the LOCAL algorithm

N Factors SEP Bias RV RPD
OMD 130 25 (-4) 0.017 0.004 0.91 35
VI 130 15 (-6) 6.04 0.61 0.67 1.8

N= number of samples; Factors= Number of PLS factior brackets number of PLS factors excluded SEPdard
error of prediction; R/= coefficient of determination in validation s&PD=residual predictive deviation

Statitstics associated to the OMD predictions shbat LOCAL algorithm explains more than 90 percehtthe
variability. SEP and RPD values are better thaisehabtained by Anduezt al, (2010) using a similar database of
forages but scanning forages samples. For VI thep&tcent of the variability was explained using t@CAL
approach. Although statistic values are better thase obtained by Anduera al, (2010), the calibration model was
not adequate for using in quantitative applicatiaesording to the criteria proposed by Williams a®dbering
(1996).The high variability of the reference metteaah partially explain these results. Bias valuesewnegligible for
both determinations

We concluded that LOCAL approach is appropriatpredict the OMD values. More effort should be m&mlexpand
the variability or reduce the error for the VI deténation.
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