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General regression neural network model for growth of Salmonella
serotypes on chicken skin for use in risk assessment
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Abstract

The objective of the present study was to develop a general regression neural network
(GRNN) and Monte Carlo simulation model for growth of Salmonella on chicken skin with
native flora and as a function of serotype, temperature and time for use in risk assessment.
Poultry isolates of Salmonella with natural resistance to antibiotics were used to investigate
and model growth from a low initial dose (0.78 to 0.95 logs) on chicken skin with native
flora. Computer spreadsheet and spreadsheet add-in programs were used to develop and
simulate a GRNN model. Model performance was evaluated by determining the percentage
of residuals in an acceptable prediction zone from -1 log (fail-safe) to 0.5 logs (fail-
dangerous). The GRNN model had an acceptable prediction rate of 92% for dependent data
(n = 464) and an acceptable prediction rate of 89% for independent data (n = 116), which
exceeded the performance criterion for model validation of 70% acceptable predictions.
Differences among serotypes were observed with Kentucky exhibiting less growth than
Typhimurium and Hadar, which had similar growth. Temperature abuse scenarios were
simulated to demonstrate how the GRNN model can be integrated with risk assessment.

Keywords

Risk assessment, neural network, Monte Carlo simulation, predictive model, Salmonella,
growth, chicken skin, strain variation.

Introduction

Salmonella are a leading cause of gastroenteritis and are often isolated from poultry (Bryan
and Doyle 1995). There are over 2,300 serotypes of Salmonella yet only about 50 are
responsible for most cases of gastroenteritis (Foley et al. 2008). The top three serotypes
isolated from chickens are Enteritidis, Kentucky and Typhimurium. Variation of growth
among serotypes of Salmonella has been observed (Fehlhaber and Kruger 1998; Oscar 1998).
However, whether growth of Kentucky differs from other serotypes of Salmonella has not
been reported. Performance of predictive models can be improved by using better-fitting
models. It has been reported that general regression neural network (GRNN) models
outperform regression models and other types of neural network models in predictive
microbiology applications (Jeyamkondan et al. 2001; Palanichamy et al. 2008). With the
advent of commercial software applications that perform GRNN modelling, it is now easy to
use GRNN modelling in predictive microbiology studies. Moreover, GRNN modelling
software is compatible with Monte Carlo simulation software. Thus, it is possible to create
GRNN models that use Monte Carlo simulation to model uncertainty and variability of
independent variables. Output distributions from such models can be used in risk assessment.
The objective of the present study was to develop a GRNN model that employs Monte Carlo
simulation to provide stochastic predictions of Salmonella growth from a low initial dose on
raw chicken skin with native flora as a function of serotype (Typhimurium, Kentucky,
Hadar), temperature (5 to 50°C) and time (0 to 8 h) for use in risk assessment.

Materials and Methods

Isolates of Salmonella serotypes Typhimurium, Kentucky, and Hadar were obtained from
poultry. Typhimurium was resistant to chloramphenicol (C), ampicillin (A), tetracycline (T)
and streptomycin (S). Kentucky was resistant to novobiocin (N), A, T and S. Hadar was
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resistant to T, sulfasoxazole (U), gentamicin (G), and S. Xylose lysine tergitol 4 base agar
medium without tergitol (XL) but supplemented with 25 mM HEPES (H) and 25 ug per ml of
C,A T,S N, Uor G was used for enumeration. A full 3 x 10 x 5 x 2 x 2 factorial
arrangement of serotype (Typhimurium, Kentucky, Hadar), temperature (5, 10, 15, 20, 25, 30,
35, 40, 45, 50°C), time (0, 2, 4, 6, 8 h), trial (1, 2), and sample (a, b) was used for model
development. Replicate trials were conducted in separate weeks with different batches of
chicken skin. Chicken thigh skin portions (~0.25 g) were spot inoculated (5 pl) with an initial
log number of 0.95 for Typhimurium, 0.78 for Kentucky and 0.91 for Hadar. Pulsified
samples (skin portion + 9 ml buffered peptone water; BPW) were used for enumeration. A
combination three-tube MPN and spiral plating method with XLH-CATS for Typhimurium,
XLH-NATS for Kentucky, and XLH-TUGS for Hadar was used for Salmonella enumeration
(Oscar 2006). A dataset was created in an Exel spreadsheet with separate columns for
serotype (independent categorical variable), temperature (independent numerical variable),
time (independent numerical variable) and log number (dependent variable). A GRNN model
was trained by the method of Specht (1991) using Neural Tools software. Eighty percent of
data were used for training and 20% were used for testing. Percentage of residuals in an
acceptable prediction zone from -1 log (‘fail-safe’) to 0.5 logs (‘fail-dangerous’) with an
acceptable prediction rate criterion of 70% was used for model validation (Oscar 2006). A
discrete distribution was used to model serotype prevalence, whereas pert distributions were
used to model temperatures and times of abuse. The GRNN model was simulated with @Risk
settings of Latin Hypercube sampling, 10° iterations, and a correlation between temperature
and time of 0 or -1. The best-fitting distributions for output data (log change) were
determined using the Chi-square statistic within the BestFit function of @Risk.
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Figure 1. Residual plots for A) dependent data for training and B) independent data for testing model
performance. Residuals were sorted by temperature and then time in ascending order. Major ticks
correspond to temperature and 8 h of incubation whereas minor ticks to the left of major ticks
correspond to incubation times of 0, 2, 4 and 6 h, respectively, for the temperature indicated on the
major tick. Lower and upper dashed lines are boundaries of the acceptable prediction zone.

Results

The GRNN model was trained on 464 data points and had an acceptable prediction rate of
91.8%. There were no signs of systematic prediction bias as a function of serotype,
temperature or time (Figure 1a). When tested against independent data (n = 116; Figure 1b),
the GRNN model had an acceptable prediction rate of 88.8% and did not exhibit systematic
prediction bias as a function of independent variables. Thus, the model was validated because
its acceptable prediction rates for dependent and independent data exceeded 70%.
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Figure 2. Output graphs from the general regression neural network model for growth of Salmonella
on raw chicken skin as a function of A) time at 37 € and B) temperature at 5.3 h.

The GRNN model predicted the log number of Salmonella for temperatures and times that
were and were not investigated but that were within ranges of independent variables used in
model development (e.g. Figure 2). Overall, Kentucky exhibited less growth than
Typhimurium and Hadar, which had similar growth on raw chicken skin with native flora.
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Figure 3. Output data and best-fit distributions from the general regression neural network and Monte
Carlo simulation model for growth of Salmonella on raw chicken skin.

Temperature abuse scenarios were simulated to demonstrate how the GRNN model can be
integrated with risk assessment. Examples of output distributions from the GRNN model that
can be used as input distributions in a risk assessment model are shown in Figure 3.

Discussion

Accurate and unbiased predictions of pathogen growth are needed to safeguard public health.
Models that under-predict pathogen growth result in consumption of unsafe food, whereas
models that over-predict pathogen growth result in destruction of safe food, which is not
desirable. Most studies in predictive microbiology use a mixture of pathogen strains for
model development. The idea is that this will result in a ‘fail-safe’ model because the fastest-
growing strain will predominate under the conditions tested. However, models developed
with a cocktail of strains could be overly ‘fail-safe’. For example, if the current model had
been developed with a cocktail of Typhimurium, Kentucky and Hadar, the faster-growing
serotypes Typhimurium and Hadar would have predominated and the resulting model would
have over-predicted growth of Salmonella on raw chicken skin contaminated with the slower-
growing serotype Kentucky. Thus, by developing models with individual strains and then
modelling growth as a function of serotype prevalence, more accurate predictions are
obtained.



Models in predictive microbiology are usually developed in three stages (primary, secondary
and tertiary) using regression methods. Limitations of this approach are that it is time
consuming, requires significant training in regression analysis and uses regression models that
are inflexible. Neural network modelling overcomes limitations of regression modelling as it
is fast, requires only a basic understanding of the method, is flexible and outperforms
regression modelling in predictive microbiology applications (Garcia-Gimeno et al. 2003;
Hajmeer et al. 1997; Jeyamkondan et al. 2001; Palanichamy et al. 2008). The latter studies all
used regression for primary modelling and neural networks for secondary modelling. In the
present study, a general regression neural network was used in one-step for primary,
secondary and tertiary modelling and the resulting model had acceptable and high
performance (ca. 90% acceptable predictions). Thus, it does not seem necessary to use
regression modelling in tandem with neural network modelling when neural network
modelling is capable of developing predictive models in one-step at a considerable savings in
time, effort and performance.

Risk assessment provides stochastic predictions of the risk of adverse health outcomes from
food produced by different farm-to-table scenarios. Predictive models are used in risk
assessment to provide stochastic predictions for individual pathogen events, such as growth.
Consequently, the GRNN model developed in this study was configured for risk assessment
by using Monte Carlo simulation in tandem with GRNN modelling software to provide
stochastic predictions of Salmonella growth.

Conclusions

In the current study, a GRNN and Monte Carlo simulation model was developed and
validated for making stochastic predictions of Salmonella growth from a low initial dose on
raw chicken skin as a function of serotype, temperature and time and thus, the models’
predictions can be used with confidence in risk assessment. However, because parameters of
the GRNN model are not provided by the commercial software application, deployment of the
model might be limited by the requirement that users possess the commercial software used to
run and simulate the model and make predictions.
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Abstract

The assessment of the evolution of microorganisms naturally contaminating food must take
into account the variability of biological factors, food characteristics and storage conditions.
A research project involving eight French laboratories was conducted to quantify the
variability of growth parameters of Listeria monocytogenes obtained by challenge testing in
five foods. The residual variability corresponded to a coefficient of variation (CV) of
approximately 20% for the growth rate (tm.) and 120% for the parameter K (=tmax.lag time).
The between batches and between manufacturers variability was very dependent on the food
tested and the CV of pmax ranged from 0 to 80%. The initial physiological state variability led
to a CV of 110% for the factor K. It appeared that repeating a limited number of challenge
tests in different batches/manufacturers for different initial physiological states is often
sufficient to assess the variability of the behavior of L. monocytogenes in a given food.

Keywords

Exposure assessment, biological variability, challenge testing, Listeria monocytogenes

Introduction

The assessment of the evolution of microorganisms that naturally contaminate food must take
into account the variability of factors influencing the microbial behavior, i.e., biological
factors, physico-chemical and microbial food characteristics, and storage conditions. The
probabilistic software developed in the Sym’Previus project was designed to easily perform
microbial exposure assessment and to combine the different source of variability with primary
and secondary predictive microbiology models (Couvert et al., 2007). The biological
variability of bacterial cardinal values is already set in the software but the variability of
growth parameters, initial contamination, food characteristics and storage conditions must be
specified by the users. It is really challenging to specify the variability of maximum growth
rate and lag time of naturally contaminating microorganisms. The estimation of these
parameters in natural conditions of contamination is generally impossible for pathogenic
microorganisms and operators must usually perform challenge testing. A research project
involving eight French laboratories was conducted to quantify the variability of growth
parameters of L. monocytogenes obtained by challenge testing in five different foods. The
objective was to evaluate the impact of within and between batches variability, between
manufacturers variability, and microbial initial physiological state variability, on the



variability of the growth parameters to optimize the challenge testing methodology applied
when evaluating the variability of the behavior of microorganisms in foods.

Materials and Methods

The following foods were studied: i) paté from one batch, i) smoked herring from four
batches of two manufacturers, iii) cooked ham from seven batches and three manufacturers,
iv) cooked chicken belonging to two batches of one manufacturer, and v) surimi salad from
different batches of one manufacturer.

Each food was studied by two or three laboratories and was artificially contaminated with
exponentially growing or starved cells of one strain of L. monocytogenes in order to evaluate
the impact of physiological state on the growth parameters. Contaminated food samples were
stored at 8°C and enumerations of L. monocyotgenes were performed on three samples at
approximately 10 different times during the lag, the exponential and the stationary phases of
the growth curve. Some experiments were replicated with the same batch of food, the same
physiological state and the same laboratory to estimate the residual variability of growth
parameters. pH and water activity (ay) of foods were measured by laboratories to characterize
the variability of physico-chemical characteristics of studied foods.

The maximum specific growth rate (tm.x) and the lag time (lag) were estimated for each
growth curve by fitting the logistic with delay growth model (Pinon et al., 2004). In a second
time, the variability of um, and of the product K=pim..lag representing the initial
physiological state of contaminating cells was analyzed in order to determine the impact of
the studied factors. Growth simulations were performed with the probabilistic software of
Sym’Previus to combine the different variability sources in order to predict the growth curves
of L. monocyotgenes or the probabilities to exceed given concentrations in foods.

Results and Discussion

The residual variability of .« was almost constant and a coefficient of variation (CV) of
20% was observed on average (Table 1). This variability was not explained by the variability
of measured physico-chemical parameters since simulations performed for the species L.
monocytogenes (12 strains) by only taking into account the observed variability of pH and aw
of studied foods generated less variability for un.x than the observed one (Table 1). This
variability could then be linked to the variability of other not measured food characteristics or
to the measurement uncertainty of tim.x When performing challenge testing. This result is not
surprising since Baranyi and Roberts (1995) described repeatability standard errors of
approximately 10% of the estimated growth rate in synthetic media. On the contrary, the
residual variability of K was more pronounced and more variable with a mean CV of 120%
(Table 1). This great variability of K can be easily explained by the difficulty for laboratories
to experimentally reproduce specific bacterial physiological states. Since the residual
variability of wun.x and K was relatively large, no significant effect of the laboratory
performing the challenge test was observed for these two parameters.

The between batches and manufacturers effects on timax Were very variables with CV ranging
from 0 to 23% and from 0 to 81%, respectively (Table 1). The variability of K linked to the
initial physiological state was relatively constant, which is consistent with the fact that only
two physiological states were studied, and the CV was 110% on average.

The growth curves of L. monocytogenes generated for each food taking into account the
biological variability, the variability of food characteristics and the variability of growth
parameters summing the means of residual, between batches, between manufacturers and
physiological state variances are shown in Figure 1. For paté we observed that, the mean
residual variability of K being larger than the observed one, the lag time was sometimes
overestimated but the predicted behavior was relevant on the whole. For smoked herring, the
mean between manufacturers variability lead to an overestimation of the observed variability
while for the cooked ham, this mean variability was not sufficient to describe the observed
one.



Table 1. Variability sources for growth parameters of L. monocytogenes.

Aumax K
Physico- Physio-
pH ay Variability ~ chemical Manu- logical
Food (mean£SD) (mean£SD) (CV%) characteristics Residual Batch facturer Residual state
*
Paté  5.94£0.10 0.976+0.004 |nPut - 16 ND* ND 44 115
Output 9 17 _ _ _ _
Smoked Input 19 23 0 103 ND
. 37+0. . +0. iy
herring 6.37+0.08 0.966+0.009 Output 26 32 40 40 _ _
Cooked Input 20 0 81 135 103
.08+0. . +0. -
ham 6.08£0.070.975+0.007 Output 15 25 25 75 _ _
Cooked Input 22 17 ND 141 88
. .30+0. . +0. -
chicken 6.30+0.19°0.974:0.008 Output 17 23 29 _ _ _
Surimi Input 21 0 ND 196 137
.30£0. . +0. ~
salad 6.30+0.25 0.984+0.010 Output 17 26 26 _ _ _
Mean input 20 10 41 124 111

* ND not determined.

It seems thus that the residual variability of 20% for pm. and 120% for K can be used to
describe the variability of growth parameters for a given batch and a given physiological state
but these parameters are too much varying for between batches and between manufacturers
variability. Their impact on growth parameters is thus difficult to predict and several
challenge tests are need. Furthermore it is hazardous to set the expected values of growth
parameters with only one challenge test.

log cfu/g

0 5 10 15 20 25 0 10 20 30 40 50
time (d) time (d)

log cfu/g

0 10 20 30
time (d) time (d)

Figure 1. Observed (®) and simulated (95% confidence bands) growth of L. monocytogenes at

8°C in (a) paté, (b) smoked herring, (¢) cooked ham, and (d) surimi salad.



Then we proposed to perform three different challenge tests to estimate the expected values
and standard deviations of un.x and K. Depending on the studied factors influencing the
growth, the challenge tests can be performed with three different batches or manufacturers
and with three different physiological states. The Table 2 reports the results obtained when
comparing this approach with the one consisting to use only one challenge test and fixing
theoretical variances. The typical prediction errors (MARE) when predicting the probability
to exceed a given concentration were lower when three challenge tests were performed and
the dispersions of the relative errors (SDRE) were also lower.

Table 2. Mean absolute relative errors (MARE) and standard deviations of relative errors
(SDRE) for predictions of probabilities P to exceed given concentrations of L. monocytogenes
in foods stored at 8°C. The reference probabilities are those obtained by using all the
challenge tests performed.

1 kinetic 3 kinetics
Food Variability sources  MARE (%) SDRE (%) MARE (%) SDRE (%)
Paté .
(P>7 log cfu/g 8 days) residual 99 135 60 71
Smoked herring residual, batch, 63 36 49 41

(P>6 log cfu/g 15 days) manufacturer
residual, batch,

Sioé( ?(()1 h?g:/ 10 days) manufacturer, 126 154 35 20
& & Y physiological state

Cooked chicken residual, batch,

(P>6 log cfu/g 8 days)  physiological state 33 67 24 14

Surimi salad residual, batch, 37 13 A

(P>7 log cfu/g 10 days) physiological state -

Conclusion

The implementation of challenge tests to assess the variability of the growth parameters of
foodborne pathogens is a keystone because the impact of the different sources of variability is
unpredictable. By reproducing challenge tests in three different conditions it seems possible to
satisfactorily evaluate the impact of between batches, between manufacturers and initial
physiological state on growth parameters.

Acknowledgements

This work is part of the national research program ACTIA 05.9 and was supported by a grant
from ACTIA, the French Ministry of Agriculture and food business operators. This project is
part of the National French Technological Network (RMT) “Expertise on determination of
food products microbial shelf-life”.

References

Baranyi J. and Roberts T.A. (1995) Mathematics of predictive food microbiology. International Journal of Food
Microbiology 26, 199-218.

Couvert O., Augustin J.-C., Buche P., Carlin F., Coroller L., Denis C., Jamet E., Mettler E., Pinon A., Postollec F.,
Stahl V., Zulianil V. and Thuault D. (2007) Optimising food process and formulation through Sym’Previus..
5" International Conference Predictive Modelling in Foods, September 16-19, 2007, Athens, Greece.

Pinon A., Zwietering M., Perrier L., Membré J.-M., Leporq B., Mettler E., Thuault D., Coroller L., Stahl V. and
Vialette M. (2004) Development and validation of experimental protocols for use of cardinal models for
prediction of microorganism growth in food products. Applied and Environmental Microbiology 70, 1081—
1087.



Flexible querying of Web data for predictive modelling of risk in food

P. Buche', O. Couvert®, J. Dibie-Barthélemyl’z, E. Mettler®, L. Soler'

'INRA, UP 1204 Méthodologies d’analyse du risque alimentaire, F-75005 Paris, France
(buche@paris.inra.fr, dibie@agroparistech.ft, Isoler@paris.inra.fr)

2 AgroParisTech, UP 1204 Méthodologies d’analyse du risque alimentaire, F-75005 Paris, France

* ADRIA Développement, Creac’h Gwen, 29196 Quimper Cedex, France (olivier.couvert@adria.tm. fr)
“Soredab (Groupe SOPARIND BONGRAIN), La Tremblaye, 78125 La Boissi¢re-Ecole, France
(eric.mettler@soredab.org)

Abstract

A preliminary step to risk in food assessment is the gathering of experimental data. In the
framework of the Sym’Previus project, we have designed a complete data integration system
opened on the Web which allows a local database to be complemented by data extracted from
the Web and annotated using a domain ontology. We propose in this paper a flexible querying
system using the domain ontology to scan simultaneously local and Web data in order to feed
the predictive modelling tools available on the Sym’Previus platform. Special attention is paid
on the way fuzzy annotations associated with Web data are taken into account in the querying
process, which is an important originality of the proposed system.

Keywords
Web data, flexible querying, ontology, predictive microbiology

Introduction

A preliminary step to risk in food assessment is the gathering of experimental data (Tamplin
et al. 2003, Baranyi and Tamplin 2004, McMeekin et al. 2006). In the framework of the
Sym’Previus project (Couvert et al 2007 and http://www.symprevius.org), we have designed
a complete data integration system opened on the Web which allows a local database (Buche
et al. 2005) to be complemented by data extracted from the Web (Hignette et al. 2008). The
local data were classified by means of a predefined vocabulary organized in taxonomy, called
ontology, which is also used to extract pertinent data from the Web. Our aim is to integrate
the data found on the Web with the local data by means of a flexible querying system which
allows the end-user to retrieve the nearest local and Web data corresponding to his/her
selection criteria. Our solution allows the end-user to query simultaneously and uniformly
local and Web data in order to feed the predictive modelling tools available on the
Sym’Previus platform. We first remind the semi-automatic annotation method (implemented
in the @WEB tool, see @Web demo) which allows data to be retrieved from data tables
found in scientific documents on the Web and to be annotated thanks to the domain ontology.
Second, we present the original contribution of the paper, which consists in the design of the
flexible querying system, called MIEL++, which permits to query simultaneously the local
data and the semantic annotated Web data, in a transparent way to the end-user, thanks to the
ontology. This system is flexible because (i) it allows the end-user to express preferences in
his/her selection criteria and (ii) it takes into account, in the answers building, the different
kinds of fuzziness of the semantic annotated Web data. This second point is essential to deal
with the uncertainty of the Web data and with the imperfection of their annotations.

Materials and Methods

The semi-automatic annotation method

Web data have been semi-automatically classified by means of a predefined vocabulary,
called ontology. This ontology is composed of data types meaningful in the domain of risk in
food and semantic relations linking those data types. Data types are described in two different
ways depending on whether their associated values are symbolic (Food product,
Microorganism ...) or numeric (Temperature, Time ...). Symbolic types are described by


http://www.symprevius.org/
http://www.paris.inra.fr/metarisk/content/download/3209/35828/version/2/file/atWeb_demo.zip

taxonomies of possible values (for example, a taxonomy of microorganisms). Numeric types
are described by their possible set of units (for example, °C or °F for Temperature, but no unit
for pH or a,), and their possible numerical range (for example, [0, 14] for pH). Semantic
relations are defined by a result data type and a set of access types. For example, the relation
GrowthParameterAw, representing the growth limits of a micro-organism for any food
product, has for access type the symbolic type Microorganism and for result types the
numeric type a,. Our annotation algorithm first annotates the symbolic columns and the
numeric columns and then uses these annotations to determine the semantic relations present
in the Web table (see Hignette et al. 2008 for more details). Figure 1 shows a part of the RDF
graph which represents the annotations associated with the first line of Table 1 extracted from
the Web. RDF (Resource Description Framework) is the language recommended by the W3C
(World Wide Web consortium) to represent semantic annotations associated with Web
resources. A particularity of our RDF annotations is to propose an explicit representation (1)
of the similarity between terms of the ontology and terms of the Web and (2) of the
imprecision of numerical data, using a homogeneous framework, the fuzzy set theory.

Table 1: Cardinal values.

Organism Aw minimum Aw optimum Aw maximum
Clostridium 0.943 0.95-0.96 0.97
Staphylococcus 0.88 0.98 0.99
Salmonella 0.94 0.99 0.991

Imprecision

Figure 1: Annotations associated by our algorithm to the first line of Table 1

In Figure 1, the RDF annotation expresses that the row (having the identifier uriRow! in the
RDF graph) is annotated by a discrete fuzzy set, called DFSRI. This fuzzy set has a semantic
of similarity and indicates the list of closest relations of the ontology recognized in the first
row. Only the relation GrowthParameterAw belongs to this fuzzy set with the pertinence
score of 1.0 which expresses the degree of certainty associated with the relation recognition
by our semantic annotation process. The access type of the relation, which is an instance of
the symbolic type Microorganism, is annotated by a discrete fuzzy set, called DFSI. This
fuzzy set has a semantic of similarity and indicates the list of closest terms of the ontology
compared to the term Clostridium. Two terms (Clostridium Perfringens and Clostridium
Botulinum) belong to this fuzzy set with a membership degree of 0.5. The result type of the
relation, which is an instance of the numeric type aw, is annotated by a continuous fuzzy set,
called CFSI. This fuzzy set has a semantic of imprecision and indicates the possible growth
limits ([0.943, 0.97]) and the possible optimal growth limits ([0.95, 0.96]).

Design of the flexible querying system MIEL++

The MIEL++ querying system relies on the domain ontology used to index the local data and
to annotate the Web data. MIEL++ allows the end-user to retrieve the nearest local and Web
data corresponding to his/her selection criteria expressed as fuzzy sets and representing
his/her preferences. The ontology -more precisely the taxonomies of values associated with



symbolic types- is used in order to assess which data can be considered as “near” to the user’s
selection criteria. A query is asked to the MIEL++ system through a single graphical user
interface, which relies on the domain ontology. The query is translated into a query expressed
in the query language of each data source: an SQL query in the relational local database (see
Buche et al. 2005) for more details about the SQL subsystem), a SPARQL query in the RDF
graph base. SPARQL is the querying language recommended by the W3C to query semantic
annotations expressed in RDF graphs. Finally, the global answer to the query is the union of
the local results of the two subsystems, which are ordered according to their relevance to the
query selection criteria. In this paper, we focus on three original aspects of the SPARQL
querying: (1) the use of the taxonomies of values associated with symbolic types to enlarge
the querying, (2) the way comparisons between the user’s selection criteria and fuzzy
annotations are done, (3) the total order defined to retrieve the most pertinent data to the user.

Let us consider a MIEL++ query Q expressed in the relation GrowthParameterAw and having
for selection criteria (aw=awPreference) and (Microorganism=MicroPreferences). The
continuous fuzzy set awPreferences, which is equal to [0.9, 0.94, 0.97, 0.99], means that the
end-user is first interested in aw values in the interval [0.94, 0.97]. But he/she accepts to
enlarge the querying till the interval [0.9, 0.99]. The discrete fuzzy set MicroPreferences,
which is equal to {1.0/Gram+, 0.5/Gram-}, means that the end-user is interested in micro-
organisms which are first Gram+ and then Gram-. This fuzzy set defines implicitly user’s
preferences for micro-organisms which are kinds of Gram+ and Gram-. According to the
taxonomy of values associated with the symbolic type Microorganism, Clostridium
Botulinum and Staphylococcus Spp. are kind of Gram+ and Salmonella is a kind of Gram-. In
order to take those implicit preferences into account in the querying, we propose to perform a
closure of the fuzzy set MicroPreferences (see Thomopoulos et al. 2006 for more details).
Intuitively, the closure propagates degrees of preferences to more specific values of the
taxonomy. By example, the closure of the fuzzy set MicroPreferences is: {1.0/Gramt,
0.5/Gram-, 1.0/Clostridium Botulinum, 1.0/ Staphylococcus Spp., 0.5/Salmonella}.

In order to build the answer, selection criteria representing user’s preferences expressed as
fuzzy sets must be compared with fuzzy annotations. But the fuzzy sets used in the
annotations have two different semantics. We propose to realise those comparisons separately
using two different measures: (i) a possibility degree of matching (noted I1) and a necessity
degree of matching (noted N) which are classically used (see Dubois et Prade 1988) to
compare a fuzzy set having a semantic of preference with a fuzzy set having a semantic of
imprecision and (ii) an adequation degree as proposed in (Baziz et al. 2006) to compare a
fuzzy set having a semantic of preference with a fuzzy set having a semantic of similarity.

Let (a=v) be a selection attribute of the MIEL++ query Q, v' a fuzzy annotation of the
attribute a stored in a RDF graph, sem, the semantic of v/, yu, and p, their respective
membership functions defined on the domain Dom and ¢/ the function which corresponds to
the fuzzy set closure. The comparison result depends on the semantic of the fuzzy set v'. If
sem,~=imprecision, the comparison result is given by the possibility degree of matching
between v and v' noted II(Vv,v')=supxecpom(min(u(x), Hy(x)) and the necessity degree of
matching between v and v’ noted N(v,v")=inf;cpom(max(pwy(x), 1 - py(x)). If sem,-=similarity,
the comparison result is given by the adequation degree between c/(v) and cl(v/) noted
ad(cl(v), cl(v"))=supxepom(min(pei)(X), Hei)(X)).

The comparison results of fuzzy sets having the same semantic (similarity or imprecision) and
associated with different selection criteria are aggregated using the min operator. Therefore,
an answer to a query is a set of tuples composed of (i) the pertinence score ps associated with
the queried relation, (ii) three comparison scores associated with the selection criteria of the
query: a global adequation score ad, and two global matching scores I1, and N, and, (iii) the
values associated with the projection attribute of the query. Based on those scores, we
propose to define a total order on the answers which gives greater importance to the most
pertinent answers compared with the ontology: ps, ad,, N, and Il,.

The answer to MIEL++ query Q considered on the previous page and compared with the
annotations associated with the first row of Table 1 is given below:



{ps=1, ad=0.5, Ng~=1, II, =1, Microorg=(0.5/Clostridium Perfringens+0.5/Clostridium
Botulinum), aw=[0.943, 0.95, 0.96, 0.97]},

{ps=1, ad,~=0.5, N, =0.5, I1,=0.68, Microorg=(0.5/Staphylococcus spp.+0.5/Staphylococcus
aureus), aw=[0.88, 0.98, 0.98, 0.99]},

{ps=1, ad~0.5, N, =0, I1,=0.965, Microorg=(1.0/Salmonella), aw=[0.94, 0.99, 0.99, 0.991]}

Results and discussion

In preliminary tests performed on a RDF graph base composed of more than 22000 RDF
triples (312 graphs), we have evaluated 5 queries (see Table 2) covering at least 50% of the
base entries. Querying quality is assessed using two measures: precision and recall. Precision
is the ratio of correct answers over the total number of computed answers. Recall is the ratio
of correct computed answers over the number of expected answers. We obtain better results in
the queries where the selection criterion concerns micro-organisms than in the ones
concerning food products. This is due to the fact that micro-organism names are more
standardized in Web tables than food product names. Therefore, the quality of the fuzzy
annotations associated with the micro-organism symbolic type is better than with the food
product type. Nevertheless, we obtain a precision of 100% for the two last queries concerning
food product if we put a threshold of 0.7 on the terms similarity degrees.

Table 2: Evaluation of query results
Queried relation | Selection criteria Precision-recall | Nb of answer graphs
Lag Time Microorganism=L. Monocytogenes | 100%-100% 47 graphs
Lag Time Microorganism=P. Fluorescens 100%-100% 29 graphs
Growth kinetics | Microorganism=E. Coli 100%-100% 39 graphs
Lag Time FoodProduct= Egg salad 50%-100% 24 graphs
Growth kinetics | FoodProduct= Salad 54%-100% 26 graphs
Conclusion

Probabilistic simulations of Sym’Previus software needs a lot of data in food products to take
the food matrix into account and to assess food variability in bacterial growth simulations. A
prototype of the @WEB and the MIEL++ tools will be soon integrated with the predictive
modelling tools of the Sym’Previus project. These automatic links between web data and
simulation tools allows a new step in risk assessment to be performed.
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Abstract

A new mechanistic growth model was developed to describe microbial growth under isothermal
conditions. The development of the mathematical model was based on the fundamental
phenomenon of microbial growth, which is normally a three-stage process that includes lag,
exponential, and stationary phases. A differential logistic growth model was adopted to describe
the competitive nature of microbial growth in the exponential and stationary phases. Incorporated
with a transitional function to define the lag phase, an integrated differential logistic growth
model was developed and solved analytically. The new model was capable of describing a
complete three-phase growth curve or a partial growth curve that contains only lag and
exponential phases.

The new integrated model was validated using Listeria monocytogenes in tryptic soy broth and
beef frankfurters and Escherichia coli O157:H7 in mechanically tenderized beef. The inoculated
samples were incubated at various temperature conditions and enumerated to obtain isothermal
growth curves. A nonlinear regression procedure in SAS was employed to analyze each growth
curve to simultaneously determine the lag phase duration and exponential growth rate. Both bias
factor (Bs) and accuracy factor (As) were used to evaluate the performance of the new model.
Results indicated that both B¢ and A values were very close to 1.0, suggesting that the new model
was very suitable for describing isothermal microbial growth. Modified Ratkowsky models were
used to analyze lag phase durations and exponential growth rates and develop secondary models.
The maximum and minimum temperatures obtained from the resulting secondary models
matched closely with the biological nature of L. monocytogenes and E. coli O157:H7.

Keywords: growth model, kinetic analysis, mathematical modeling

Introduction

The growth of microorganisms in food systems usually exhibits three different phases — lag,
exponential, and stationary phases. Several mathematical models have been used in predictive
microbiology to describe the microbial growth. These models may include empirical modified
Gompertz or logistic model (Gibson et al., 1987), and semi-theoretical Baranyi model (Baranyi et
al., 1995). These models can be used to fit the growth curves and obtain the growth parameters,
such as lag phase duration and exponential growth rate. Each of these models has both
advantages and disadvantages when used to fit growth curves.

The objective of this paper was to report a new integrated kinetic model for quantitative
analysis and characterization of microbial growth under isothermal conditions. The new
model was a theoretical growth model, and was based on the fundamental growth
phenomenon of microorganisms in foods. It clearly defined the duration of lag phase and
exponential growth rate in a single equation, and was more intuitive than the traditional
growth models such as modified Gompertz and Baranyi models.



Materials and methods

Model development

For a growth curve without a lag phase, the microbial culture does not need to experience an
adjustment process and can multiply exponentially until the population reaches a maximum
density. This process can be described by

«© _ kC(C

dt

In this equation, C is the cell concentration; C. is the maximum cell concentration, and KCx iS
equal to umax, Or specific growth rate in the exponential phase. Under isothermal conditions, it is
assumed that k or umax does not change with time and is a constant. The bacterial population
would start to increase immediately. Since a lag phase is a transitional period through which
bacteria enter the exponential phase of growth, a transitional function, f(t), can be used to modify
Eg. 1 so that it can describe a complete growth curve. A transitional function chosen for this
application is

C). Eq. 1

max

1
v wry) 0.2

In Eq. 2, f(t) is actually a unit transitional function. Att < A, it equal to zero. With f(t) = 0,

dC/dt is also zero, which mathematically describes the lag phase during which no change in the

cell population occurs. At t > 2, f(t) equals to 1, and the process is governed by the 1%-order
kinetics. The coefficient o is a constant that allows a smooth transition from 0 to 1. The
coefficient « in the new model allows a smooth but sharp transition from the lag phase to the
exponential phase in a growth curve. According to Huang (2008), a value of 25 is suitable for
this coefficient. With f(t), a new differential growth model can be developed, and is written as

d_C _ kc(cmax _C)
dt  1+exp[-alt-2)

Denoting y(t) as the natural logarithm of C, Eqg. 3 can be solved analytically to produce a new
growth model:

V()= Yo + Yonax = IN{EXD(Yo )+ [EXD(Y e ) — XD(Yo ) JeXP[= 2 B)]}

and, B(t)=t+£|n1+eXp(_a(t_ﬂ» Eq. 4
a  l+exp(ed)

Eq. 3

With an incomplete growth curve that does not include a stationary phase, a reduced model can
be obtained for this special case.

1+exp[-a(t-2)]
1+pexp(a/1) } =45

y(t): Yo +/umax{t +£In
(04

Growth curves and curve fitting

Growth curves of Listeria monocytogenes and Escherichia coli O157:H7, obtained from broth
and meat samples, were analyzed and compared with modified Gompertz and Baranyi models. A
nonlinear regression procedure based on Gauss-Newton method in Windows-based SAS Version
9.1.3 (SAS Institute Inc., Cary, NC) was used for curve fitting.



Listeria monocytogenes

A four-strain cocktail of L. monocytogenes was inoculated in tryptic soy broth (TSB, BD/Difco
Laboratories, Sparks, MD) or beef frankfurters. For growth studies in TSB, L. monocytogenes
with four different initial concentration levels (1, 2, 3, and 4 log CFU/ml, labeled as G1 to G4)
was inoculated into 200 ml broth and incubated at 37°C. For growth studies in beef frankfurters,
L. monocytogenes was inoculated onto samples and incubated at 15, 25, 30, 37, or 40 °C.

E. coli O157:H7

For the growth studies of E. coli O157:H7, a cocktail of 5 rifampicin-resistant (rifr) strains or 3
randomly selected wild strains was inoculated into mechanically tenderized beef meat (MTBM).
The inoculated samples were incubated at 5, 10, 15, 20, 25, and 37 °C.

Model evaluation

The bias factor (By) and accuracy factor (Ay) proposed by Ross (1996) were used to evaluate the
performance of each growth model. RMSE, or root mean square error, an estimate of the
standard error of a model, was also calculated for evaluation of the models.

Secondary model

The growth rate was fitted to two secondary models modified from the Ratkowskysquare-root
model:

VHmax = a(T _Tmin) Eq. 6
Hiax = a(T _Tmin) Eq- 7
Results and Discussion

New primary model

Figures 1-3 clearly illustrate that the new model can accurately describe complete growth curves
with all three phases. It is also suitable for describing incomplete growth curves with only lag
and exponential phases (Figure 4). The As and Bsvalues of the new model were almost identical
to 1.0, suggesting the growth data calculated by the new model closely matched the experimental
values. The RMSE values of the new model were very close to those of modified Gompertz and
Baranyi models. All three phases were directly identified by the new model.
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Secondary model

The equation (EQ. 6), A/ e = a(T —Tmin), was not suitable for describing the temperature

dependence of growth rates of L. monocytogenes in frankfurters and E. coli in MTBM, as the
estimated T, was very close to -18°C for Listeria and 0°C E. coli, which was not in agreement
of the biological nature of the bacteria. Eg. 7 was more suitable. For L. monocytogenes in beef

frankfurter, Eq. 7 becomes s, = 0.00816(T —2.73). For E. coli O157:H7 in MTBM, the
secondary ~ model  was  u,, =0.0549(T -12.39) for the rif strains and

Hivax :0.0667(T —13.70) for the wild strains. The minimum temperatures (T.,) estimated
from Eq. 7 matched closely with the biological nature of both Listeria and E. coli.

Conclusion

This study clearly demonstrated that the new integrated model was very accurate in describing the
isothermal growth kinetics of microorganisms in foods. This study also discovered that the linear
non-square-root secondary model was more suitable for describing the temperature dependence
of growth rates.
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Abstract

The applicability of artificial neural networks (ANNS) was investigated to differentiate the
quality of beef samples and predict their microbiological load based on FTIR metabolic
fingerprinting. Beef fillets were stored aerobically at 0, 5, 10, 15, and 20°C from freshness to
spoilage (ca. 3 to 15 days). Duplicate packages from each storage temperature were subjected
to FTIR measurements in the spectral range of 4.000 to 400 cm™. Additional samples were
analyzed to allow for the determination of total viable counts (TVC) and sensory
characterigtics, based on a three point hedonic scale namely, fresh (F), semi-fresh (SF), and
spoiled (S). A three layer network was devel oped with seven nodes in the input layer and two
nodes in the output layer (one for class and total viable counts). The number of neuronsin the
hidden layer was empirically determined based on the performance of the network. ANN
training was based on the steepest-descent gradient learning algorithm and validation was
carried out using the leave-1-out cross validation method. The overall correct classification of
the network was 90.5% in a 74-sample population (24 F, 16 SF, 34 S). Classification
accuracies were 91.7%, 81.2%, and 94.1% for fresh, semi-fresh, and spoiled beef samples,
respectively. The network was able to predict the microbiological load (TVC) of beef samples
quite satisfactorily. Specifically, the values of bias and accuracy factors were 0.991 and 1.123,
respectively, indicating good agreement between observed and predicted bacteria counts. The
average differences between predictions and observations were 12.3% as inferred by the value
of the accuracy factor. The % RE values fall within the + 20% zone for 75%, 87.5%, and
97.1% for fresh, semi-fresh, and spoiled beef samples, respectively.

Keywords: artificial neural networks, aerobic storage, beef fillets, FTIR, spoilage

Introduction

In most developed countries meat consumption is very high mainly due to its high nutritional
value in the human diet. The great variability in raw meat in terms of chemical composition,
technological and chemical attributes results in highly variable end products which are
marketed without a desired and controlled level of quality. In order to maintain quality
standards, control procedures must be carried out on meat comprising chemical analyses,
instrumental methods, organoleptic evaluation, and molecular screening methods. However,
these techniques are invasive, time consuming, labour intensive, demand highly trained
personnel, and thus they are unsuitable for online application. Recently, some interesting
analytical approaches have been implemented for the rapid and quantitative monitoring of
meat spoilage based on vibrational spectroscopy methods (e.g. FTIR, Raman spectroscopy)
(Ellis et al. 2005; Herrero 2008). In contrast to conventional methods, Fourier transform
infrared (FTIR) spectroscopy is rapid, non-invasive, requires no specific consumable or
reagent permitting users to collect full spectra in a few seconds allowing simultaneous
assessment of numerous mesat properties. The basic concept underlying this method stipul ates
that as bacteria grow on meat, they utilize nutrients and produce by-products. The
guantification of these metabolites represents a fingerprint characteristic of any biochemical
substance, providing thus information about the rate of spoilage (Ellis et a. 2004; Ammor et
al. 2009). However the enormous amount of information provided by the last mentioned
technology makes the data produced unmanageable. The application of advanced statistical



methods (e.g. discriminant function analysis, clustering anadysis, partiad least sguare
regression) and intelligent methodologies (neural networks, fuzzy logic, evolutionary
algorithms, genetic programming) can be used as qualitative indices rather quantitative since
their primary target is to distinguish objects or groups or populations (Goodacre et al. 2004).
Nowadays, machine learning strategies are based on supervised learning agorithms. The last
mentioned approach together with the development of artificial neural networks (ANN) could
be used effectively in the evaluation of meat spoilage.

Materials and methods

Fresh deboned pieces of beef were purchased from a loca retailer and transported to the
laboratory within 30 min. On arrival, the samples were prepared by cutting the mesat pieces
into portions (40 mm wide x 50 mm long x 10 mm thick) and maintained at 4°C for 1 h until
use. The portions were subsequently placed into 90 mm Petri dishes and stored at 0, 5, 10, 15,
and 20°C in high-precision (x0.5°C) incubation chambers for an overal period of 350 h
depending on storage temperature until spoilage was pronounced. For the FT-IR
measurements, a thin dlice of the aerobic upper surface of the fillet was excised and used for
further spectral analysis. For microbiological analysis a portion (40 mm wide x 50 mm long x
10 mm thick) was added to 150 ml sterile quarter strength Ringer's solution, and
homogenized in a stomacher for 60 s at room temperature. Further decimal dilutions were
prepared with the same diluent, and duplicate 0.1 ml samples of three appropriate dilutions
were spread in triplicate on plate count agar for counts of total viable bacteria, which was
incubated at 30°C for 48 h. Duplicate samples from each storage temperature were analyzed at
appropriate time intervals to alow for efficient kinetic analysis of total viable counts. Sensory
evaluation of meat samples was performed during storage, based on the perception of colour,
smell, and odour before and after cooking (20 min at 180°C in preheated oven). Each sensory
attribute was scored on a three-point hedonic scale corresponding to: 1=Fresh; 2=Marginal,
and 3=Spoiled. Score of 1.5 was characterized as Semi-fresh and it was the first indication of
meat spoilage. FT-IR spectra were collected using a ZnSe 45° ATR (Attenuated Total
Reflectance) crystal on aNicolet 6700 FT-IR Spectrometer, collecting spectra over the
wavenumber range of 4,000 to 400 cm™, by accumulating 100 scans with a resolution of 4
cm™. The collection time for each sample spectrum was 2 min.

Results and discussion

The classification performance of the MLP network with variable number of neurons in the
hidden layer and different transfer functions (logistic sigmoid and hyperbolic tangent) is
presented in Figure 1. Generaly, the classification performance of the network obtained for
the meat samples stored at different temperatures and cross validated with leave-1-out method
was lower when the selected transfer function was hyperbolic tangent despite the fact that the
algorithm converged faster. The highest overall correct classification with hyperbolic tangent
transfer function (86.5%) was obtained with 20 neurons in the hidden layer (Figure 1b),
however within the individual classes performance was low, especially for semi-fresh meat
samples (62.5%). The best performance of the classifier was obtained with 10 neurons in the
hidden layer and a logistic sigmoid transfer function (Figure 1a) providing a 90.5% overall
correct classification, which within the selected classes corresponded to 91.7%, 94.1%, and
81.3% for fresh, spoiled, and semi-fresh meat samples, respectively. The classification
accuracies obtained from this network, designated as 7-10-2, are presented in the form of a
confusion matrix in Table 1. The sensitivities, i.e. how good the network is at correctly
identifying positive samples, for fresh and spoiled meat samples were 91.7% and 94.1%,
respectively, representing 2 misclassifications out of 24 fresh meat samples, and also 2
misclassifications out of 34 spoiled samples. In the case of semi-fresh samples the respective
figure was somehow lower (81.2%). I n this case 3 samples were misclassified (out of 16), 1
as fresh and 2 as spoiled. The specificity index, i.e. how good the network is at correctly
identifying negative samples, was aso high especialy in fresh and spoiled samples, indicating
satisfactory discrimination between these two classes.
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Figure 1: Classification performance of neural networks with variable number of neuronsin
the hidden layer according to logistic sigmoid (a) and hyperbolic tangent activation transfer
functions.

Table 2: Confusion matrix of the 7-10-2 MLP classifier performing the task of discrimination
of meat samples based on the leave-1-out cross validation method.

True class Predicted class Row Total Sensitivity (%)
Fresh  Semifresh  Spoiled (i)

Fresh (n=24) 22 2 0 24 91.7

Semi-fresh (n=16) 1 13 2 16 81.2

Spoiled (n=34) 0 2 32 34 9.1

Column Total (n) 23 17 34 74

Specificity (%) 95.6 76.5 9.1

Overall correct classification (accuracy): 90.5%.

The plot of the predicted versus the observed tota viable counts (Figure 2a) showed
reasonably good distribution around the line of equity without any particular trend, with the
majority of data (ca. 78%) included within the £ 1 log unit area, athough some over-
prediction was evident in the case of fresh meat samples with low observed initial counts. A
better picture of the prediction performance of the neural network is given in Figure 2b where
the % relative error of prediction is depicted against the observed microbial population. Based
on this plot, data were amost equally distributed above and below 0, with approximately 88%
of predicted microbia counts included within the + 20% RE zone. However, the network
over-estimated the bacterial population for certain fresh samples, especialy at lower observed
microbial counts, corresponding to low temperature (0°C) and short storage time. The
performance of the neura network to predict tota viable counts in meat samplesin terms of
statistical indicesis presented in Table 2. Based on the calculated values of the bias factor (B)
it can be inferred that the network under-estimated total viable counts in semi-fresh and
spoiled samples (B<1), whereas for fresh samples over-estimation of microbial population
was evident (B, >1). In addition, the values of the accuracy factor (4,) indicated that the
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predicted total viable counts were 18.1%, 12.2%, and 8.4% different (either above or below)
from the observed values for fresh, semi-fresh, and spoiled meat samples, respectively.
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Figure 2: Comparison of total viable counts (a) and percent relative errors (b) between
observed and predicted values by the neural network (F: fresh; SF: semi-fresh; S: spoiled
meat samples).

Table 2: Performance of the 7-10-2 MLP classifier for the prediction of total viable countsin
meat samples (fresh, semi -fresh, spoiled, overall) analyzed by FTIR.

Statistical index Fresh Semi-fresh Spoiled Overal
Biasfactor (B)) 1.031 0.951 0.982 0.991
Accuracy factor (4)) 1.181 1.122 1.084 1.123
Conclusion

In conclusion, these data demonstrate the utility of the analytical approach based on FTIR
spectroscopy which in combination with an appropriate machine learning strategy could
become an effective tool for monitoring beef fillets spoil age during aerobic storage.
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Abstract:

An overall concept for the implementation of a generic model to predict the remaining shelf
life of meat at different steps in the supply chain was developed. The concept includes three
different models: a shelf life model, an inter-organizational cold chain model and a
temperature control model including a heat transfer model. Shelf life prediction is based on
the growth of Pseudomonas sp., taking into account organizational structure, inspection
scheme, technical circumstances and temperature conditions in different supply chains.

Keywords: cold chain management, meat spoilage, shelf life, temperature control

1. Introduction

During the last years, several models have been developed for shelf life prediction of
perishable products, most of them based on the growth of specific spoilage organisms (SSO)
(e.g. Koutsoumanis et al., 2006; Gospavic et al., 2008, Kreyenschmidt et al., 2009). To
estimate the remaining shelf life in different steps of the supply chain, rapid methods for
determination of the microbiological count of the SSO are needed. Some of the rapid methods
already exist but some of them are still not applicable for certain kinds of microorganisms.
Another possibility is to predict remaining shelf life from the temperature history of the
product - which requires a continuous control of the product’s temperature. Several solutions
have been developed in recent years for continuous temperature monitoring but an efficient
application of such solutions, which is a prerequisite for the calculation of the remaining shelf
life in meat supply chains, is in general, absent. Additionally, satisfactory concepts for the
implementation of predictive shelf life models in real supply chains are still lacking. Thus, the
objective of the study was the development of a generic model, which facilitates the
calculation of remaining shelf life in different cold supply chains. The development and
implementation of a generic model has to take into account practical requirements and inter-
as well as the intra-organizational complexity of pork and poultry supply chains.

2. Materials and Methods

To develop a concept for the implementation of a generic model in meat supply chains, three
approaches were combined: microbiological analysis, empirical supply chain assessment and
analysis of temperature conditions in differing supply chains.

The shelf life model has been developed for fresh pork and poultry: Skinless chicken breast
fillets (150 - 170 g) and sliced pork loins (150 - 200 g) were packed aerobically. Immediately
after packaging, pork and poultry samples were stored at five different isothermal
temperatures (2°C, 4°C, 7°C, 10°C and 15°C) in high precision low temperature incubators
(Sanyo model MIR 153, Sanyo Electric Co., Ora-Gun, Gumma, Japan). Furthermore, three
dynamic storage trials were performed to estimate the effectiveness of Pseudomonas sp. as a
SSO (also under non-isothermal conditions) and to analyze the influence of dynamic
temperature conditions on growth parameters in different growth phases: a periodically
changing temperature cycle (24 h cycle of 4 h at 12°C, 8 h at 8°C and 12 h at 4°C), a trial
with short temperatures abuses in the exponential growth phase (4 shifts for 4 h from 4°C to
7°C and 15°C, respectively) and a trial with short temperatures abuses in the beginning of
storage (3 shifts for 4 h in the first 60 h of storage from 4°C to 7°C and 15°C, respectively). In
parallel to the scenarios with short temperature abuses, additional samples were stored at 4°C



as controls. During storage samples of pork and poultry were analyzed for total viable count,
the number of Pseudomonas sp., sensory changes and pH-value at appropriate time intervals.
The time between slaughtering and the first investigation was 24 h for both meat types. TVC,
Pseudomonas sp. and sensory characteristics were analyzed as described by Raab et al.
(2008). The growth data from the enumeration of Pseudomonas sp. and TVVC were fitted with
the modified Gompertz model.

The empirical supply chain assessment consisted of three approaches: a questionnaire
approach, expert workshops as well as a focus group meeting. The empirical supply chain
assessment aimed firstly at the investigation of practical conditions (organizational structure,
inspection schemes as well as system architecture of information and cold chain
management). Secondly problems and challenges regarding temperature monitoring (e.g.
placement of novel temperature monitoring solutions, sojourn times in each step of the chain)
in pork and poultry supply chains in Germany were investigated (pork supply chain: n=28;
poultry supply chain: n=23).

For the implementation of shelf life models, a detailed knowledge about temperature
variations in supply chains is of great relevance. Consequently temperature conditions were
investigated in a national poultry supply chain in Germany both in summer and winter.
Furthermore, temperature variation at different places within the transport vehicles, at
different levels of the pallet as well as at single packages (surface temperature of the meat)
during transportation were analyzed by using Verdict ® 2K:T temperature loggers.

All calculations and figures were performed using the Origin software 8G (OriginLab
Cooperation, USA) and Microsoft Excel 2003.

3. Results and Discussion

Pseudomonas sp. was identified as a SSO for both meat types at constant and dynamic
temperature conditions. Based on sensory investigations, the end of shelf life was defined
when Pseudomonas sp. reached a population of 7.5 logye cfu/g for pork and poultry. The
calculated shelf life of pork was always longer than shelf life of poultry. Under non-
isothermal conditions, short temperature abuses had a bigger impact on the growth of
Pseudomonas sp. on pork than on poultry, which led to a higher reduction of shelf life for
pork than for poultry. But for both meat types the influence on shelf life was greater when the
temperature abuses took place in the first 60 h of storage than in the exponential phase. The
results also showed, that besides temperature and initial bacterial count, other factors must
have an influence on the growth of Pseudomonas sp. in fresh meat, because differences in
shelf life also appeared when the initial counts were mostly the same. First data analysis
showed no differences between the initial pH-value in all scenarios for both meat types and
no definite trend was observed during storage. An additional growth experiment in broth with
Pseudomonas sp. isolated from meat showed no difference in growth behavior at three
different pH-values (5.3; 5.8 and 6.3).

The empirical supply chain analysis revealed that the application of temperature monitoring
systems varies - as some systems support the temperature control at a company level
(incoming inspection, process control, final inspection) and other solutions focus on control
of the temperature during the whole supply chain from production to the retailer or end
consumer. Most frequently mentioned methods at the incoming inspection are random
checking of the product temperature and random microbiological investigations of specific
food pathogens and the total viable count. During transportation temperature is mostly
monitored using data loggers. Further on the results indicate that several factors for the
practical implementation of predictive shelf life models are not fulfilled. Especially
continuous control of product temperature over the whole chain is still absent. In parts of the
supply chain novel temperature monitoring solutions are used (e.g. wireless technologies with
temperature sensors) which permits the collection of real-time information on temperature
data as well as digital storage of the data over the whole supply chain.

Temperature mapping within a national supply chain showed huge temperature variations
between environmental temperature, temperature at the packaging material level (cardboard



boxes) and surface temperature of the meat within the cardboard boxes (Figure 1).
Furthermore, environmental temperature fluctuated at different locations within the truck
(differences up to +10.3°C within the summer period).
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Figure 1 Temperature variations within the transport vehicle and at a single cardboard box during
transportation in a national poultry supply chain in Germany (Raab and Kreyenschmidt, 2008)

The temperature mappings showed that the temperature inside the truck varied within the
summer period between -3°C and +15°C and in the winter period between 2.5°C and +7.5°C.
Further on there were substantial variations between the environmental temperature inside the
truck and the surface temperature of the meat. Even if the environmental temperature was
often outside the temperature limits required by law, the surface temperature was mostly
under 4°C (also in the summer experiment). The results showed that the product temperature
can differ from the environmental temperature but in practice mostly only the environmental
temperature is recorded. Thus, calculations on a basis of these data can lead to an
underestimation of remaining shelf life, as product temperature often varies considerably
from the environmental temperature. Therefore it has to be taken into account that the
calculation of the remaining shelf life based on the temperature history of a product requires
careful placement of the temperature monitoring system - and the packaging material of a
product is also an important factor.

4. Conclusions

Based on these results, an overall concept for the development and implementation of a
generic model to predict the remaining shelf life of different kinds of meat in different cold
chains has been developed (Figure 2). The generic model consists of three different models: a
shelf life model, an inter-organizational cold chain model and a temperature control model
including a heat transfer model. The shelf life tests showed that it is generally possible to
develop a combined shelf life model for fresh pork and poultry based on the growth of
Pseudomonas sp. But for an accurate prediction of remaining shelf life at different stages of
the supply chain, the influence of parameters of the food matrix (e.g. a,-value, lactate or
glucose content) as well as the influence of temperature abuses during the cold chain on
remaining shelf life have to be considered in the model. Investigations of different food
matrix parameters have already been conducted and data analysis is in progress. Then, the
shelf life model will allow the calculation of remaining shelf life for different types of meat.
The inter-organizational cold chain model provides information for the optimal
implementation of the shelf life model in specific chains with regard to organizational
structures, technical circumstances, inspection schemes and information management. The
output of the model is the definition of an optimal feedback control scheme for a chain
specific adaptation in inter-organizational supply chains. The temperature control model
includes chain specific information regarding an optimal temperature monitoring as an
important requirement for the calculation of the remaining shelf life. Since most temperature
monitoring systems only measure the environmental temperature, a heat transfer model is also
included in this model. The integration of a heat transfer model can be useful in some chains
to obtain a more precise prediction of the remaining shelf life. The combined output of the
three models allows the prediction of remaining shelf life in different cold chains.
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different cold supply chains (modified after Raab et al., 2008)
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Abstract

Byssochlamys species have been responsible for degradation and spoilage of processed fruit
products due to the outgrowth of heat-resistant ascospores after thermal processing. Spoilage
is manifested by the production of mycelium in fruit products and softening of processed fruit
tissues. B. fulva was grown on malt extract agar at different temperatures (10, 15, 20, 25, 30,
35, 40, and 45°C) and water activity levels (0.88, 0.90, 0.92, 0.94, 0.96, and 0.99). Growth
was determined over time in terms of colony diameter extension and the primary model of
Baranyi and Roberts was used to fit growth data and estimate the maximum specific growth
rates, which were further modelled as a function of temperature and water activity using the
Rosso cardinal model. Linear logistic regression was aso applied to predict the probability of
growth over storage time. No growth was observed at 0.88 ay regardiess of storage
temperature, as well as at 0.90 and 0.92 a,/10, 15, 45°C, and 0.94 a,/10°C. Based on the
estimated parameters of the Rosso cardinal model, the optimum specific growth rate (x,,,,) was
26.4 mm day™, the Tma, Tmin, and To for growth were 46.4°C, 9.1°C, and 32.1°C,
respectively. In addition, the estimated optimum a, for growth was 0.985, whereas the
minimum and maximum a,, values were 0.893 and 0.993, respectively. Regarding growth
boundaries, the degree of agreement between predictions and observations was 98.8%
concordant and 1.2% discordant. The erroneously predicted growth cases were 3.5% false-
positives and 4.2% fal se-negatives.

Keywords: Byssochlamys, fungi, probabilistic modelling, Rosso cardinal model

Introduction

Byssochlamys species are responsible for spoilage and degradation of processed fruit juices
and silages, since they can grow at low oxygen partial pressures and in acidic environments.
They produce ascospores which can withstand thermal processing normally given to fruit
juices and are also capable of producing pectinolytic enzymes modifying thus fruit texture.
Besides the spoilage effect of thermally treated products, Byssochlamys species can also
produce mycotoxins including patulin, byssotoxin A and byssochlamic acid (Houbraken et al.
2006). So far, very little has been published on the effect of environmenta factors (e.g.
temperature, water activity, pH, etc.) on the growth of this fungus, and heat-resistant fungi in
general. The aim of this work was to provide quantitative information on the effect of
temperature and water activity on the growth rates and growth boundaries (growth-no growth
interface) of B. fulva ascospores on a synthetic growth medium.

Materials and methods

Byssochlamys fulva DSM 1808 from the fungal collection of the Deutsche Sammlung von
Mikroorganismen und Zellkulturen was used in this study. The fungus was routinely grown
on malt extract agar (MEA 1.05398; Merck, pH 5.7) at 30°C for 10 days in the dark.
Ascospores were harvested as described previoudy (Panagou et al. 2003). Their density was
determined by means of a counting chamber and it was found to be about 10° ascospores mi™,
The a,, of the MEA basal medium was 0.99 and it was modified to 0.88, 0.90, 0.92, 0.94, and
0.96 by adding different amounts of glycerol. Petri dishes containing about 20 ml of the



solidified growth medium were needle inoculated centrally with the ascospore suspension and
incubated at 10, 15, 20, 25, 30, 35, 40, and 45°C. The effect of temperature and water activity
on fungal growth was investigated by means of a full factorial design with four replicated
plates for each temperature/a, combination. Fungal growth was established by diameter
measurements at right angles on a daily basis. Estimates of the maximum colony growth rates
(umax) Were obtained by applying Baranyi’s primary model and these values were
subsequently used in secondary modelling using the cardinal model of Rosso (Rosso and
Robinson 2001):

t(T1,) = CTPM (T ) = p,,, - (T) - A{a,)

opt

Where,

(T ~T)” (T =T
o(T) = min mex
[(Topt _Tmin) '|_(Topt - Tmin)(T_Topt) - (Topt _Tmax)(]:;pt +Tmin - ZT)J]

and

(aw _ awmin) i (aw _ awnﬁx)

Ma,) = c ]
! (awopt - awmin) ' I_(aw(;pt - awmin)(aw - awopt ) - (awopt - awmx )(awopt + awmin - 2aW)J

The terms Tmin, Tmax, 8w,min, 8v,max COrrespond to the values of temperature and water activity,
respectively, below and above which no growth occurs. Additionally, T,y and a,y are the
values of temperature and water activity at which ., isequal to its optimal value ().

The model was externally validated with three thermally treated fruit juices, namely orange,
apple and peach juice obtained by alocal retailer. The juices were solidified in Petri dishesby
adding sterilized agar and inoculated with the ascospore suspension as previously described.
The a, of the resulting juice medium was 0.98 for all juices. The inoculated dishes were
inoculated at the same temperatures as above and the extension of fungal mycelium was
measured in the same way.

Moreover, for each replicate response of the fungus, growth data were converted into
probabilities of growth by assigning 1 to plates with visible growth and O in the case of no
growth. Data were fitted to a logistic regression model in order to determine the growth/no
growth boundaries of the fungi under the assayed environmental factors. The model employed
was a second-order logistic regression model in the form shown in the following equation:

logit(P) =In [%} =ay+at+a,T +aa, +a,t’ +a,T° +aa’ + a,tT +agta, +a,Ta,

where, P isthe probability of growth (in the range of 0-1), a; are coefficients to be estimated,
a,, is the water activity of the medium, ¢ (days) is incubation time, and 7' (°C) is temperature.
The automatic variable selection option with a stepwise selection method was used to choose
the significant effects (P<0.05). The predicted growth/no growth interfaces for P=0.1, 0.5,
and 0.9 were calculated using Microsoft Excel Solver.

Results and discussion
The growth curves based on colony diameters were typica of linear fungal growth after a

germination (lag) period which was dependent on incubation temperature and ay level of the
medium. It is characteristic that under low water activity levels there was higher variability
among replicated treatments and fitting was less accurate. Generally, the primary model of
Baranyi and Roberts fitted well the experimental data as the R’ index ranged from 0.91 to
0.99 and the standard error of fit from 0.43 to 5.17, depending on the environmenta



conditions assayed. The results of secondary modelling with the Rosso equation are presented
in Figure 1 and the estimated parameters with the relevant statistics are shown in Table 1. The
optimum growth rate was 26.4 mm day * which is in good agreement with the value of 20.2
mm day * reported previously for another strain of the same fungus (Valik and Pieckova
2001).

30
—— l

25 | P
'@ 20 1
E
= 15 A
(]
©
e
S 101
(@]
V)

0

0.88 0.9 0.92 0.94 0.96 0.98 1

Water activity (a,)

Figure 1: Fitted curves of Rosso cardinal values model describing the effect of temperature
and water activity on the growth rate of B. fulva. (=) 15°C, () 20°C, () 25°C, (#) 30°C,
(A)35°C, (~)40°C.

Table 1: Estimated values and statistics of the coefficients of the Rosso cardina value model
for the growth rate of B. fulva at different conditions of temperature and aw.

Parameter Estimated value d.f. RMSE R? adj usted
Hopt (days ™) 26.37+ 1.26 121 0.0681 0.939
Tiax (°C) 46.45+ 0.27
Trin (°C) 9.11+1.03
Topt (°C) 32.10+0.36
By, max 0.993 + 0.028
aw, min 0.894 + 0.009
By, ot 0.985 + 0.002

The graphical comparison of the observed and predicted growth rates of B. fulva in fruit juices
is presented in Figure 2a. Overall, the model had better performance for the orange juice as
the data points were closer to the line of equity. The model underestimated the growth rates at
low (10, 15°C) and high (40, 45°C) temperatures, whereas for the other temperatures assayed
there was reasonably good agreement between observations and predictions. Similar
conclusions can be drawn from the percent relative error graph (Figure 2b).

The developed logistic regression model for the probability of growth of B. fulva showed that

the degree of agreement between predictions and observations was 98.8% concordant and
1.2% discordant indicating successful data fitting.
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Figure 3: Growth-no growth boundaries of B. fulva after 5 (a) and 15 (b) days of incubation
on malt extract agar. Solid symbol indicates growth; open symbol indicates no growth; solid
lineindicates P = 0.9; dotted line indicates P = 0.5; dashed lineindicates P=0.1.

Plots of probability of growth of B. fulva a 5 and 15 days of incubation showed that the
probability was higher at 30 and 35°C for 0.90 ay, (Figure 3a) but as time increased the growth
interface shifted to lower (20, 25°C) and higher (40°C) temperatures for the same g, level.
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Abstract

In this study, a food model system based on Carbopol was used to define the growth/no
growth boundary of the spoilage yeast Zygosaccharomyces bailii at different levels of pH,
acetic acid concentration, glycerol concentration, temperature and viscoelasticity. Results
show that in most cases growth domains were larger in structured media than in liquid media,
which is an important contradiction to the general assumption that food structure induces an
extra stress on microorganisms (Wilson et al. 2002).

Keywords food structure, food model system, acid sauces, growth/no growth boundary

Introduction

Within the field of predictive microbiology, the amount of experimental studies that quantify
the effect of food structure on microbial growth is very limited. This is mainly due to
impracticalities related to the non-liquid nature of the culture medium. Most often, agar or
gelatin is used as gelling agent in this type of studies. Although both are widely used in food
applications, their relevance is limited to food products with a purely gelled microstructure.
Furthermore, the majority of studies only mention the concentration of the gelling agent as a
quantitative measure of food structure. In this context, rheological concepts enable the
evaluation of structural characteristics in a more objective way.

Among the wide range of foodstuffs, sauces are known for their complex microstructure and
typical rheological properties. The group of acid sauces includes both emulsions, such as
mayonnaise and salad dressings, and concentrated suspensions, such as ketchup. These sauces
are viscoelastic, i.e., they have both viscous and elastic properties. Other characteristics of
acid sauces are low pH, low a,, and presence of organic acid preservatives. Due to this harsh
environment, spoilage is predominantly caused by lactic acid bacteria and yeasts, of which
Zygosaccharomyces bailii is particularly troublesome.

In this study, the growth/no growth interface of the spoilage yeast Z. bailii is defined in a
structured food model system that is relevant to this type of sauces. The model system uses a
suitable thickening/gelling agent (Carbopol 980) and incorporates the main physicochemical
(aw,» pH, sugar and acetic acid concentration) and rheological characteristics (viscoelastic
behavior at the relevant magnitude) of acid sauces.

Material and Methods

The growth/no growth interface of Z. bailii was defined at different levels of pH (3.5-4.5, 3
levels), acetic acid concentration (1.5 and 2.0% (v/v)), glycerol concentration (20-32% (w/v),
5 levels), and levels of viscoelasticity (3 levels, including a purely liquid medium, covering



the whole range of gel strength of acid sauces, obtained by altering the Carbopol 980
concentration).

Growth media preparation

All media were based on Sabouraud (SAB, Oxoid) and a total sugar concentration of 15%
(w/v), with glucose (G-8270, Sigma Aldrich) and fructose (F-0127, Sigma Aldrich) at a 1:1
ratio.

Growth media containing Carbopol were prepared at a proportion of 5/3 compared to the
regular levels. Therefore, the media contained 50 g/liter SAB, 9.17% (w/v) glucose and
12.5% (w/v) fructose. Glycerol (24388, VWR) and Carbopol 980 (Lubrizol Corporation)
concentrations were also adapted to the 5/3 ratio. All components except acetic acid were
added and the mixtures were vigorously stirred for at least 30 min (OST 20 basic, IKA Werke
GmbH & Co. KG). After this, the media were autoclaved at 121°C for 15 minutes. When
necessary, media were centrifuged to remove entrapped air bubbles. Next, the required
amount of acetic acid (818755, Merck KgaA) was aseptically added. The media were shaken
and centrifuged again to remove entrapped air bubbles.

Growth media without Carbopol were prepared with the regular amounts of SAB, sugar and
glycerol. The pH of these media was adjusted to the required value by adding sterile HCI
(Acros organics).

Inoculation procedure

Z. bailii (strain No. 174, culture collection of LFMFP, Ghent University, Belgium) was taken
from a stock culture stored at —75°C. The strain was recovered in SAB by incubating at 30°C
for 48h, and afterwards it was maintained at 2°C on Yeast Glucose Chloramphenicol slants
(YGC, 64104, Bio-Rad). In order to prepare the inoculum, cells from YGC slants were
cultivated at 30°C in SAB for 24h. A subculture of 5 ml was taken and grown again in 200 ml
SAB for 24h at 30°C. Precultures were diluted in the growth medium to provide an
inoculation level of 5-10* cfu/ml. The inoculum density was verified by plating on TSA
(CM131, Oxoid), supplemented with 4% (w/v) fructose.

The growth/no growth experiments were performed in 48-well microtiter plates (Greiner Bio-
One) with a total volume of growth media of 500 ul per well. For the Carbopol media, this
volume was obtained by adding 300 ul of inoculated growth medium and 200 pl of a sterile
NaOH solution to each well (hence, the factor 5/3 for growth media preparation). The
concentration of the NaOH solution was the concentration necessary to reach the required pH
value, which was previously determined by obtaining calibration curves for each Carbopol
concentration under study. Microtiter plate wells were filled by alternately adding 100ul of
growth medium and 100ul of NaOH solution until the total volume of 500 ul per well was
reached. This was done to reach an optimal level of mixing, as Carbopol solutions
immediately thicken upon addition of NaOH. For the transfer of the Carbopol media, a
positive-displacement pipette (Microman M100, Gilson Inc.) was used. Subsequently,
microtiter plates were shaken for 2 minutes in a microplate shaker (MS 3 digital, IKA Werke
GmbH & Co. KG). Sufficient mixing was verified visually as the medium within each well
became completely transparent due to the addition of NaOH. For each medium, 20 replicates
were performed.

Growth assessment

The microtiter plates were placed in a SpectraMax M2° microplate reader (Molecular devices)
at an incubation temperature of 22°C (for 60 days) or 30°C (for 45 days). The optical density
(OD) of the media at 600 nm was measured at regular time intervals and the data were
processed by the software package SoftMax Pro (Molecular devices).

For the experiments in liquid media, a single point measurement was performed in each well.
For the media containing Carbopol, data collection was performed by using the well scan
method, in which OD values were measured at nine different positions in a well. For each
measuring point, the OD at time zero was subtracted from the OD of the suspensions and the
average of the nine values per well was calculated. This value was used to construct OD



growth curves. If, at day 0, air bubbles were apparent at one (or more) of the nine
measurement points of a certain well, these points were discarded. A well was considered as
showing growth if the OD was higher than 0.2.

At the end of the incubation period, the strain purity was checked by looping out on TSA
supplemented with 4% (w/v) fructose. Wells that were doubtful or did not show any turbidity
were plated on the same agar medium to assess whether inactivation had occurred.

Results and Discussion

In this study, the G/NG boundary of Z. bailii was defined in a model system based on
Carbopol 980 as the thickening/gelling agent. As the rheological properties of Carbopol
solutions depend on pH and acetic acid concentration, the Carbopol concentration was
adapted in order to reach similar levels of structure at varying values of these environmental
factors. The three levels of medium structure applied in this study corresponded to a storage
modulus G’ of 0, 150 and 450 Pa (at 0.1 rad/s).
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Figure 1: G/NG boundary of Z. bailii at 22°C after a 45-day incubation period, for liquid
(upper row), moderately structured (middle row) and highly structured media (lower row), at
1.5% (v/v) (left column) and 2.0% (v/v) acetic acid (right column). Data points: p=0% (0),
p=100% (+), pE 10, 100[ (A) with the measured percentage of growth indicated.

Fig. 1 shows the growth probability of Z. bailii at different levels of medium structure and
acetic acid concentration at 22°C and an incubation period of 45 days. A longer incubation



period (60 days) yielded higher growth probabilities, but did not result in a larger growth zone
(results not shown). At each level of medium structure, growth probability generally
decreased if more stringent conditions were applied. However, a peculiar effect on the G/NG
boundary was observed when structure was induced. At 1.5% (v/v) acetic acid, the growth
zone became larger when the level of structure was increased. A different behavior was
observed at 2.0% (v/v) acetic acid, where initially a significant increase in growth zone did
not occur in moderately structured media (G’=150 Pa). However, when the concentration of
Carbopol was further increased (corresponding to a G’ of 450 Pa), a more gradual and larger
growth zone was observed, with possible growth at the lowest pH value of 3.5.

The growth zones at 30°C were generally similar to those at 22°C (results not shown), with
exception of the G/NG data at 2.0% (v/v) acetic and the highest level of structure (Figure 2),
where a significantly smaller growth zone was observed.
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Figure 2: G/NG boundary of Z. bailii at 30°C after a 45-day incubation period, for highly
structured media at 2.0% (v/v) acetic acid. Data points: p=0% (o), p=100% (+), pE 10, 100[
(A) with the measured percentage of growth indicated.

The aforementioned results suggest that the effect of immobilisation of Z. bailii at stressful
environmental conditions (i.e., high acetic acid concentration and low ay) can not be
explained in a straightforward way. Moreover, the fact that in most cases, larger growth
domains occurred in structured media is in contradiction with the general assumption that
food structure induces an extra stress on microorganisms (Wilson et al. 2002).

Conclusions

The results shown in this research illustrate the need for more studies that quantify the effect
of food structure on microbial behavior. In order to perform such studies on a systematic and
consistent basis, the experimental setup must enable careful control and appropriate methods
for growth assessment.

The approach adopted here, i.e., to study microbial behavior in a food model system
specifically designed for a target food product, is novel within the field of predictive
microbiology. Moreover, the use of rheological concepts to assess the effect of food structure,
combined with the use of optical density measurements in microtiter plates, has so far not
been performed to this extent in structured media.
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Abstract

The objectives of this study were to develop a model for the combined effect of
temperature (T: 15, 20 and 25°C) and micro-structure (expressed in gelatin concentration) (G:
0, 5, 10 and 20%) on growth and OTA production by 4. carbonarius and evaluate the model
in foods of different viscosity. Growth rate was expressed as the increase of fungal biomass
per time. The square root of growth and OTA production rates were determined by the
Baranyi model or a linear equation and were further modeled as a function of temperature and
gelatin concentration by applying polynomial models. Moreover, the rate of OTA production
at 20°C on two food matrices of different micro-structure, such as dairy cream and jelly,
inoculated with A. carbonarius, were compared to the predictions of the secondary model.

Increase in gelatin concentration indicated a significant delay both, in fungal growth and
OTA production rates and also reduced the maximum level of OTA production at all
temperatures. The highest OTA level and rate of OTA production was observed at liquid
media at 20°C, while the optimum for growth was observed at liquid media and 25°C.
Coefficients of determination were 0.91 and 0.87 for the models predicting the square root
(V' limax) of growth and OTA production rate, respectively. Lag time was not influenced by the
gelatin concentration, being in the range of 7-10 days. Model predictions showed good
agreement with OTA production in dairy cream but over-predicted OTA production in jelly.
The present findings may provide a basis for assessing the risk of fungal growth and OTA
production in foods of different structure.

Keywords: ochratoxin A, modeling, gelatin, temperature.

Introduction

Ochratoxin A (OTA) constitutes a fungal secondary metabolite well known for its
carcinogenic, immunosuppressive and teratogenic properties (IARC, 1993). Aspergillus
carbonarius is one of the common ochratoxinogenic fungi. In addition to the well-established
effect of a,,, pH and temperature (Esteban et al., 2006), structural properties (i.e., liquid, semi-
liquid or solid) of foodstuffs are also known to highly affect the probability and rate of
microbial growth. This hypothesis has been widely studied for bacteria (Skandamis et al.
2000; Wilson et al., 2002; Theys et al. 2008), while limited information is available on how
food micro-structure affects fungal growth and mycotoxin production.

Mathematical models constitute a valuable tool in order to predict the responses of
microorganisms to environmental conditions. In contrast to pathogenic bacteria, filamentous
fungi have received less attention as far as the predictive modeling is concerned (Valik et al.,
1999; Tassou et al., 2007).

Considering the above, the present study aimed: (i) to monitor fungal growth and
production of OTA on laboratory media and foodstuffs of different micro-structure, expressed
in gelatin concentrations, at different temperatures; and, (ii) to develop and evaluate a
predictive model for the growth rate of 4. carbonarius and the kinetics of OTA production.



Materials and methods

Growth and OTA production kinetics of A. carbonarius (ATHUM 5659) were determined
in Malt Extract Broth (MEB; pH 5.8; initial a,: 0.99) supplemented with different gelatin
concentrations (G: 0, 5, 10 and 20%) at different temperatures (T: 15, 20 and 25°C).

Equal volumes of liquid and gelatinized media (modified pH at 5.50; a,: 0.99) were
distributed into Petri dishes and Erlenmeyer flasks for assessment of fungal growth and OTA
production, respectively. Fungi were grown on Malt Extract Agar for 7 days to obtain
sporulating cultures and then spores suspensions were harvested in sterile water with 0.01%
Tween 80. All culture media were inoculated with 10’ spores/ml. Inoculated media were
incubated at 15, 20 and 25°C. Furthermore, OTA production was evaluated on two food
matrices of different micro-structure, such as dairy cream (oil-in-water emulsion) and jelly
(gel), inoculated with A. carbonarius and incubated at 20°C.

Fungal growth was estimated by measuring the dry fungal biomass using sterile
cellophane discs, according to Pasanen et al. (1999). OTA extraction and clean up was
performed according to Romer Lab immunoaffinity columns. OTA detection-quantification
was performed by HPLC. The primary model of Baranyi was used to obtain the kinetic
parameters of fungal growth and OTA production of 4. carbonarius. Then, the square root
( *\-"p.max) of specific growth rate and OTA production rate were further modeled as a function of
temperature and gelatin concentration using a polynomial model.

Results and discussion

The results suggested that the combination of temperature and gelatin concentration
markedly affect the growth and OTA production of A. carbonarius. The optimum temperature
for growth was 25°C (Fig.1a), while OTA production curves clearly showed that the
maximum rate and levels of OTA production were observed at 20°C (Fig.1b), in agreement
with previous reports (Belli et al., 2005; Marin et al., 2006).
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Figure 1. Graphical illustration of (a) growth and (b) OTA production kinetics of A. carbonarius on
Malt Extract Broth using 0% (o), 5% (A), 10% (o), and 20% (x) gelatin as a solidified agent and
incubated at 15°C, 20°C and 25°C.

With regards to micro-structure, increase of gelatin concentration seemed to constitute a
hurdle for both fungal growth and OTA production, while the maximum amounts of OTA
were observed in liquid media (absence of gelatin), regardless of temperature. Specifically, at
all temperatures tested, growth and OTA production rate as well as maximum OTA
production decreased as gelatin concentration increased from 0 to 20% (Fig. 1a, 1b). Similar
results were also obtained for fungal growth rate. A possible interpretation is that the
mechanisms responsible for suppressing growth rate and OTA production in structured media
may be local depletion of oxygen and nutrients and local accumulation of metabolites (e.g.,



organic acids) near the hyphae (Wilson et al., 2002). Other studies support that
microorganisms in structured products, are immobilized and forced to grow in a restricted
space, thereby experiencing an additional stress, which reduces their growth rate
(Brocklehurst et al., 1997; Theys et al., 2008).
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Figure 2. Comparison of A. carbonarius growth rate and maximum OTA production using different
gelatin concentrations (0, 5, 10, and 20% w/v) and incubated at (x) 15°C, (@) 20°C, and (0) 25°C.

The combined effect of gelatin concentration and temperature on growth and OTA
production of 4. carbonarius was modeled with a quadratic function. As far as fungal growth
rate is concerned, a good agreement between the data and the model predictions was obtained
(R’=0.91), while poorer agreement was observed (R*=0.87) for OTA production rate, possibly
due to the high magnitude of OTA measurement (Table 1). The secondary model of Theys et
al.  (2008) and a Ratkowsky type model with the gelatin term

\/(Gm -G)/(G,, —G,,) Mejlholm and Dalgaard, 2007) were also evaluated, but

resulted in R? of 0.72 and 0.75, respectively. Nonetheless, a realistic Gpax 0f 30.4% and a Gy
0f 0.02% were determined. According to Figure 2, it is evident that growth rate and maximum
OTA production followed a similar trend in response to gelatin concentration in the growth
medium. Furthermore, Figure 2 shows that the increase of gelatin concentration caused a
significant delay on growth rate and max. OTA production, regardless of temperature.
Consistent with Fig. 2, the response surface (Fig. 3) also illustrated that the +/pp,, of OTA
production is maximum in non gelatinized media at 20°C.

Table 1. Estimated parameters of secondary polynomial
models for 4.y of growth and OTA production

Parameters  Growth rate  OTA rate Max. OTA

b 0.248 -13.859 -21.881

T 0.019 1.626 2917

Gel -0.018 -0.178 -0.180

T*Gel -0.002 -0.002 -8.83E-04

T*T 8.28E-04 -0.039 -0.076

Gel*Gel 0.002 0.008 0.005

R? 0.910 0.879 0.944 -

RMSE 0.079 0.260 0.307 Figure 3. Quadratic response surface

describing the effect of temperature

and gelatin concentration on the
Our findings for OTA production rates for 10-20%  square root of OTA production rate

gelatin (15% gelatin is considered to approximate a  (yu...) of A. carbonarius.

culture medium with agar as solidified agent) are in

agreement with researchers who studied the kinetics of

produced OTA at similar conditions (a,, and pH) but in different culture media (Marin et al.,
2006). The results also indicate that gelatin had not significant influence on lag phase, as
opposed to temperature.



In order to evaluate the model predictions, two foods

of different micro-structure (dairy cream and jelly)  so
were studied (fig. 4). The model agreed well with
OTA production in cream but overrpredicted (fail-
safe) the rate of OTA in jelly (Table 2). A possible _ 207
interpretation for such disagreements may be
attributable to differences in intrinsic conditions (e.g.,
porosity and viscosity) and nutrients between
laboratory media and food matrices. However, the  os;

trend of OTA production in foods was consistent with ¢ M

our observations on MEA. 6 5 10 15 22 25 30 35
INCUBATION TIME (DAYS)

25 A

15 4

COTA (ppm)

1.0 4

Table 2. Observed and predicted "\".”-max of OTA production

on dairy cream and jelly. Figure 4. Kinetics of OTA production

on (m) dairy cream and (A) jelly,

* Wimay 0f OTA production incubated at 20°C during 30day
Products Predicted Observed storage.
value value
Dairy cream 1.963 2418
Jelly 2.716 0.754

Conclusions

Structured environments seem to delay and suppress fungal growth and OTA production
compared to more liquid environments, and such findings may assist in assessing the risk and
control of OTA production in different products categories. However, the combined effect of
structure with other determinants, such as pH, water content, nutrients or endogenous
microflora of foods, in which OTA production is likely, is to be determined.
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Abstract

A product specific model was developed and validated under dynamic temperature conditions for
predicting the growth of S. cerevisiae in pasteurized fruit juices. Commercially prepared fruit juices
were inoculated with S. cerevisiae (initial inoculum ca. 2.810gw CFU mi™), and stored at 4, 8, 12, and
16°C for up to 50 days. The growth kinetic parameters at each temperature were determined by the
primary model of Baranyi and Roberts, and the maximum specific growth rate was further modelled as
afunction of temperature by a square root-type model. The performance of the model in predicting the
growth of the yeast under dynamic temperature profiles was based on two temperature scenarios with
periodic changes from 4 to 12°C. Mode! performance was based on the calculation of the bias (B,) and
accuracy (A4y) factors, the goodness-of fit (GoF) index and the percent relative errors between observed
and predicted growth. Moreover, fruit juice spoilage was sensory evaluated by observing gas
production in the packages and subsequent swelling. It was observed that package deformation due to
swelling was evident when the population of S. cerevisiae reached the level of 7 logi CFU mi™ for the
higher isothermal temperatures (12 and 16°C), whereas for the lower temperatures (4 and 8°C)
package deformation was noticeable at 6 log,, CFU ml™. Spoilage was observed at 28 and 15 days,
respectively, at 4 and 8°C for pasteurized apple juice. However, at higher temperatures (12 and 16°C)
shelflife was drastically reduced at 6 and 4 days, respectively. The respective values for strawberry
juice were 32, 11, 5, and 3 days at 4, 8, 12, and 16°C, respectively. The shelf-life for the
aforementioned temperatures was calculated via the Monod equation providing realistic estimates of
the shelf-life of fruit juices stored under isothermal conditions. Specifically, for apple juice estimated
shelflifewas 23.4, 15.1, 5.9, and 3.7 days at 4, 8, 12, and 16°C, respectively.

Keywords: dynamic modelling, fruit juices, S. cerevisiae, Spoilage, yeasts

Introduction

Yeasts can generally withstand extreme conditions better than bacteria and consequently they are
found in low pH products and products containing preservatives in concentrations where bacteria
cannot grow (Deak and Beuchat 1996). The main factor to control microbia growth in fruit juicesis
pH, with the exception of certain fruit juices which contain benzoate or are carbonated (Loureiro
2000). The pH value of juices varies, but in most cases it is sufficiently low to select for yeasts,
moulds, lactic acid bacteria and acetic acid bacteria. Fruit juice concentrates, fruit pulps, packaged
fruit juices and soft drinks are especially prone to spoilage by yeasts, namely S. cerevisiae, S. bayanus,
and S. pastorianus t0 alesser extend (Fleet 2006). The principal spoilage reaction of Saccharomyces
species is the fermentation of sugars (e.g. glucose, fructose, sucrose, maltose) with the production of
mainly ethanol and carbon dioxide. The latter gives the product a gassy appearance and caused
packages to swell with the concurrent development of a distinctive acohalic, fermentative taste and
smell. The aim of this work was to develop and validate a product specific model to predict the growth
of S. cerevisiae in pasteurized fruit juices under isotherma and dynamic (fluctuating) temperature
conditions. Based on the developed model, the shelf-life of fruit juices was determined using the

Monod equation (for isothermal conditions) and Monte Carlo approach (for fluctuating temperature
profiles).



Materials and methods

Packages (1 | volume) of commercially prepared and thermally treated fruit juices (green apple, peach,
and strawberry juice) were obtained directly from a local manufacturer. Fruit juices taken after the
processing line were inoculated with S. cerevisiae (initial inoculum of 2.8 log,, CFU ml™), and stored
a 4, 8, 12, and 16°C for up to 50 days. Uninoculated fruit juices were aso incubated at the same
temperatures and served as control. At appropriate time intervals depending on each incubation
temperature, fruit juice samples were analyzed to alow for efficient kinetic analysis of microbia
growth on YPD medium as well as on plate count agar for total viable counts. The growth kinetic
parameters at each temperature were determined by the primary model of Baranyi and Roberts (1994).
The performance of the model in predicting the growth of the yeast under dynamic temperature
profiles was based on two temperature scenarios (i) 12 h at 4°C, 6 ha 8°C and 6 h at 12°C, and (ii)
12 hat 4°C and 12 h at 8°C. Model performance was based on the calculation of the bias (B,) and
accuracy (4,) factors, the goodness-of -fit (GoF) index and the percent relative errors between observed
and predicted growth. In order to determine the product’ s shelf-life at each isothermal temperature, the
equation of Monod was employed. Initially, shelf-life was determined by a sensory panel as the time
needed for the package to swell. The shelf-life was subsequently correlated linearly with the
temperature, using the modified Arrhenius equation. In the case of fluctuating temperature profiles,
shelf-life was determined using a Monte-Carlo simulation, a technique that allows for the calculation
of the desired output (shelf-life) based on input described by distributions instead of mean values.

Results and discussion

The population dynamics of S. cerevisiae in green apple and peach juices are presented in Figure 1.
Similar results were obtained for the strawberry juice. A typical growth pattern was observed,
comprising an initial lag phase, an exponential growth phase and finally a stationary phase. It is
characterigtic that the lag phase was very short in all juices even at the lowest storage temperatures as

yeasts did not seem to be affected by these temperatures.
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Figure 1. Growth curves of S. cerevisiae in green applejuice (a) and peach juice (b) stored at different
isothermal conditions (@, 4°C; A, 8°C; B, 12°C; 4, 16°C).

No yeasts were enumerated in any of the control samples stored under the same conditions. The
estimated kinetic parameters and statistical indices are shown in Table 1. The effect of storage
temperature on umax Was further quantified by means of a secondary square-type model (Table 2). The
model developed under isothermal conditions was validated against observed growth of the spoilage
yeast for the dynamic temperature profile using two fluctuating temperature scenarios with periodic
changes from 4 to 12°C. A typica example of the predicted growth of S. cerevisiae in peach juiceis



Temperature (°C)

shown in Figure 2. The average values of the performance indices for apple fruit juice were 1.021,
1.047, and 0.274 for B, A, and GoF, respectively for both temperature scenarios assayed. The
respective values for strawberry juice were 0.98, 1.03, and 0.22 for B, 45, and GoF.

Table 1: Parameters and statistics of the model of Baranyi and Roberts for the growth of S. cerevisiae
in pasteurized fruit juices under different isothermal conditions.

Product Temp. °C) e (M A (h)  ho®  No®  Nm®  SEof fit R

4 00129 529 0682 27 6.7 0.1551 0.989

Peach juice 8 00424 313 1327 28 75 0.1375 0.994
12 00958 123 1178 27 7.7 0.1576 0.994

16 0.0919 - - 2.8 7.9 0.2446 0.984

4 00187 338 0632 27 7.2 0.2097 0.986

Green apple 8 00260 264 0686 2.7 7.3 0.1643 0.991
juice 12 00841 187 1570 2.8 75 0.1846 0.987
16 01171 68 0795 27 7.7 0.1988 0.990

4 00120 44 0532 27 6.5 0.1259 0.993

Strawberry 8 00458 362 1658 2.8 7.1 0.1012 0.996
juice 12 00976 147 1435 28 74 0.0971 0.996
16 00942 08 0075 27 74 0.2086 0.986

@ Adaptation work parameter estimated as zmax X /.

@@ nitial and final population (log,, CFU ml™) of S. cerevisiae determined by fitting.
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Figure 2: Comparison between observed (points) and predicted (lines) growth of S. cerevisiae in
pasteurized peach juice under periodically changing temperature conditions (a: 12 hat 4°C, 6 hat 8°C
and6 hat 12°C; b: 12h at 4°C and 12 h at 8°C).
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The shelf life of pasteurized fruit juices determined (a) sensorially, i.e. as the time elapsed for package
swelling (SLsensory), (b) using the Monod's equation (SLaws), and (€) using the Arrhenius eguation
(SL prea) are summarized in Table 2. Generally, the samples of pasteurized fruit juices stored at 4 and
8°C demonstrated increased shelf life compared with those stored at 12 and 16°C, which presented
higher growth rate of S. cerevisiae resulting in a drastically decreased shelf-life. The observed shelf-
life of fruit juices stored at fluctuating temperatures was 13 days for peach and strawberry juice and 17
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days for green apple juice for the two temperature profile (12 h a 4°C and 12 h at 8°C). In the case of
the three temperature profile (12 h at 4°C, 6 h at 8°C and 6 h at 12°C) the respective observed shelf -
lifewas 9 and 11 days for peach and strawberry juices, and green apple juice, respectively.

Table 2: Shelf-life determination of pasteurized fruit juices during isothermal storage
at 4, 8, 12, and 16°C.

Product Temp. (°C) Ns? Sensory SL Observed SL  Predicted SL

(days) (days) (days)

4 6.2 29 28.2 24.7

Peach juice 8 7.1 11 11.0 12.1
12 7.1 5 49 5.8
16 6.0 3 3.3 2.8

4 7.0 28 23.4 24.5

Green apple 8 6.5 15 151 12.8
juice 12 7.3 6 59 6.7
16 6.9 4 3.7 35
4 6.3 32 30.6 25
Strawberry 8 6.8 11 9.8 12
juice 12 7.1 5 4.8 5.8
16 6.0 3 34 2.7
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Figure 3: Shelf-life determination of strawberry fruit
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Introduction

Bacillus cereus is a sporulated bacteria which resist mild heat treatments and is able to grow
at low temperatures which make this bacteria of special interest in REPFED products.

Many heat treatments are insufficient to completely inactivate bacterial spore population. For
example pasteurized products are heat treated to a temperature close to ninety degrees. These
heat treatments decrease population size and increase lag time of spore survivor growths.
These effects are influenced by time and temperature treatment, and also by recovery or
incubation temperature. Thus the objective of the study was to model the impact of heat
treatment and incubation temperature on spore lag time of Bacillus cereus spores.

Material and methods

Three strains of Bacillus cereus were studied. Bacillus cereus ATCC 14579 which is the
reference strain for Bacillus cereus species, Bacillus cereus KBAB4 which is a psychotropic
strain, belonging to Bacillus cereus genetic group 6, also named Bacillus weihenstephanensis.
Finally Bacillus cereus INRA 399 has been chosen as a psychotropic strain belonging to
genetic group 2. For each strain studied experimental designs were composed of two
monofactorial design associated in cross with 5 levels for recovery temperatures and 3 levels
of heating temperatures, thus in total 7 different conditions. For each condition thermal death
kinetic was recorded and lag times were determined from growth kinetics for different heating
time.

Spores of four psychrophilic and mesophilic strains have been studied. Nutrient broth
containing spores was introduced in capillary tubes and submitted to thermal treatments in a
thermostated glycerol bath. After heating, capillary content was poured into special flask with
9mL nutrient broth and incubated under agitation at different temperatures between 4 and
20°C. Survival spores were counted, at the same time interval in nutrient agar plates.

Growth was monitored in flask by optical density at 600 nm and represented as log of the
bacterial concentration versus time. The lag time, defined as the time before the first cellular
division including germination, corresponds to the intersection point of the exponential
growth and initial bacterial concentration. A correlation was observed between the decimal
reduction number obtained after heat treatment (time/temperature) and lag time when spores
were recovered in the same medium at the same temperature.

Résults and discussion

Our first observation leads to develop an overall model where the factors taken into account
are heating temperature, heating time and recovery temperature.

Experimental data (Fig 1) shows linear relationship between lag time and heating time or
decimal number reduction. This relation can be described by a simple equation where the first
term represents the additional lag time due to the applied heat treatment and the second term
represents the lag time without heat treatment.



The two terms have been developed. The first term was developed as a function of the ratio
F/D*. The second term development uses the Ratkowsky equation p=b(T’-T’min)*> where Al
is considered constant. A, is a function of recovery temperature and minimal growth
temperature with a constant k.

The combination and the re parametration these two developed terms follow to this equation:

ARG
~ oy

In this equation Ay* presents a biological significance: lag time without heat treatment at T’ i,
plus X °C., K* is a simple parameter without dimension and no biological significance. These
model parameters were fitted on our experimental data for the 3 strains of B. cereus.

Figure 1 shows the quality of fit of this model for different heating and recovery temperature
for Bacillus cereus KBAB4
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Figure 1 lag time vs heating time for different
heating and recovery temperature for Bacillus
cereus KBAB4

The parameter values fitted on experimental data are presented in tablel , The parameters zr,
Tmin are in the range of given values and A,* values can be visually verified for T, +10°C.

Tablel parameter values fitted on experimental data

Bacillus cereus strain KBAB4 INRA 399 ATCC 14579
T*°C 95,00 95,00 95,00
k* 595 23,1 11
Ao* hours 9,47 53,32 4,52
Z°C 7,97 8,06 6,81
Tmin °C 5,78 -1,14 11,09

The observation of experimental data and modelled fitted curves (Fig 1) shows the quality of
this model. This presented model appears simple and robust, and be easy to use.

This work was supported by a grant from the Agence Nationale de la Recherche (ANR) (France) as part of an
ANR-05-PNRA-013 B. cereus contrat.
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Abstract

Yeast ageing and inoculum size are factors that affect successive industrial fermentation,
particularly in those processes that reuse the yeast cells. The aim of the work is to explore the
effects of inocula size and aging on the dynamics of yeast population. However, only
individual-based modelling (IbM) makes possible studies of small, well characterized,
microbial inocula. Here we have made use of INDISIM-YEAST to carry out these studies.
Several simulations were performed to analyze inoculum size and their different genealogical
ages on the lag phase, first division time and specific growth rate. Shortest lag phase and time
to the first division where obtained with largest inocula and with youngest inoculated parent
cells.

Keywords: Individual-based model, lag phase, growth initiation, yeast inocula

Introduction

In industrial applications yeast is usually propagated in a number of steps before being
inoculated into the final fermentation medium. The inoculated culture is not often well
defined in spite of the fact that the physiological condition of the yeast cells may greatly
affect the duration and outcome of the fermentation (Walker 1998). For instance, the
production of beer reuses yeast cropped at the end of fermentation in subsequent
fermentation, so yeast is maintained and reused a number of times, a process called ‘serial
repitching’. When yeast cells are inoculated into a fresh growth medium, these enter a brief
lag phase where they are biochemically active but they still do not divide. After this lag
phase, cells go into their cell cycle and start dividing. We are concerned here with yeast
budding reproduction, which leads to scar formation. The genealogical age of yeast cells and
the small size of daughter cells in front of older cells are two individual characteristics that
influence the evolution of a culture at the beginning of its development.

The microbial lag phase has usually been investigated with continuous population models
using rather high inoculum levels. When microbial growth is considered starting from a few
cells, the study of this evolution demands an individual-based approach. The two approaches,
however, can converge to similar results as the size of the population increases (Gomez-
Mourelo and Ginovart, 2009).

Unlike continuous models, IbM is a bottom-up approach. Of those available (Hellweger and
Bucci 2009) we have used INDISIM, the simulator developed by our group ( Ginovart et al.
2002, Ferrer et al. 2008), and which has already been used to study different features of the
bacterial lag phase providing an ample pool of interesting results (Prats et al. 2006, 2008).
INDISIM-YEAST constitutes the adaptation of INDISIM to study the specific characteristics
of the yeast cell cycle to take care of yeast populations growing in liquid media (Ginovart et
al. 2007, Ginovart and Cafiadas 2008). This simulator has recently been used to attempt to
study some aspects of the influence of cell ageing on the fermentation processes (Ginovart et
al. 2009).



The aim of this contribution is to explore the effects of specific characteristics of the initial
inocula on the dynamics of a yeast culture in liquid medium during the lag phase and the first
stages of growth using the individual-based simulator INDISIM-YEAST.

Material and methods

For each yeast cell, INDISIM-YEAST implements a set of rules for uptake and metabolism of
nutrient particles, excretion of end products, budding reproduction and viability. The yeast
population is made up of a set of cells with individual variables defining them (position in the
spatial domain, biomass, genealogical age as the number of bud scars on the cellular
membrane, reproduction phase in the cellular cycle where it is the unbudded or budding
phase, “start mass” or mass required to change from the unbudded to budding phase,
minimum growth for the budding phase, minimum time to complete the budding phase and
survival time without satisfying its metabolic requirements). The description of the principal
concepts of this yeast cell modelling plus the different elements to assemble the structure
system for the virtual process of glucose fermentation can be found in the works of Ginovart
et al. (2007) and Ginovart and Cafadas (2008).

The main simulation result shown in the present study is the temporal evolution of the yeast
population that grows from an inoculum, which is completely characterized. Special attention
is focused during the first stages of its development until the population reaches the
exponential phase. There is no nutrient limitation on the initial conditions of the simulated
culture.

Two parameters are used to characterize the outcome of a given culture growth during the
first stages. The first is the classic lag parameter, defined at the population level of description
and calculated through its geometrical definition. When the population reaches its maximum
and enters the stationary phase, a logarithmic regression of an upper interval in the
exponential growth is performed to obtain the straight line LnN=pt+b and the maximum
growth rate p (Figure 1). The intersection of the prolongation of this straight line with the
LnN, line gives the lag time A, where A=(LnNy—b)/p. In order to characterise much better the
initial steps of the yeast population at an individual level of description, a second parameter is
also considered, the time when the First microbial Division (trp) takes place or the first
budding reproduction appears (Figure 1).

Several simulations to evaluate the above parameters have been carried out with yeast cells of
different genealogical ages making up the inocula (namely samples that include daughter cells
or virgin cells with 0 scars and/or parent cells with 1,2, 3,....7 or 8 scars on their membranes),
and with inocula of different sizes (the number of yeast cells to begin the evolution is set from
1 cell to 1000 cells).
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Figure 1: Calculation of the following parameters: lag time, first division time and maximum
growth rate (exponential phase). Left: geometrical method to obtain A and p, where
a=LnNy+0.85(LnNyax—LnNy) and b=LnNy+0.60(LnNyax—LnNy). Right: two different
simulations to show how negative and positive lag times can be achieved.



Results and discussion

We present the results of two series of simulations carried out using INDISIM-YEAST with
different virtual inocula. From a heterogeneous population of yeast cells successive inocula
have been obtained which, in turn became the initial seeds to perform those simulations. The
first series (with 50 runs for each case) is designed to evaluate the effect of the genealogical
age of the inoculum, which is made up of a unique yeast cell, on the parameters A, tpp and p
of the growth curve (Figure 2). The second, also with 50 simulations in each case, studies
yeast growth from different size inocula randomly taken from the aforementioned population
(Figure 3). Low inocula growth curves have high synchronisms during the first stages of the
temporal evolution. These synchronisms result in a geometrical effect that deforms the
geometrical evaluation of the lag phase (Figure 1). Moreover, the fact that in some cases the
lag time is shorter that its corresponding time for the first bud reproduction (Figures 2 and 3)
is not consistent with the concept that lag phase desires to represent. For single-cell inocula
(Figure 2) both parameters have their minimum value for youngest parent yeast. As the
genealogical age of the inoculum increases, A and tgp became longer. Daughter cells also have
longer lags than young parent cells. Regarding the inoculum size, large inocula reach the
exponential phase sooner than small inocula do (Figure 3). A third series of simulations has
been performed selecting inocula that combine the preceding two factors, size and
genealogical ages. That is, different inocula sizes with only virgin cells (0 scars), middle-age
cells (1-5 scars) or old cells have been chosen to perform sets of 50 runs for each combination
(data not shown). All these simulations results show there is an influence of these initial
features of the inocula on A and tgp, and only slight discrepancies on p are observed.
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Figure 2: First simulations series (see text). Lag parameter (left) and first division time (right)
versus the number of scars of the single-cell inoculum. The dashed line indicates the mean
value for each genealogical age.
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Figure 3: Second simulations series (see text). Lag parameter (left) and first division time
(right) versus inoculum size. The dashed line indicates the mean value for each inoculum
size.



Within the stated limitations, this study mimics the industrial production of beer, which reuses
yeast cropped at the end of fermentation in subsequent fermentations, so the immediate and
long term fermentation performance is conditioned by the characteristics of these reused
inocula. Since the yeast Saccharomyces cerevisae has a limited replicative lifespan, each cell
within a population is only capable of a finite number of divisions prior to senescence and
death (Powell et al., 2000, 2003). Towards the end of fermentation yeast sediments and are
collected within the fermenter cone. Sedimentation results in the formation of zones enriched
with cells of a particular age. At the end of a fermentation a portion of the yeast is removed
from the fermentation vessel for ‘serial repitching’. Typically this is the centre-top portion of
the yeast crop, theoretically comprising middle-aged and virgin cells (Powell et al., 2003).

Conclusions

We have shown that the IbM INDISIM-YEAST is capable of distinguishing the differences in
the evolution of a population that emerges from a small inocula, whether it started with a
single microorganism, a population make up by different genealogical ages, or different sizes.
It is particularly useful in the study of small inocula and the initial steps of the population
evolution because of the excessive influence of the discrete and asymmetrical nature of yeast
division. It is here that it has an edge compared to top-down continuous models, which are
useful only when the initial population contains a large number of cells. The tendencies found
in the simulations resemble those seen during ‘serial repitching’ in beer fermentation.
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I ntroduction

Microbiological risk assessment is modelled tackimgaccount many environmental steps from raw
ingredient to food consumption. However predictim&erobiology lack of data about the bacterial
sporulation behaviour (Nau#t al, 2003).

The effects of the sporulation temperature on hesistance oBacillus cereusspores have been
widely investigated. Sporulation temperature haantghown among the major factors that impact on
spore heat resistance (Paletpal, 1999).D,q0-c Values were 10-fold higher f@acillus cereuspores
when the sporulation temperature increased fronr€20°45°C (Gonzaleet al, 1999). Then, a linear
relationship has been established between spamlagmperature and heat resistance of spores
(Leguerinelet al, 2007) :

T —T*J+ Tero ™ Topo

Z;

logD =logD’ —(

Tspo

Where:T*Spois the reference sporulation temperature,
ZrspoiS the distance of JJ, from T},m which leads to a ten fold reduction in decimalugttbn time.

Sporulation protocols used to investigate sporomatiemperature effects were biased because of
allowing growth before sporulation on rich nutrignedia. These last ones allowed cellular growth
until nutriment depletion (occurring at stationgshiase) then initiation of sporulation. Incubation
temperature during growth and sporulation were kepistant and identical. Consequently in those
conditions, spore properties depend on adaptationgigrowth as well on sporulation environment.

In contrast, synchronous sporulation consistedramsferring vegetative cells from rich nutrient
medium to a poor one(Jenkinsenal, 1980; Mandelstam & Higgs, 1974). It allows sefiagpevents
due to adaptation during growth or sporulation psses.

In order to estimate a possible effect of stresptadions during growth on spore heat resistanage, o
study compared the spore production and the speat tesistance as a function of growth and
sporulation temperatures.

Materials and methods

The studied bacterial strain was tBacillus cereugpsychrotrophic strain KBAB4, isolated from soil
in France. Minimal, optimal and maximal growth tesrgiures of KBAB4 strain were estimated
respectively at 7°C, 30°C and 43°C (Augeml, 2008).

Growth was carried out in nutrient broth until theginning of stationary phase, and then cells were
transferred in the sporulation media. The sporutathedia were a phosphate buffer to prevent growth
and ensure sporulation.

On one hand, growth (in nutrient broth) and spdima(in phosphate buffer) were performed at the
same temperature (12°C, 20°C, 30°C or 35°C). Oathers hand, growth were performed at optimal
temperature (30°C) in nutrient broth then sporalatbccurred at stress temperature (12°C, 20°C or
35°C) in phosphate buffer. Media were incubated omre than 99% of cells were spores.

Sporulation kinetics were estimated by countingohecells on nutrient agar. Whole population and
cells resistant to heat treatment of 70°C 5 min(gesres) were enumerated. Harvested spores were



stored one month at 4°c before use. Spore heatarse was determined by following thermal death
kinetics at 85°C and 90°C.

Results and discussion

Times to obtain more than 99% of spores were rattiEmpendent of the growth temperatures (Table
1). Whatever growth and sporulation conditions remmncentrations were close tdgbres/ml.

Table 1: Needed incubation times to standardiZelaeelphysiological state.

Incubation time of Sporulation Incubation time of
Growth temperature .

growth temperature sporulation
12°C 60 hours 12°C 7 days
30°C 6 hours 12°C 7 days
20°C 30 hours 20°C 6 days
30°C 6 hours 20°C 6 days
30°C 6 hours 30°C 3 days
30°C 6 hours 30°C 3 days
35°C 7 hours 35°C 3 days
30°C 6 hours 35°C 3 days

Dgs-c and Dyec values of spores formed at 12°C after growth &C1&ere not significantly different
from those formed at 12°C after growth at 30°C. @lotemperature does not seem to have any
significant effect on spore heat resistance (FiglkeThis suggests that the spore heat resistance
properties are not influenced by adaptation ofvéigetative cells during growth phase.
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Figure 1: Log (N/NO) versus heating time at 90°€different incubation temperatures of growth and
sporulation.

Spores ofB. cereusKBAB4 produced at 12°C, 20°C and 35°C were lessstent than spores
produced at 30°C. This suggests the existence obmmal sporulation temperature, allowing
formation of highly heat resistant spores. Howethig optimal temperature concept is not consistent
with the linear relationship between sporulatiomperature and heat resistance of spores. Thig linea
relationship could be improved. Few studies dedh imcubation temperature higher than the optimal
one. Therefore lower heat-resistance possibly iedugy sporulation at temperatures close to the
upper limit of growth is neglected.
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Abstract

Several logistic regression models have been developed the last few years to describe the
boundary between growth and no growth of microbial suspended cells. This study aimed to
describe the growth/no growth interface of L. monocytogenes at all three states of growth that
a bacterial cell could be found on an industrial equipment surface, namely attached, in a form
of a biofilm (B), detached (D) from a biofilm and able to soil new products, or in a planktonic
state (suspended; P). L. monocytogenes cells were left to form colonies on stainless steel (SS)
surfaces in TSBYE at 30 different pH and NaCl concentrations at 10°C. The probability of a
single cell to initiate growth (P;,) was evaluated, as well as the number of cells needed for
growth initiation of planktonically growing P and D L. monocytogenes cells. Overall, pH had
a more pronounced effect on the growth response of both P and D cells than a,. Although
both culture preparations demonstrated similar growth limits at populations >10* CFU/ml, the
minimum pH for growth initiation of 1 to 10 of D cells was higher at a,, of 0.955 than those of
the respective populations of P cells. Lower maximum P;, levels and longer time for an
increase of P;,>0 was required at D over the P cells. As a result, higher population of D than
P cells was needed, in order to initiate growth at low a,, and pH. Marginal growth of attached
cells encountered at optimal conditions, whereas at 4.5-8% salt and/or pH<6.0 marked
reduction of the population of enumerated cells from SS coupons was observed. The results
may contribute to safety implications relevant to the potential of cells attached on
contaminated surface to proliferate. Furthermore, probability of growth data may contribute to
data gaps on risk assessment of L. monocytogenes isolates from the dairy industry.
Keywords: L. monocytogenes, growth/no growth interface, biofilms, planktonic, detached

Introduction

Growth/no growth modeling may serve as a means to establishing reliable critical limits. So
far, available probability of growth models deal with the growth response of planktonically
growing Listeria monocytogenes cells or cells grown as colonies on the surface of agar and
foods (Koutsoumamis et al., 2004; Vermeulen et al., 2007). However, Listeria cells are able
to attach to various surfaces and persist on processing equipments for many years,
contaminating food. Thus, it is of importance to evaluate the growth potential of such cells,
and even more to compare it with planktonically growing cells, which may be habituated in
niches with residual food soil. This would assist in accurate modelling of growth responses.
The objectives of the present study were: (i) to comparatively evaluate the growth/no growth
interface of L. monocytogenes cells attached on stainless steel surfaces, or in suspension,
within media of different pH and NaCl levels at 10°C, and (ii) to comparatively evaluate the
probability of a single cell to initiate growth as well as the number of cells needed for growth
initiation of planktonically growing L. monocytogenes, following growth in suspension and of
cells detached from stainless steel coupons.

Materials and methods

Preparation of inocula: A 3-strain composite of L. monocytogenes, including isolates from
farmhouse cheese, dairy processing environment and farm was used to inoculate individual
plastic with 40 ml of Tryptic Soy Broth supplemented with 0,6% Yeast Extract (TSBYE; pH
7.2, a, 0.995) with or without a single sterile stainless steel (SS) coupon (2x5x2 cm).
Following incubation at 20°C for 3 days, attached (4#: 10*> CFU/ml), planktonic (Plan: 10°



cfu/ml) and detached from the SS coupons (Dez: 10*° CFU/cm?) cells were obtained by using
the “bead vortexing method” (Stopforth et al., 2002).

Experimental design: The growth/ no growth (G/NG) interface of three states (At¢, Plan and
Det) of L. monocytogenes cells with respected to pH and a, was evaluated at 10°C.
Specifically, a full factorial design was used to examine the effect of six pH values (6.6, 6.3,
5.9, 5.6, 5.2 and 4.8) adjusted with lactic acid, and five a,, levels (0.996, 0,982, 0,977, 0,966
and 0.955) achieved by addition of 0, 3, 4.5, 6 and 8% (w/vol) NaCl on the growth initiation
of the different types (states) of Listeria cells. Aliquots (25 ul) of the appropriate dilution of
Plan or Det cells were inoculated in triplicate wells of 96-well microplates, each one
containing 225 pl of appropriate growth medium. Growth was monitored turbidimetrically at
620 nm, every day for 30 days. The ability of A#¢ cells to initiate growth was evaluated with
the transfer of SS coupons bearing attached cells in tubes containing 40 ml TSBYE of each
pH/a,, combination, which was renewed every 2 days. Enumeration of A# cells was performed
on days 0 and 30 of incubation with bead vortex method (Stopforth et al., 2002). The
PulseNet standardized protocol for subtyping L. monocytogenes by macro-restriction and
PFGE was run on isolates of day 30 in order to assess the dominant strain that colonized the
SS surfaces. All experiments lasted for 30 days and included at least 3 replicates each.

Model development: Ordinary logistic regression was applied with /ogit (P) described as a
polynomial expression of pH and a,, (Skandamis et al., 2007). The probability of any given
cell initiating growth (P;,) under each of the examined experimental conditions, as well as the
cells needed (CN) to initiate growth at the same conditions were estimated by the fraction of
wells giving growth at each condition and Most Probable Number (MPN) Tables (Razavilar
and Genigeorgis 1998). P,... and time for increase to P,,./2 (t.,) were determined by a logistic
model.

Results and discussion

The ability of attached L. monocytogenes cells on SS coupons to grow was strongly
dependent on the stringency of the environmental conditions (Table 1). Specifically, the
levels of attached cells on SS coupons demonstrated a marginal increase (< 1 Log CFU/cm?)
at optimal growth conditions (pH> 5.9 and/or a,, >0.982), whereas a significant reduction
(P<0.05) of the bacterial population compared to the initially attached levels occurred as the
pH and a,, levels of the growth media decreased (Table 1).

Table 1. Levels of attached L. monocytogenes (mean log cfu/cm’ + SD) on SS coupons at each

combination of pH/ a,, after 30 days at 10°C. Growth (dark cells), reduction (light cells or white cells)
of Listeria cells on the SS coupons.

pH/a,, 0.996 0.982 0.977 0.966 0.955
6.6 48Cc+03  52Cd+02  3,0Bb+0,3  2,6Ba+03 Bdl
63  46Cc+0,1 35Bb+l4 16Aatl,4 1,0Aa+l>5 Bdl
59  49Cc+03 32ABb+l2 25Ba+08 28Bab+04 Bdl
56 33Bb+0,6 3.1ABb+05 29Bb+0,7 22Baxl,l Bdl
52  26Ab+12 25Ab+13 13Aatl4 09Aa+l2 Bdl
4.8 Bdl Bdl Bdl Bdl Bdl

ABC. means within a column sharing at least a common letter are not significantly different (P<0.05).
ab

“. means within a row sharing at least a common letter are not significantly different (P<0.05).

The decrease in the attached populations of Table 1 may be associated with washing out of
weakly attached cells. Furthermore, renewal (every 2 days) of the growth medium probably
increased the requirements for energy expenditure of the cells to combat the homeostatic
burden (either pH homeostasis or accumulation of compatible solutes) and remain attached or
viable on surfaces (Skandamis et al., 2007; Tiganitas et al., 2009). PFGE patterns on 30 day
isolates showed that the majority of the cells which had colonized the surfaces of SS coupons
at any pH and a, conditions belonged to one of the 3 strains, which had also been
characterized as “persistent” isolate for the last 10 years in a dairy processing plant.

Consistent with previous studies, initial inoculum size exhibited a significant effect on the
growth initiation of Plan and Det cells (Koutsoumanis and Sofos, 2005; Skandamis et al.,



2007). Generally, the lower the initial population, the higher the pH and a,, levels allowing
growth (Fig. 1; Table 2). The variability in the growth potential of L. monocytogenes near the
growth boundaries may be associated with variations in the abruptness of interface among
strains at the different inoculation levels (Skandamis et al., 2007; van der Veen et al., 2008).
G/NG interface of Plan and Det cells in response to pH and a,, were similar for populations
>10%/well; however growth of Det cells of low initial size (1-10 cells) was inhibited at higher

;: A: Planktonic 1.8 x103 CFU/ml B,: Detached 1.5 x10° CFU/ml pH values
o @ . o . . . . o o . compared to
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Figure 1: G/NG data for planktonic (A) and detached (B) L. monocytogenes cells with respect to pH
and a,, at 10°C at inoculum levels of (1) 10° CFU/ml and (2) 10" CFU/ml compared with predictions
made at probabilities 0.9 (upper dotted line), 0.5 (solid line) and 0.1 (lower dotted line). 100% Growth
(@), 66.66% growth (A), 33.33% growth (A), and (©) no growth.

Table 2: Lower pH values (positive cells out of 3 in total) at which growth of different inocula types of
L. monocytogenes was observed

Initial

Cell type population Aw

(CFU/well) 0.996 0.982 0.977 0.966 0.955

Planktonic 1.1x 10° 52(3) 52(3) 5.6 (3) 52(3) 5.6 (3)
23x10' 52(2) 52(2) 5.6 (3) 52(2) 5.6 (1)

1.0x 10° 6.3 (1) - 6.3 (1) 5.6 (1) 5.6 (1)

Detached 1.4 x 10? 523) 5.2(3) 5.6 (3) 5.2(3) 523)
1.8x 10’ 52(3) 52(2) 5.6 (1) 52(3) 5.6 (3)

1.9x 10° 5.2(1) 5.2(1) - 5.9 (1) 5.9(1)

Regardless of inoculum size, Plan cells had higher P;, (%) compared to Det cells (Fig. 2) and
reached significant higher maximum levels (P, (Fig. 2 & 3). In addition, the time of a

7 PHSS 1007 pH 5,9 s single Det cell to reach
a .
w{ P o Proay/2 (tan) was slightly
ol < higher (3-10 days)
i =5, than that of their Plan
-os / counterparts,
e . M . : : suggestl.ng .slo.wer
5 10 15 20 25 30 0 5 10 _—_ 20 25 30 gI'OWth 1n1t1at10n,
pH5.2 Time (d) :o.sss 1007 pH 5,2 ime (d) 0,996 especially at pH<5 6
a 0.982 b -=-0,982 e
—4—0,977 4 .
oo ® o 3w<0.997 (Fig. 4),
s e -<oss  while such differences
w0 /—-ﬁ- were minimized at less
» va adverse environmental
\ / / conditions.
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Figure 2. Representative curves of Py, (%) of (a) Plan and (b) Det cells vs time



Table 3. Planktonic (Plan) and Detached (Det)
cells needed (CN) to initiate growth at varying
conditions and times

pH ay Time Plan Det

6.6 0.996 4 226 >10*
10 1 2
6.6 0.977 6 2264  >10*
9 1 25
6.6 0.955 6 22244 ~10°
11 2 476
5.6 0.996 5 226 >10*
9 1 7
5.6 0.977 5 22644  >10*
12 1 25
56 0.955 13 226 >10*
19 2 4

Figure 4. Time (days) for a single (a) Planktonic
and/or (b) Detached cell to reach P, /2 (t..).

Moreover, the suppressed P;, values of Det cells in response to pH indicate that more Det
cells than Plan cells are needed so that one to initiate growth (Table 3). The results suggest
that detached cells from SS coupons might have been subjected to stronger metabolic
suppression than suspended (never attached) cells and hence, encountered a higher burden
upon transferring to low pH and a,,.

Conclusions

The significance of the present study is the comparative evaluation of the probability of
growth of the three states in which a L. monocytogenes cell may be present on processing
equipment. Attachment of Listeria cells in time is strongly reduced as a,, and pH decreases,
even though after detachment, bacterial populations >10° cfu/cm’, behave similarly to
suspended cells in response to pH and a,. Moreover, detached cells pose a lower risk as a
higher population is needed to initiate growth than suspended cells, whereas low populations
are generally more easily inhibited than high populations. The results may provide
implications for the differences in the growth potential of different inoculum preparations and
hence, be considered in development of realistic predictive models.
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Abstract

In the present study, the effect of acid and osmotic shifts from growth to no growth
conditions and vice versa on the adaptation and growth of L. monocytogenes was evaluated at
10°C. A L. monocytogenes isolate (10° cfu/ml), which persisted for 10 years on the
environment of a dairy plant was grown to late-exponential phase in TSBYE at 7 pH (5.1-7.2)
at a,, 0.995, adjusted with lactic acid and 5 NaCl concentrations (0.5-12.5%) at pH 7.2. When
L. monocytogenes reached ca. 8 log cfu/ml in each of the above conditions, it was shifted to
all the remaining pH and NaCl levels at 10°C. No-growth/growth shifts were also carried out
by transferring L. monocytogenes, habituated at pH 4.9 or salt 12.5% for 1, 5 and 10 days to
growth permitting conditions. Changes in viable counts were monitored on TSAYE and
growth curves were fitted with the Baranyi model. A secondary model based on
multiplicative terms of each factor as well as an interaction term (&) was used to predict iy
in response to pH and/or a,, shifts. Reducing a, from 0.995 to 0.930, resulted in linear
reduction of p,,, and exponential increase of lag time. Shifts in the range of pH 5.5-7.0
reduced pm. but did not markedly affect the lag time of cultures. Conversely, downshifts to
pH 5.1 induced lag of 88-180 h. The longer the cells were incubated at no growth a,, the faster
they initiated growth subsequently, suggesting adaptation to osmotic stress. Conversely,
extended habituation at pH 4.9 had the opposite effect on subsequent growth of L.
monocytogenes, suggesting potential injury of cells. We therefore, assumed the existence of
an adaptation rate (V) at no growth conditions different from p,,.. A global fitting of data
with shifts from growth-ceasing to growth-permitting conditions enabled determination of
such and adaptation rate as well as of the dependency of %o to a, and pH shifts. Then, a
dynamic model, describing the effect of both the magnitude and the direction of osmotic and
acid shifts successfully predicted growth of L. monocytogenes in milk under dynamic pH
(6.4-4.9) and a,, (0.98 to <0.90) conditions. Our results suggest that quantifying adaptation
phenomena under growth-limiting environments is essential for reliable growth simulations.

Keywords: L. monocytogenes, lag time, osmotic/acid stress, shifts, dynamic modelling
Introduction

The initial lag phase of a microorganism in a new environment is affected by multiple factors,
including nutrients, physiological state, etc, and is defined by the amount of work that cells
need to undertake and the rate at which this work is accomplished (Robinson et al. 1998;
Mellefont et al. 2003). Subsequent changes of extrinsic (e.g., temperature) or intrinsic (e.g.,
pH and a,) factors induce what is called ‘intermediate’ lag phase (Swinnen et al. 2005) and
this may be dependent on the magnitude and direction of environmental shift. Therefore, a
key hypothesis in growth modelling is whether shifts in the environment across the growth
boundaries pose additional adaptation work to microorganisms. Acid and osmotic shifts pose
a higher energetic burden than temperature shifts, especially around the growth boundaries.
Therefore, in order to develop a dynamic model predicting growth of L. monocytogenes under
dynamic a,, and pH conditions, we evaluated the growth responses of the microorganism
under: (i) environmental shifts within the range of growth permitting pH and a,, levels; (ii)



shifts from optimum a,, (0.995), or pH (7.2) conditions to no growth conditions for 1, 5 or 10
days and then back to growth-permitting conditions.

Materials and methods

Inoculum preparation

A Listeria monocytogenes isolate was maintained at -22°C in the presence of 20%
glycerol. It was subcultured once by transferring 0.1 ml in 10 ml of Tryptic soy broth
supplemented with 0.6% yeast extract (TSBYE) and incubation at 37°C for 24h, followed by
a second subculturing for another 16 h, in order to achieve cells late exponential phase.

Media preparation

A total of 82 Listeria monocytogenes growth experiments were conducted in TSBYE at
various pH and water activity values, adjusted by the addition of lactic acid and NaCl in 100
ml TSBYE. All bottles were autoclaved at 121°C for 15 min. The final pH of TSBYE were
7.2, 6.0, 5.8, 5.5, 5.3, 5.1 and 4.7. Due to the presence of 0.5% NaCl in commercial
formulation of TSBYE, the final salt concentration of the tested media was 0.5, 5, 8, 10.5 and
12.5%. Two pairs of each tested medium were prepared for the two independent experiments.

Media inoculation and shifts

Growth media were inoculated with 10°° CFU/ml of L. monocytogenes inoculum and
incubated at 10°C. Viable Listeria cells were enumerated with Spiral plater (Bio) onto Tryptic
Soy Agar (Biolife, Italy) supplemented with 0.6% Yeast Extract and incubation at 30°C for 24
h. When L. monocytogenes reached the late exponential-early stationary phase (ca. 8-9 log
cfu/ml) in each of the conditions tested, aliquots (1 ml) were serially diluted in MRD and
transferred to all the remaining growth-permitting levels of pH (from 5.1-7.0; 36 cases) and
ay (0.93-0.995; 16 cases) and incubated at 10°C. Each factor was evaluated separately.
Furthermore, cells of L. monocytogenes which were habituated in growth-prohibiting
conditions, namely, pH 4.7 (a,, 0.995) and salt concentration 12.5% (pH 7.2) were also shifted
to all growth permitting conditions of each factor after 1, 5 or 10 days at 10°C.

Analysis of the growth curves

Growth curves were fitted with the Baranyi model in order to estimate z4,,,, lag time (1) and
“work-to-be-done” (h0). A secondary model (Le Marc et al. 2002) with multiplicative terms
of each factor as well as an interaction term (&) was used to predict z4,,, in response to pH
and/or a, shifts. Global fitting of the data allowed determination of the adaptation rate (V) and
the parameters controlling the dependency of 4o at growth-permitting conditions following
habituation at no growth conditions.

Results and discussion

(a) Effect of shifts at growth-permitting levels of pH and a,. The u,, was not
influenced by the direction or the magnitude of a,, and pH shifts (Fig. 1). Conversely, lag time
and hence, ko, seemed to increase as the conditions of a,, became harsher (Figs 1 & 2). This is
in accordance with Mellefont et al. (2003), who observed increase of relative lag time (RLT)
at stringent water activities for Salmonella, although this effect was less evident for L.
monocytogenes. It is therefore suggested that any injury occurring is quickly repaired when a,,
becomes more favorable for growth. In general, pH shifts in the range of 5.3-7.2 did not
markedly affect lag times (Fig. 1) and the magnitude of ho was relatively lower (0-0.4)
compared to that caused by a,, shifts (0-1.5). However, dramatic increase in lag times were
caused by shifts close to the growth limiting pH values of 5.1 (Fig. 1), in agreement with
Robinson et al. (1998).
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Figure 1. Effect of a,, (top) and pH (bottom) shifts on z4,,, and lag time of L. monocytogenes.

7 o 0.995 (b) Effect of shifts from no growth to growth-
4 097 permitting levels of pH and a,,. The duration of
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habituation at no growth conditions did not

2 4 —~-0.93 .
E influence the u,, of L. monocytogenes at
%O'S’ subsequent shifts to growth-permitting levels
< Zj (data not shown). However, an apparent effect
0'27 on lag time was evident and hence, on ko
'O . N, estimates (Fig. 3). For the same level of water
0%2 093 0e4 095 096 097 o098 ose 1 | activity, the “work to be done” (%) tended to

il decrease as a function of the time the cells were
held at 0.90 (Fig. 3b). Furthermore, lag times
and 4, estimates at a,, 0.93-0.99 after 10 days at
0.90 were lower than the respective values
following growth exclusively at 0.99 (Fig. 3a).
These suggests that the cells are able to carry
out at least some of “work to be done” during habituation at 0.90. Furthermore, for the same
period of incubation at no growth conditions, the lag times and /4, values of subsequent
growth decreased with increasing a, (Fig. 3b). Therefore, o seems to be inversely
proportional to the magnitude of the shift up from no growth to growth conditions. Contrary
to the observations with a,, the more the cells were held at no growth pH (4.9), the higher
was the work needed for growth initiation in a more favourable environment (Fig. 3¢). This
may be explained on the basis of the higher energetic burden posed by pH on cells compared
to a,, at no growth conditions (Shabala et al. 2008). The above concepts are illustrated in
Figure 4. A hypothetical adaptation rate ‘v’, which is independent of u,, at no growth
conditions, was estimated by globally fitting the dataset of shifts from no growth to growth
conditions. = Then, the cardinal model of Le Marc et al. (2002);

Hoax = ,ugptz'(T )}/(pH )p(aw)f(T ,PH ,aw) was used to quantify the effect of the

(PH in—pH )

Figure 2. Additional “work-to-be done”
due to shifts from different initial a,,
levels. Lag time for no shift was
subtracted from lag times at each shift.

environment on f,, of L. monocytogenes, replacing y(pH) by the term1-10

(Presser et al. 1997) and taking into account potential synergy (£ term). The temperature term
was based on literature cardinal values, namely T;,=-2.8°C, To,=37°C and T,,=45.5°C.



Cardinal parameters for water activity were aymin 0.916 (based on the present data) and
0.997 (from literature), whereas pH,,;, estimate was 4.96. Based on that the model showed
satisfactory agreement to data obtained in pasteurized milk (Fig. 5). Ignoring the effect of
shifts on adaptation of L. monocytogenes (i.e., using only a growth rate model) resulted in
over-prediction of actual growth (Fig. 5).
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Figure 3. Lag time under different conditions (a) and ho (b, ¢) following habituation for 1, 5 or
10 days at a,, 0.90 (b) or pH 4.9 (¢).
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Figure 4. Conceptual basis of the dynamic model for
growth of L. monocytogenes in response to a,, or pH shifts. (dashed) the effect of shifts on 4o.
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Conclusions

A dynamic model capable of predicting growth of L. monocytogenes in response to pH and a,,
shifts, needs to consider: (i) the dependence of u,,.. on pH and a,; (ii) the increase of ho in
case of osmotic or pH downshifts; and, (iii) the rate of adaptation work perform during
habituation at no growth a,, and the ‘rate of injury’ of cells habituated at no growth pH.
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Abstract

Cells of six strains of Cronobacter were submitted to a dry stress and stored for 2.5 months at
ambient temperature. The individual cell lag time distributions of recovered cells were
characterised at 25°C and 37°C in non selective broth. The individual cell lag times were
deduced from the times for cultures issued from individual cells to reach an optical density
threshold. In parallel, growth curves for each strain at high contamination levels were
determined in the same growth conditions. In general, the extreme value type Il distribution
was the most effective to describe the 12 observed distributions of individual cell lag times.
Recently, an innovating model which allowed to characterise individual cell lag time
distribution from populational growth parameters was developed for other food-borne
pathogenic bacteria such as L. monocytogenes. We verified the applicability of this model to
Cronobacter by comparing the mean and the standard deviation of individual cell lag times to
populational lag times observed with high initial concentration experiments, and then by
deducing the theoretical cell lag times distributions from the observed mean and the standard
deviation of cell lag times. We also validated the model in realistic conditions by studying
growth in powdered infant formula decimally diluted in Buffered Peptone Water (BPW),
which represents the first enrichment step of the standardised detection method for
Cronobacter.

Keywords : Enterobacter sakazakii, Cronobacter, powdered infant food formula, individual
cell lag time, pooling, growth.

Introduction

Enterobacter sakazakii recently known as Cronobacter (lversen et al., 2008) is considered as
an opportunistic pathogen and has been implicated in outbreaks causing meningitis or
bacteraemia, especially in neonates and infants with mortality rates of 20 to 50%
(Anonymous, 2006a). In most cases, powdered infant formula (PIF) has been identified as the
source of infection.

In PIF, contamination levels are extremely low and generally much lower than 1 cfu per 100g
(Anonymous, 2006a, 2008). Mistakes in biberon-preparation practices, such as improper
holding temperatures, may lead to a critical cell level, and the occurrence of the infection. In
such conditions of very low contamination levels, individual cells variability can have an
important impact on the pathogen growth.

Knowing how long-term presence in PIF, and subsequent stress, affect the variability of
single-cell lag times is extremely important in assessing the risk of cell recovery and growth
in reconstituted milk or in enrichment broth, where low numbers of stressed cells of
pathogenic bacteria may be distributed among PIF samples. Recently, a model which allowed
to characterise individual cell lag time distribution from populational growth parameters has
been developed for L. monocytogenes (Guillier and Augustin, 2006, 2008).
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The first objective of the present work was to verify the applicability of this model to
Cronobacter submitted to a dry stress for different regrowth conditions and strains. The
second objective was to study single-cell lag times in a realistic condition such as the first
enrichment of the standardised detection method (ISO/TS 22964, Anonymous, 2006b) which
is performed in non selective Buffered Peptone Water (BPW). The log count distribution, or
vertical distribution (D'Arrigo et al., 2006) was applied to estimate the distribution of the
single-cell lag times in BPW. This study also allowed us to evaluate the impact of pooling
samples on Cronobacter growth and detection. Indeed, to reduce analytic cost and heaviness,
common practice in food industry consists in pooling samples at constant dilution rate, in
order to perform a single pre-enrichment and subsequent analysis. Consequences on
Cronobacter detection are not established.

Materials and methods

Six strains of Cronobacter were used in this study: 4 strains belonged to different species of
Cronobacter (C. malonaticus, C.muytjensii and C. turicensis) and 3 to the same species (C.
sakazakii). Strains were submitted to desiccation: Cronobacter strains grown in an equal
mixture of BHI and sterile infant formula for 24 h at 37°C were freeze-dried using the
CHRIST LOC-2M apparatus (Bioblock Scientific, lle de France, Vanves cedex, France).
Contaminated powder was further 1 in 100 diluted in PIF intended for infants below 6 months
of age (previously tested not contaminated with Cronobacter and with a very low level of
total microflora), and stored for 2.5 months at ambient temperature before use. The individual
cell lag time distributions were characterised at 25°C and 37°C in non selective Brain Heart
Infusion (BHI) broth: individual cell lag times were deduced from the times for cultures
issued from individual cells to reach an optical density threshold, by measuring optical
density (OD) at 600 nm using an automated spectrophotometer (Bioscreen C reader). In
parallel, growth curves for each strain at high contamination levels (100-1000 cfu/g) were
determined in triplicate in BHI broth, at 25°C and 37°C. Growth was monitored by direct
plating enumeration, and curves were fitted to the Baranyi model using MicroFit software
(http://www.ifr.ac.uk/MicroFit/ ).

For validation purpose, the distribution of Cronobacter log counts at given times during first-
age PIF pre-enrichment was applied to estimate the distribution of the single-cell lag times. 40
bags of 10g and 40 bags of 100g (mimicking a pooling of 10*10g samples) first-age PIF were
prepared and homogenised in sterile BPW diluent (1 in 10 dilution). Each sample was
inoculated with freeze-dried C.sakazakii type strain (ATCC 29544) at a contamination level
of 4 cells per bag. All bags were incubated at 37°C and enumerated after 8h and 20h by
plating on the chromogenic selective isolation agar “Enterobacter sakazakii Isolation Agar”
(ESIA). In parallel, growth of PIF background microflora and of high Cronobacter
populations were monitored in the same conditions.

Results and discussion

Four statistical distributions were tested in this study to describe data sets of single-cell lag
time: the Gamma distribution, the Weibull distribution, the Log-Normal distribution, and the
Extreme Value type Il distribution. In general, the Extreme Value type Il distribution
provided the best fit over the whole range of growth conditions and strains tested. Guillier and
Augustin (2006) investigated the individual lag times of L.monocytogenes cells and showed
that this distribution was also the best one.

The relationships between the standard deviations and the means of individual cell lag times
and between the individual cell lag times and the population lag times, were in agreement
with those observed by Guillier and Augustin (2006, 2008).

In the second part of this study, these relations were applied for validation purpose: at two
times of enrichment procedure of a low number of cells, Cronobacter log counts were both
measured and estimated from growth rate and individual lag times calculated from population
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growth curves. After 8 hours of enrichment, the results obtained for 10g and 100g PIF
samples showed good agreement between observed and predicted values only if the
variability of Ny, individual lag times and growth rate are taken into account for predictions
(Figure 1). Significant differences with observed values were found if lag time variability was
not considered, which confirmed that individual cell lag times variability has a major impact
on growth.
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Figure 1: Cumulative distribution of C. sakazakii observed log counts (#) after 8 hours (10g
samples). Predicted populations: (—) No, Umax and lag; considered as constant, (--) Ng and Himax
with variability and lag; constant, (...)No, Hmax @and lag; with variability.

After 20 h, vertical distributions were not in agreement with the predicted values of log
counts (Figure 2). This difference can be attributed to bacterial interactions. Indeed, for
population growth curves, we observed a stop of Cronobacter growth when background flora
reached its stationary phase (approximately after 9h enrichment).
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Figure 2: Cumulative distribution of observed log counts after 8 hours (¢) and 20 hours (¥)
of C. sakazakii in enrichment medium (10g samples). Predicted concentrations after
8 hours (- -) and 20 hours (—).

To better explore this phenomenon, we used the same previous simulations but with a stop of
the growth at 9h, when the total microflora attained its maximum concentration. Results
showed that for 10g bags and for 100g bags we obtained a good correlation between observed
and predicted values (Figure 3). Furthermore, for the 100g samples, the initial concentration



is weaker than for the 10g samples which emphasized the negative impact of pooling on
detection.
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Figure 3: Cumulative distribution of observed log counts of C. sakazakii in enrichment

medium after 20 hours in 100g samples () and 10g samples (4A). Predicted log counts in

100g (- -) and 10g (—) bags, taking into account variability of individual lag times and
microbial interaction.

Conclusion

Relationships established for L. monocytogenes between populational and individual
parameters of growth were observed for Cronobacter. These relationships can thus be used
for predictive modelling and risk assessment studies provided a consolidation of the data.
Relationships were validated for Cronobacter cells undergoing enrichment culturing in BPW
for 8h and 20h provided that bacterial interactions are taken into account. This demonstrated
the importance of validating the model before use especially in non-selective broth.

We also noticed a strong impact of pooling on the populations of Cronobacter reached at 20h
which corresponds to the end of the pre-enrichment duration of the standard detection
method. This effect can be explained by a combined effect of a weaker Cronobacter initial
concentration in 100g and of a premature stop of the growth due to bacterial interactions.
Thus, from a practical point of view, pooling can have an effect on the sensitivity of the
detection method.
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Abstract

Escherichia coli has been cataloged as a microbial indicator of faecal contamination in food
products when they are improperly handled or when inactivation treatments do not guarantee
its inhibition. Adaptation of E. coli at low pH and Aw levels can vary at different
temperatures depending on the strain and more detailed studies are needed. In this work, the
behavior of E. coli was studied in a three-step process: (i) firstly, a screening of four strains of
E. coli (serovars O55:H6; 059:H21; 0158:H23 and O157:H7) was performed; (ii) secondly,
growth/no growth models were elaborated with the fastest strain selected at different
temperatures (8, 12 and 16°C), and inoculum levels (100, 1000 and 10000 cfu/mL) as function
of pH (ranged from 7.0 to 5.0 at 0.25 levels) and Aw (five levels ranging from 0.999 to
0.960); (iii) finally, the growth kinetics of E. coli was described in the conditions that allowed
growth. Results obtained showed that the serovars O157:H7 and O59:H21 did not grow at
more stringent conditions (8°C; pH 5.5), while the serovar 0158:H23 was the best adapted,
resulting in a faster growth. The logistic regression models performed presented a good
adjustment to data observed since more than 93.06 % of cases were correctly classified. The
growth boundary was shifted to more limited conditions as the inoculum size was higher. At
8°C; pH 5.5 E. coli was able to grow at Aw 0.990 being the initial concentration equal to
10000 cfu/mL. Detection times (Td, h) were calculated and the optimal pH for growth was
found to be 6.75. However, an increasing variability was noted at low Aw and pH levels
among the replicates. This information is valuable to be included in a risk assessment
framework in order to describe the variability due to the strain and the growth kinetics of E.
coli at various environmental conditions.

Keywords: growth/no growth, Escherichia coli, detection time, inoculum level, strain
variability

Introduction

Verocytotoxin-producing Escherichia coli (VTEC) serogroups are one of the most important
emerging food-borne pathogens which can be present in foods of animal origin, contaminated
vegetables or ready-to-eat foods that are improperly handled up to consumption (Badri et al.,
2009). The total number of pathogenic E. coli outbreaks within the EU increased by 38.3% in
2007 compared to 2006 being the largest number of human cases (39.4%) originated from
outbreaks in catering services or restaurants (EFSA, 2009). In the last few years, predictive
microbial models are focused on studying the acid adaptation of E. coli O157:H7 combined
with the influence of various environmental factors on its growth or inactivation Kinetics
(Skandamis et al., 2007). However, little information is known about the behavior of other
VTEC strains which can potentially cause non-reported human diseases.

On the other hand, it has been demostrated that inoculum size influences the position of the
growth/no growth interface. Generally, this interface is shifted to less stringent conditions at
low microbial concentrations (Koutsoumanis and Sofos, 2005) obtaining also higher
variability in growth parameters (Augustin et al., 2000). The inoculum effect has been
modelled independently through the use of detection time values (Td) (Bidlas et al., 2008).
However, growth estimations can be less accurate when approaching to conditions that limit
growth (Nerbrink et al., 1999). It has been suggested that a combined approach incorporating
the information of growth boundaries together with growth Kkinetics would be more
appropriate for studying microbial behavior (Ross and McMeekin 1994). In this sense it



would be important to study the interaction of environmental factors that prevent growth as
well as the growth behavior at different microbial concentrations.

In this work, the behavior of E. coli was studied in the growth/no growth domain as a function
of temperature, pH and water activity (Aw) as follows: (i) firstly, a screening of four strains of
E. coli (serovars O55:H6; O59:H21; O158:H23 and O157:H7) was performed at different
temperatures, pH and inoculum levels by turbidimetric measurements; (ii) secondly, a
growth/no growth model was elaborated with the fastest strain selected as a function of pH
and water activity (Aw) at different temperatures and inoculum levels during 30 days; (iii)
finally, the growth kinetics of E. coli was studied in the conditions that produced growth.

Material and Methods

Screening of the strains

Four E. coli strains (serovars O55:H6; 059:H21; 0158:H23 and O157:H7) obtained from the
Spanish Culture Type Collection (Burjassot-Valencia, Spain) were cultured in Tryptone Soja
Broth, TSB, (Oxoid, UK) at 30°C-24h. Subsequently, 0.1 mL of inoculum was transferred to a
50 mL flask until the stationary phase was reached. Growth of E. coli was evaluated by
absorbance measurements in Bioscreen C (Labsystems, Finland) at 600 nm as a function of
temperature (8 and 16°C), pH (5.5 and 7.0) and initial inoculum level (100 and 10000
cfu/mL). The Baranyi model was adjusted to obtained data for calculating the growth rates
(Umax h™) and lag phases (lag, h) for each strain. The fastest and best adapted strain was
selected to perform the growth/no growth models.

Growth/no growth models

The logistic regression models were performed at different levels of pH (from 7.0 to 5.0 at
0.25 levels) and Aw (five levels ranging from 0.999 to 0.960), letting contant temperature (8,
12 and 16°C) and inoculum level (100, 1000 and 10000 cfu/mL). Assessment of growth was
performed by turbidity measurements in Bioscreen C (Labsystems, Finland) and checked by
plating onto Plate Count agar (Oxoid, UK) at regular time intervals during 30 days. 8
replicates per condition were made and for any combination of factors, growth was recorded
as “1” if it occurred and “0” if did not. A cut point of probability of growth (P) = 0.01 was
taken to delimit growth and no growth.

A polinomial logistic regression model, was implemented in SPSS v15.0 (Chicago, Illinois,
USA) following a stepwise process, by deleting one by one the less significant variables, until
obtaining a biologically interpretable equation. To start processing data, the input variables
were scaled in the range [0.1-0.9]. The new scaled variables were named pH* and Aw*.

logit P = (%]:ao +a, X pH +a, X AW +a, x pH™ x AW +a, X pH ™ +a, x Aw? (1)
where P = probability of growth; and ay-as = coefficients to be estimated by the model.
Calculation of the detection time of E. coli under growth conditions

On each day of analysis the difference between the OD and the ODy, (pure medium) was
recorded. For the conditions that allowed growth, the Td (h) were calculated since the
absorbance measurements as follows:

1-3:9% a4 [ 1S 00,-00) 2

where Td (h) = detection time; OD; is the absorbance value of the blank in the replicate i; n =
number of replicates; and O.D. is the mean absorbance value of all replicates.




Results and Discussion
Selection of the strain

Results of the screening performed showed significative differences among the behavior of E.
coli strains. It has been observed that neither the strain O157:H7 nor O59:H21 were able to
grow at 8°C-pH = 5.5, although the highest values of piy.x Were observed for E. coli O157:H7
at 16°C-pH = 7.0 (100/10000 cfu/mL = 0.030/0.038 h™). The strain 0158:H23 was the best
adapted since it showed the lowest lag phase values at 8°C-pH = 5.5 (100/10000 cfu/mL =
291.13/193.37 h) and at 16°C-pH = 7.0 (100/10000 cfu/mL = 31.53/16.78 h); and also the
highest values of Py at 8°C-pH = 5.5 (100/10000 cfu/mL = 0.006/0.007 h™*) Therefore, this
strain was selected to perform the growth/no growth models.

Growth/no growth models

Nine logistic regression models were obtained for each combination of temperature and initial
inoculum level. 45 conditions of pH and Aw (8 replicates per condition = 360 cases) were
evaluated for studying growth/no growth of E. coli O158:H23. The estimated coefficients are
shown in Table 1. Transformation of the variables improved the adjustment of the models to
data observed, since the percentages of correct classified cases were situated between 93.06
and 100 %. Besides, for an industrial/food safety point of view, in this model growth of E.
coli was considered if P > 0.01. This provides fail-safe predictions in comparison to other
published logistic regression models, in which growth was considered if P > 0.5.

Table 1: Estimated coefficients for the growth/no growth models of E. coli O158:H23 as a
function of pH and Aw, at different temperatures and initial inoculum levels

Estimated coefficients

Variables 8°C

12°C 16°C

100 1000 10000 100
cfu/mL cfu/mL cfu/mL cfu/mL

1000 10000 100 1000 10000
cfu/mL cfu/mL cfu/mL cfu/mL cfu/mL

ao -48.787 -66.952 -72.168 -32.957
a; (pH*)  -402.905 106.405 -502.292 NS

a, (AwW*) NS 60535 NS  32.826

as (PH* x Aw*) 799.591 NS  1105.600 54.761
a, (pH?) NS' -87.213 NS NS
as (Aw?) NS NS NS NS

-895.100 -431.653 -243.828 -239.154 -239.154
1450.286 625.317 NS  169.484 169.484
1189.568 452.017 303.183 358.379 358.379
-1047.388 NS  893.185 377.264 377.264
-610.566 -444.092 NS NS NS
-151.307 NS NS NS NS

NS = not significant (p<0.05)

Effect of temperature, pH, Aw and initial inoculum level on the growth boundary of E.
coli

Figure 1 represents the growth boundary of E. coli O158:H23 at 8, 12 and 16°C (10000
cfu/mL) as a function of pH and Aw. Results obtained showed that E. coli 0158:H23 was not
able to grow at low pH (5.0) at 8°C. It can be also observed that the growth/no growth
interface at 16°C is closer to low levels of pH corroborating that the cell yield increases at
mild growth temperatures (Salter et al., 2000). In this case, pH alone was not effective to
inhibit growth, being neccesary a reduction of Aw to 0.97 at pH values below 6.0.

Besides, it was shown that the position of the growth boundary was shifted at different
inoculum levels. As stated by other authors, at higher microbial concentrations the growth/no
growth interface was closer to low levels of environmental factors since the cells are more
capable to initiate growth (Skandamis et al., 2007). However, no significant differences in the
behavior of E. coli 0158:H23 at 16°C was observed between 10000 and 1000 cfu/mL, so that
an unique logistic regression model was performed for the two inoculum levels (Table 1).



Description of the growth kinetics of E. coli

Growth of E. coli O158:H23 was described through the use of Td values (h) in the conditions
that allowed growth. According to the mean Td values obtained, growth of E. coli O158:H23
was detected later at low temperature (8°C), pH (< 6.0) and Aw (< 0.99) levels. Results have
shown a variability in Td values with respect to the inoculum level, since at 100 cfu/mL (pH
5.25; Aw 0.999) Td was equal to 373.87 £ 62.38 h, while at 1000 and 10000 cfu/mL these
values decreased to 327.92 + 43.51 and 257.15 + 16.81 h respectively. This variability was
also observed by other authors (Pin and Baranyi, 2006) being also associated to the variability
of the lag phase. On the contrary, at optimal conditions, reduction of pH and Aw had less
influence on Td values, finding that at 10000 cfu/mL and 16°C; (Aw = 0.999) mean Td values
were situated between 29.16
and 32.34 h through the pH
range 7.0-5.75.
The developed models may
be viewed as tools that
provide growth data of
different strains of E. coli
combined with an estimation
of the growth/no growth
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Figure 1: Growth/no growth interfaces (P = 0.01) of E. coli 0158:H23 as a function of pH and
Aw at 8, 12 and 16°C. The inoculum level was fixed at 10000 cfu/mL.
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Abstract

To establish microbial food safety based on probabilistic models it is necessary to account for
stochastic data of as many microbial inactivation and growth parameters as possible. In this
paper, a stochastic approach to evaluate growth of heat damaged Bacillus cereus cells taking
into consideration germination kinetics and the influence of different stresses (mild heat
treatment, presence of nisin and lysozyme separately or in combination) was performed, using
an approach of growth through OD measurements. From results obtained histograms of the
lag phase were generated and distributions were fitted. Histograms showed a shift to longer
lag phases and an increase in variability with high stress levels. A simulation was performed
to establish the time necessary for a certain increase in B. cereus cells in liquid egg as a
function of the germination rate, initial spore numbers, inactivation and growth parameters.
Results were compared with a deterministic approach to evidence the advantages of
probabilistic data to establish food safety margins.

Keywords: Bacillus cereus; predictive modelling; heat inactivation; lag phase distributions;
germinants.

Introduction

Hurdle technology advocates the synergistic combinations of various antibacterial techniques
in order to drastically limit the growth of spoilage bacteria. Using an intelligent combination
of hurdles (i.e. preservation factors) can effectively improve the microbial safety and maintain
the sensory and nutritional quality of foods (Leistner, 1999). Nisin is a heat-stable bacteriocin
produced by Lactococcus lactis ssp. Lactis, active against many Gram-positive bacteria, and
prevents the outgrowth of spores of many Clostridium and Bacillus spp. (Delves-Broughton
and Gasson, 1994). Lysozymes are widespread in plants and animals, where they constitute a
natural defence mechanism against bacterial pathogens. The most studied lysozyme and the
only one so far used commercially as a food preservative is hen egg white lysozyme (HEWL).
Both compounds are classified as GRAS. Synergistic antibacterial activity between nisin and
lysozyme has been reported (Nattress and Baker, 2003).

Bacillus cereus is a Gram-positive, spore-forming, obligate aerobe often associated with food
spoilage and foodborne illness. The accurate number of food poisonings caused by B.cereus
in different countries is not known because it is not a reportable illness and is not always
diagnosed. B. cereus caused many problems in food industry by spore formation and it may
survive pasteurization and heating. It is a ubiquitous microbe in the environment and can
easily contaminate food production or processing equipment. Liquid egg is a heat sensitive
product where the presence of sporeforming bacteria can pose a serious risk. Particularly
Bacillus cereus can be a potential hazard and due to the maximum temperatures that can be
used (in the range of 60°C) it is necessary to have additional hurdles to guarantee its safety.
Deterministic growth models describe the behaviour of bacterial populations, while ignoring
individual cell variability. In small populations of cells this variability can be quite important
when attempting to make accurate predictions, particularly when the cells have been exposed
to stress. It is becoming clear that to develop a more complete understanding of the lag phase
process, the behaviour of single or low levels of cells has to be taken into account through the



development of stochastic models (Baranyi and Pin, 1999). To achieve this, the use of optical
measurement densities in automatic plate readers, once they have been adequately calibrated
with standard growth curves, can be a very valuable tool (Valero et al., 2000).

Materials and methods

Bacterial strain

The strain used in the experiments was B. cereus TZ421AV that was kindly donated by
Institutute National de la Recherche Agronomique, INRA Avignon (France). It was
sporulated in Fortified Nutrient Agar at 30°C and spores were harvested and stored at 4°C
until use.

Chemicals

Lysozyme was obtained from Sigma-Aldrich, Switzerland (Hen egg White lysozyme,
84468U/mg). It was dissolved in sterile bidistilled water and esterilized by filtration (0.45um
Millex-HV, Millipore, Bedford, USA). It was prepared to give a final concentration of
100mg/mL and stored refrigerated until use.

Nisin was obtained from Sigma-Aldrich, Switzarland (Nisin from Streptococcus lactis, 2,5%).
It was dissolved in ethanol 50% (v/v). It was prepared to give a final concentration of 0.13uM
and stored refrigerated until use.

Combined stresses

Successive individual stresses were applied to cells in the early stationary phase of B. cereus.
A 100pL volume of vegetative cells of B. cereus were inoculated in SmL of homogenized egg
with different amounts of antimicrobial compounds (lysozyme and nisin, alone or combined).
Prior, a mild heat treatment was applied to inactivate 3 log cycles. Then it was incubated at 10
and 12°C. Samples were taken at different time intervals and plated on BHIA. Plates were
incubated at 37°C for 24 h.

Growth curves of B. cereus measured by OD

Growth curves were made in BHI with the addition of nisin and lysozyme at different
concentrations alone or combined. A dilution procedure following two-fold dilutions was
applied to obtain up to single B. cereus cells in the wells of the microtiter plate. Serial
dilutions of control or stressed cells were made and 400 pL were added into the wells of a
Bioscreen plate. The plates were incubated in the Bioscreen at 10 and 12°C for different time
periods. Measures were set at 15 min intervals. The time to a certain increase in cell numbers
was established for each individual well (Baranyi and Pin, 1999).

Statistical data processing and distribution fitting

Statistical data processing was performed and histograms were made from every set of
conditions showing the distribution of the lag phases. From each histogram, the most common
statistical parameters (mean value, standard deviation, etc.) were determined.

Distributions were fitted to time to growth and were ranked using the ¥2 and the Anderson—
Darling (A-D) goodness of fit statistics. The probability (p) is a measure of confidence that
the fitted distribution could have generated the original data set, and ranges from zero to one,
with one being the highest confidence.

A simulation was performed considering the distribution of germination of B. cereus (Collado
et al., 2006), the initial contamination level and the distributions fitted for the different
concentrations of nisin and lysozyme tested for different probabilities of time to growth
where toxin could be formed and it was compared with deterministic predictions. These
simulations were then contrasted with time to growth in homogenized egg determined by
plate counts.



Results and discussion

Heat resistance of B. cereus

D- and z-values were obtained in the range of temperatures 55-65°C, using vegetative cells of
B.cereus heated in homogenized egg. D values were found to be between 17.4 min at 55°C
and 0.4 min at 65°C. The z-value calculated was 4.28 °C.

Effect of nisin and lysozyme on growth of B. cereus vegetative cells inBHI

The effect of nisin and lysozyme on the growth parameters of B. cereus vegetative cells was
studied at 12°C. Concentrations of lysozyme (ranging from 0.1 to 1.0 mmol L") or/and nisin
(0.065-0.13 umol L") were added to BHI broth, growth was measured following OD and
distributions describing growth were fitted. The average values of the main conditions tested
and their combination is included in Table 1. Nisin alone or combined with lysozyme induced
a significant increase in the lag phase at 12°C, whereas the maximum specific growth rate did
not vary.

Growth curves in liquid egg containing lysozyme and nisin

In order to evaluate the antibacterial activity of lysozyme and nisin, individually or combined,
samples of homogenized egg (SmL) containing concentrations of lysozyme (ranging from 0.5
to 4.0 mmol L") or/and nisin (0.065-0.26 umol L) were inoculated with heat treated B.
cereus. Samples were incubated at 10 and 12°C, taken at different time intervals during
incubation and plated on BHIA. Plates were incubated at 37°C for 24 h. The combination of
nisin and lysozyme increased the lag time of the microorganism, although individually they
did not have an effect (Figure 1).
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Figure 1: Growth curves of B. cereus exposed to lysozyme (L) and/or nisin (N) at 12°C in
liquid egg



Table 1: Average estimated growth parameters of B. cereus TZ421 in BHI broth measured by
OD at 12°C, exposed to the conditions indicated

Treatment p max (h™) A (h)

Control 0,099 16,86
Lysozyme 0.5 mmol L™ 0,104 15,51
Nisin 0.13 pmol L™ 0,103 51,93
Lys 0.5+Nis 0.065 0,118 35,55
Lys 0.5+Nis 0.13 0,088 52,09

Prediction of the effect of nisin and lysoyzyme on B. cereus growth

A simulation was performed to establish the effect of germination, contamination level, heat
inactivation and presence of nisin and/or lysozyme on B. cereus growth at 12°C. Distributions
were fitted to describe quantitatively growth in the presence of these compounds. The
simulation indicated the probability of time to growth as a function of the parameters
investigated and it was compared with a deterministic prediction of time to growth.

Conclusions

The combination of lysozyme and nisin can contribute to extend the shelflife of refrigerated,
liquid egg delaying growth of B. cereus. A probabilistic approach can help to efficiently
predict the impact of different factors on time to a certain increase of B. cereus and to define
precisely the level of risk that a consumer is exposed to for a certain food.
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Abstract

In the framework of a probabilistic risk assessmemitial contamination data are often
represented by a statistical distribution. Howebecause contamination data can consist of
(combinations of) qualitative, quantitative, senaqgtitative measurements and nondetects, it
is not always straightforward to assign an appaterdistribution. In this research, maximum
likelihood estimation (MLE) is applied to estimatee parameters of a (log)normal
distribution representing various types of contation data. Moreover, the bootstrap
method is used in order to calculate uncertairtgted to these estimated parameters. These
techniques have been applied to two case studeesmeasurements @ampylobacter spp.
contamination in chicken meat preparations, andsomeanents oListeria monocytogenes in
smoked fish samples.

Keywords. quantitative microbiological risk assessment, ialdlity and uncertainty,
maximum likelihood estimation, bootstrap method

| ntroduction

Outcomes of a quantitative microbiological riskesssnent in food are in many situations
dependent on the initial contamination of the miorganism in the food product. In case of
a probabilistic risk assessment, the initial corntemion is usually represented by a
distribution. However, microbiological contamiratidata often consist of (combinations of)
gualitative, quantitative or semiquantitative measwents, or measurements below the limit
of detection. As a consequence, it is not stréogivard to transform the outcomes of these
tests into an appropriate parametric distribution.

Materials and methods

In the case of negative presence/absence testjre2p g of food, the concentration of the
pathogen tested for in the food sample is knowhetdess then (a hypothetical) 0.04 CFU/g
(i.e., left-censored). Similarly, in the case op@asitive presence/absence test, the result is
known to be greater than 0.04 CFU/g (right-cengored/hen a food sample results in a
positive presence/absence test, a smaller porficghad same food sample could be tested
again, e.g., 1 g. When the second test is negahiggpathogen concentration is between 0.04
CFU/g and 1 CFU/g. This kind of data is referredas semi-quantitative or interval-
censored.

As a first case study, laboratory analyse€ainpylobacter in chicken meat preparations at
the Belgian retail market are analyzed (Hadtilal., 2008a). The data set consists of direct
plating results using the 1ISO (2006) standard nbtivith a reduced LOD of 10 CFU/g
instead of 100 CFU/g. In 387 out of 656 measuresni®%), the result is left-censored.

A set of 103 samples of smoked fish on the Belgetail market is used as a second case
study. The samples were analyzed in the period-2007 for a number of food business
operators (Uyttendaekt al., 2009). As opposed to tiigampylobacter data set, this data set
contains merely 1 quantitative measurement. Alleotmeasurements are either interval-,
left- or right-censored. Moreover, the data settains several different LODs, depending on



the demands of the food business operator thecpkmti food samples were supplied by,
hence resulting in a rather complex data set.

In order to fit a distribution to combinations afalitative, quantitative and semiquantitative
data, the method of maximum likelihood estimatisrused. It is assumed that the initial
contamination (log CFU/g) is normally distributed (Crépet al., 2007, Kilsby and Pugh,
1981, Legaret al., 2001). Maximum likelihood estimation resultsie parameter§ = (u,0)

of the normal distribution which is most likely taave generated the observed (censored)
data. In order to express uncertainty about theimdd parameters, the bootstrap method is
applied. As a result, each of the parameters psesented by an uncertainty distribution
instead of single values.

The code for the simulations is programmed in RD@¥elopment Core Team, 2009) using
functions from the survival package for MLE procesu

Results and discussions

The reading key for all figures is as follows. Arda grey area in horizontal direction
indicates large uncertainty about the value ofrdspective percentiles, i.e., the values of the
percentiles differ considerably among different tstrap iterations. A small grey area
indicates that the value of each percentile doedtgt much in between different bootstrap
iterations, hence uncertainty is small. The degfeariability is indicated by the interval the
median line spans from the lower percentiles taigber percentiles.

Case study 1

Using MLE, a normal distribution with mean= 0.73 logo CFU/g and standard deviation=
1.03 logo CFU/g is fitted to the left-censored data setled first case study (Figure 1a).
When all censored data would have been substitydthlf of the LOD, the sample mean is
1.10 loge CFU/g. Furthermore, when all censored data whale been substituted by the
LOD itself, the sample mean is 1.28 Jp@FU/g. Substitution of nondetects by the LOD or
half of the LOD clearly leads to a substantial pathough it is a practice that has been used
frequently in past research (Lorimer and Kierme26Q7).

The bootstrap method is applied to infer unceryaatiout the estimated parameters of the
variability distribution. The meap is represented by a normal distribution with mgar -
0.05 and standard deviatie) = 0.21. The standard deviation is represented lgpmma
distribution with shape parametes= 99.4 and scale paramefgr= 1.87107.

This data set is subsequently employed to exaniaenfluence of a number of conditions.
In order to check the effect of using a reducee@aiin limit, all values below 100 CFU/g
(i.e., the standard detection limit of tBampylobacter enumeration method) were assumed to
be censored and hence regarded as nondetectss tretv data set, 589 out of 656 values are
censored, i.e., 90% as opposed to 59% in the aligiata set. As can be seen in Figure 1b,
the increased number of censored values has airfigence on the resulting distribution.
This illustrates — in a reverse way — the impaceé@uction of the detection limit of current
detection methods (e.g., Gnanou Bestsal., 2004) might have on the obtained results. To
determine if measurement error (assumed to be #0g,5units) (Habibet al., 2008b) would
have a significant impact on the resulting distiifi, another simulation is run with all
quantitative data points replaced by the intervakf0.5, x+0.5] logo CFU/g. As can be
seen in Figure 1c, inclusion of this measurement érardly affects the outcome compared to
the original situation (Figure 1c). Finally, thenslation is also conducted with only half the
number of data points by pseudorandomly resam@i®ydata points from the original data
set. When the number of data points is limitetddti of the original number, the increase in
uncertainty compared to the originally obtainedrihsition remains rather limited for this
particular data set (Figure 1d). This indicates the investment of labor and costs in a large
number of additional measurements might not alwagge the expected impact on the
resulting output distribution.
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Figure 1: (a) Plot of the 95% confidence interviaih@ normal distribution fitted to the
logarithmicCampylobacter spp. data; (b) with a modified LOD; (c) with meesuent error
included,; (d) for the reduced data set.

Case study 2

The data set df. monocytogenes contamination data of the second case study resepted

by a normal distribution with meam = -1.58 logy CFU/g and standard deviation= 1.54
log,;0 CFU/g (Figure 2). Based on the empirical disttitms of the bootstrap estimates of the
distribution parameters, the normal distributioch®sen to fit both the mean and the standard
deviation. A normal distribution with hyperparaewt mean p, = -1.58 and standard
deviationo, = 0.20 is fit to the bootstrap means. The stahdawviation is represented by a
normal distribution with meam, = 1.51 and standard deviatiopn= 0.28.
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Figure 2: Plot of the 95% confidence interval & ttormal distribution fitted to the
logarithmicListeria monocytogenes contamination data.



Conclusions

The examples presented in this text illustrate loawplex data sets including nondetects,
semiquantitative and qualitative measurements wwithitiple limits of detection can be
interpreted in an appropriate way for use in miwlagical risk assessment. Ignoring
nondetects or substituting them with the LOD off ladlit, is a classical source of bias (cfr.
Lorimer and Kiermeier, 2007) that can and shouldabeided using these methods. It has
been demonstrated that even complex data setslingleither very diverse analyses or large
amounts of censored values, can lead to very gatisbutcomes.
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Abstract

In this study, an individual-based model (IbM) for microbial growth is analyzed and validated
through a robustness analysis. IbMs are discrete-event models that consider the individual cell
as the modeling unit. Model analysis is an important part of the IbM modeling cycle, as it
provides the opportunity to learn more about the model (e.g., effect of time resolution) and
the system modeled (population and individual dynamics). Decreasing the time step leads
asymptotically to a constant value for the population growth rate, regardless of the initial
biomass distribution. The presented IbM is able to reproduce commonly observed microbial
behavior. For example, the mean individual generation time exceeds population lag time, and
the population reaches steady state in the biomass distribution during exponential growth,
regardless of the initial biomass distribution.

Keywords: individual-based modeling, robustness analysis, individual and population
dynamics, biomass distribution

Introduction

During the last decade, individual-based modeling (IbM) has proven to be an important tool
for modeling microbial dynamics (e.g., Kreft et al. 1998, Dens et al. 2005b, and Ferrer et al.
2008). IbM considers the individual cell as the modeling unit (with its own specific
properties), thereby providing a framework to model complex microbial dynamics like
interspecies interactions, or complex dynamics induced by food structure, adaptive behavior
(e.g., lag phase), ... Nevertheless, the IbM methodology is still lacking a generic set of tools
for model analysis, which is an indispensable part of the IbM modeling cycle. This research
aims to analyze and validate a basic IbM to obtain a thorough understanding of the model
(e.g., effect of time resolution) and the system modeled (e.g., individual versus population
dynamics). Information is gathered about how the model reacts to changes in the model
parameters. This is achieved by a robustness analysis. Robustness analysis is similar to
conventional sensitivity analysis, but a larger range of parameter values is considered. Due to
their complexity, IbMs are difficult to understand and learn from. Therefore, it is important to
communicate model analysis results. Communication makes other researchers familiar with
the different aspects and limitations of the presented IbM.

Materials and methods

Model description

Algorithm 1 provides an overview of the model core. This IbM simulates population lag and
exponential growth on the basis of individual cell growth (in a rich homogeneous liquid
medium). Each individual is characterized by its growth rate (tgiviaua ) [1/h] and its mass (m;)
[m*] (m* is the minimum mass at cell birth with a growth rate approaching zero). The
number of bacteria is limited to N, .. Stochastic elements can be included at lines 1 and 12.
During the simulations, individual mass (m;) and individual generation time (f,) [min] are
recorded at regular time intervals. Every time step the total number of bacteria N [CFU] is
registered. Unless stated otherwise, the simulation values are the ones listed in Table 1. The
initial biomass distribution is varied in the different simulations.
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Algorithm 1: Outline of the basic simulation loop. Variables are explained in Table 1.

01 initialize population: randomized cell mass m; and growth rate fingividua
02 While N< Nvim,max

03 for eachcelli=1. N

04 grow exponentially

05 if m; > 2m*.2

06 j =j + I (initiate new replication round )
07 end

08 if a replication round is ended

09 j=j-1

10 mother cell (m;) — 2 daughter cells (m; /2)
11 N—>N-+1

12 set random tt,4iviaua fOr 2 daughter cells
13 end

15 t=t+ At

16 end

Table 1: Overview of the reference simulation input values.

Parameter Units  Value Reference
Ny initial cell number [CFU] 107
Nsimmax maximum cell number, [CFU] 1.5 x10°
simulation limit
At time step [min] 0.1 (or stated otherwise)
T temperature [°C] 37 (or stated otherwise)
C+D replication and division =~ [min] 60 Dens et al. (2005a,b)
time
Hindviduat (37°C) mean individual [1/h]  2.1553 Bernaerts et al. (2002)
growth rate
CV of Windividual coefficient of variation - 0.1 Kreft et al. (1998)

Biomass growth is assumed to occur exponentially at any time. DNA replication is initiated
when the cell mass reaches a critical value, always a multiple of a critical mass m*, namely,
2m*.2, with j =0,1,2,... the number of replication rounds per cell (Donachie, 1968). After
completion of the (C+D)-period (the time required to complete DNA replication and cell
division), cell division takes place. More details can be found in Dens et al. (2005b).

Criteria for data analysis

The maximum specific growth rate of the population ,opuiaion [1/h] is determined as the slope
of the upper part of the exponential phase (in the interval [(In &, + 0.5 (In Ny mar - In Np),
In Ngpmax ). The population lag phase is determined as the intersection of the inoculum N,
and the extrapolation of the exponential growth phase.

Results and discussion

Results regarding the model (effect of time resolution) and the system modeled (population
and individual dynamics regarding lag, mean growth rate and biomass) are highlighted in the
next paragraphs.

Population versus individual lag times

The mean of the lag phase of the individuals (i.e., the mean of the first generation times)
exceeds the population lag phase (Table 2). This observation is consistent with earlier
publications (Baranyi, 1998, Baranyi and Pin, 2001).



Table 2: Population versus individual lag time.

my=1.7  m, € Normal (1.7,0.17)  m, € Uniform (1.4,2)

Population lag [h] 0.91 0.90 0.91
Mean individual lag [h] 1.08 1.08 1.08
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Figure 1: The effect of time resolution on the population growth rate. The graph represents
the effect of the dimensionless time step T (7 = (A?  Zy,gividual )_1 ) on the dimensionless
growth rate ( & ,opuiation ! Hindividuar ) Tor different conditions.

Time resolution

Figure 1 shows the effect of Az on the population growth rate ((popuiarion). Each symbol
represents the mean of 100 simulations for a different time step and a different initial biomass
distribution. For comparison, different time steps for the initial biomass distribution (1, = 4.3

m*) at 20 °C are shown (#imdviasar = 3319 10" [1/h]). Decreasing the time step leads to an
increase in the population growth rate until reaching a constant value at small A#’s. According
to Baranyi (1998), the population growth rate is indeed determined by the fastest growing
cells in the population. The initial biomass distribution has little impact on the outcome,
which can be explained by the biomass dynamics (see next Section).

Individual biomass distribution

The biomass distribution at any time can be characterized by its mean and its shape. In the
exponential growth phase, balanced growth occurs and the biomass distribution reaches a
stable distribution. Regardless of the initial biomass distribution, the culture reaches the same
distribution with a mean of 12.04 m* (Figure 2). This characteristic shape of the biomass
distribution is also observed by Prats et al. (2008). Since the population reaches a steady state,
independent of the initial biomass distribution, the populations seem to be in similar
conditions during exponential growth, thereby exhibiting similar population dynamics.
Hence, it is impossible to infer initial mass distributions from an exponentially growing
population.

Conclusions

Model analysis checks for model performance, inconsistencies, possible needs for
improvement, and defines the limits of the model. In the presented research, it leads to
insights in the model (effect of time resolution) and the system modeled (population versus
individual dynamics regarding lag and biomass). Time resolution is clearly an aspect that can
not be ignored in individual-based modeling, as it has an impact on output values. Decreasing
the time step leads to more accurate values for the population growth rate, regardless of the
initial biomass distribution. Large time steps will reduce the simulation time and
computational load, but result in erroneous output values.
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The simple IbM is able to reproduce commonly observed microbial behavior. For example,
the mean individual generation time exceeds population lag time. Regardless of the initial
biomass distribution, the biomass distribution reaches a common stable state during
exponential growth.
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Abstract

A Bayesian state space model examining the growth of Listeria monocytogenes in minced
tuna was developed. A total of 28 growth curves of L. monocytogenes ranging from 2 to 30°C
with different initial competitive natural flora levels were used to develop the model. The
influence of competitive natural flora on the growth of L. monocytogenes was also modelled.
The developed model described the effect of time, temperature, competitive flora, and
maximum population density of each bacterial strain on the growth of L. monocytogens and
natural flora. The results obtained from the developed model were used to simulate the
simultaneous growth of L. monocytogenes and natural flora in minced tuna with variability
and uncertainty.

Key words: competitive flora; time series model; hierarchical Bayesian state space model

Introduction

Sushi is a widely known Japanese traditional food that essentially comprises raw fish. Tuna is
one of the most popular sushi ingredients, with minced tuna also being a popular sushi
ingredient. It has recently been reported that raw seafood is contaminated with Listeria
monocytogenes (Handa, et al., 2005), and that minced tuna in particular was contaminated
with L. monocytogens in 14.3% of Japanese retail stores. Consequently, the consumption of
raw minced tuna is fraught with the potential risk of food poisoning by listeriosis. However,
the behaviour of L. monocytogenes in minced tuna has not been investigated in detail. In this
study, we investigated the responses of L. monocytogenes and the interactions with natural
flora in minced tuna.

Numerous bacterial growth models have been developed in the area of predictive
microbiology. Conventional deterministic growth models based on kinetics are problematic
given the difficultly in separating model variability and uncertainty. We attempted to develop
an alternative predictive model based on a time series modelling technique commonly applied
in ecological modelling. Appropriate treatment of uncertainty can be especially important for
time series data, since process errors propagate forward with processing, unlike the case with
observation errors (Clark, 2007). Among the most general and flexible model alternatives is
the Bayesian state space model. In the present study, we aimed to develop a Bayesian state
space model for the prediction of L. monocytogenes growth in minced tuna with the
simultaneous growth of natural flora.

Materials and methods

Preparation of Microorganisms and sample

Minced tuna (pH = 6.28, aw = 0.986) was purchased from a local wholesale market and
stored at -40°C until use. Dominant natural micro flora of minced tuna were isolated and
identified by examination of 16S rRNA as follows: Serratia grimesii, Kurthia zopfii,
Acinetobacter sp., and Pantoea agglomerans. These four bacterial strains were cultured
individually and then combined to give approximately equal populations of each strain for use
as an inoculum comprising a natural flora mixture. Listeria monocytogens (29-10-1, serotype
1/2b), which was isolated from seafood and stocked in the laboratory in the Department of
Food Science and Technology, Tokyo University of Marine Science and Technology, was
used in this study. This strain shows the fastest growth rate among stock culture collection



isolated from seafood in the laboratory. L. monocytogens was inoculated into minced tuna
sample (10 g) to give an inoculum level of 10 CFU/g. The natural flora mixture was also
inoculated into minced tuna to give three different levels (10% 10*, and 10° CFU/g). The
inoculated tuna samples (10 g) were aseptically divided into 400-ml stomacher bags at each
sampling interval, and stored at 2, 5, 10, 15, 20, 25, and 30°C until they reached the stationary
phase. Sampling was generally carried out at 3-h intervals for the 15, 20, 25 and 30°C
experiments, although longer sampling intervals were used for the 2, 5 and 10°C experiments.

Enumeration of L. monocytogenes and total natural flora

Each 10-g sample of tuna was combined with 90 ml of 0.9% saline in a 400-ml stomacher bag
and pummelled for 2 min in the stomacher. The sample was then serially diluted using 0.9%
saline and plated onto PALCAM Listeria selective agar (Merck) for L. monocytogenes and
tripticase soy agar (Merck) supplemented with 1.5% sodium chloride for total natural flora
using a spiral plating system. Plates were then incubated at 30°C for 48 h.

Model development

. Paramter models © GE.
A Bayesian state space model was SN TS
examined in this study. State space Processmdoel v TN
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models comprise a parameter model, - tgn g R
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process model, and data model (Fig. 1).
As an observation model, we assumed
that the observed bacterial counts data
follows a log normal distribution.

log.NF ~ N(xNF, ©°)
IOgLM ~ N(XLM, _[:2) Observed data
Figure 1. A diagram of the state space model of a

random walk where observations y are drawn from
the underlying process x.

where log.NF and xNF represent the
observed cell counts data of natural flora
(log CFU/g) and the unobservable real
population density of natural flora (log CFU/g) in the latent process model, respectively. In
the same way, log. LM and xLM were also specified. T° represents the variance of the data. In
the process model, xNF and xLM were also assumed to follow a normal distribution as
follows:

xNF ~ N(mean.xNF, o)
XxLM ~ N(mean.xLM, o7)

where mean.xNF and mean.xLM represent the mean value of natural flora and L.
monocytogenes in the process model, respectively. o” represents the variance of the latent
variables in the process model. The mean value of xAPC and xLM were described as a
function of temperature and the effect of bacterial number on each other as follows:

mean.xNF[t] = xNF[t — 1] + Delta.time[t] x (pN[l] + pN[2] x Temp[t] + pN[3] x Temp[t]z)

[ (NFLt =11+ pN[4]x xLM[1 - 1)) )
\ xNF .max )

mean.xLM[t] = xLM|[t — 1] + Delta.time[t] x (pL[l] + pL[2] x Temp[t] + pL[3] x Temp[t]z)

[ (LMLt =11+ pL{4]x xNF[1 - 1])) @)
\ xLM .max )

where t and Temp represent time (h) and temperature (°C), respectively, and pN[i] and pL[i]
were parameters to be estimated. Since we do not have prior knowledge regarding the



parameters to be estimated, the distribution for each parameter of fixed effects (pN[i] and
pL[i]) is assumed as a non-informative prior distribution. All functional forms were adopted
with a Gaussian distribution of mean zero and a variance of 10*. Hyper prior distribution for
each variance parameter (t*and 07) comprised a non-informative inverse Gamma distribution
of mean one and a variance of 10°.

Computing posterior distribution

In Bayesian inference, all parameters (including missing data) are generated by prior
distributions (Clark, 2007). To obtain the parameter values, Gibbs sampling methods driven
by the Markov Chain Monte Carlo (MCMC) calculation generate sample sets from the joint
posterior distribution of all parameters. Sampling from the posterior distributions of the
parameters using MCMC methods was performed using WinBUGS 1.4.3 in the RZWinBUGS
package (Sturtz et al. 2005) in statistical language R 2.8.1. Posterior samples were obtained
from three independent Markov chains in which 50,000 values were sampled with a 10
iteration interval after a burn-in of 20,000 iterations. The convergence of the Markov chains
was evaluated using R (Gelman et al. 2003) for each parameter by comparing the variance
within each chain and among chains.

Results and discussion
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minced tuna at 5°C is shown in Fig. 2. As @ , | © o e A4 aa
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the competitive initial natural flora 7 A . I ..
increased in number, the maximum § a ol .
. . AN .
population density of L. monocytogenes § < - o g LA
was suppressed under all temperature § 5 ; 'l
conditions examined. In contrast, the ~ i .
number of competitive natural flora had ]
no affect on the growth rate of L.
monocytogenes. No interaction between 0 100 200 300

the number of natural flora and the Time (h)

number of L. monocytogenes was evident _
except for the maximum population Figure 2. Changes in number of natural flora (APC)

and L. monocytogenes in minced tuna with initial

density. In most cases, when the natural <’ 5¢ )
different competitive natural flora during 5°C storage

flora reached maximum product levels,
the product would become spoiled. Prediction of the number of natural flora and L.
monocytogenes in the product up to the point where maximum population density is reached
is therefore important in preventing food poisoning by listeriosis.

Model convergence

The estimates and variance calculated by MCMC in the hierarchical Bayesian model are
listed in Table 1. All estimates for parameters were close enough to unity that the Markov
chains for all parameters had sufficiently converged. The pN[4] and pL[4] parameters are
those that influence the number of L. monocytogenes and natural flora, respectively. The
inference of posterior distribution did not clearly affect each strain, since the 95% credible
interval of these parameters included zero.

Growth simulation of natural flora and L. monocytogenes

Predictive simulation under fluctuating temperature condition was conducted using Eq. (1) for
natural flora and Eq. (2) for L. monocytogenes employing the estimated parameters shown in
Table 1. The result of simulation for growth under fluctuation temperature is shown in Fig. 3.



Table 1. Estimated posterior distributions of parameters

Credible interval

Parameter Mean 2.5% 50.0% 97.5% R
PNF[1] 0.023 0.004 0.022 0.042 1.001
pNF[2] 0.010 0.003 0.010 0.017 1.001
pNF[3] 0.001 0.001 0.001 0.001 1.001
pNF[4] -0.065 -0.132 -0.064 -0.003 1.001
pLM[1] 0.006 -0.006 0.006 0.019 1.002
pLM][2] 0.007 0.001 0.007 0.012 1.004
pLM[3] 0.001 0.001 0.001 0.001 1.004
pLM[4] -0.019 -0.090 -0.018 0.043 1.001
T 0.129 0.279 0.153 0.068 1.013
o 0.766 0.828 0.770 0.702 1.002
Both the number of natural flora and L.
monocytogenes  were  successfully 7 - -4 20
simulated, representing a good fit to the
6 418
observed data. The root mean square _
error (RMSE) of the simulation for L. § 5 116 .
monocytogenes and natural flora were ©_ 1142
0.37 and 0.45, respectively. Since the g 4 3
developed model in the present study g 1125
did not take into account of the lag time, 3 3 1103
the discrepancy between observed data 2 4
and the prediction tend to be large in the £ 18
early stage during the storage. 1 16
Nevertheless, the accuracy of the model ol | | ‘

throughout the storage periods showed
generally good agreement. Appropriate
modification of the model to describe
the lag time would further enhance the
accuracy of the prediction. Furthermore,
since the parameters were estimated as
probabilistic variables, the simulated
growth could estimate the probability of
its prediction. Although this time series
approach has only just begun to be used

4
40 60 80 100 120

0
Storage time (h)
————— Pred -NF Pred-LM - Temperature (°C)
® Obs-NF O Obs-LM

Figure 3. Simulation of the simultaneous growth of
natural flora (@) and L. monocytogenes (O) in minced
tuna during storage under fluctuating temperature. Solid
and dashed lines represent the prediction by using the
median of estimated parameters of the developed model
for L. monocytogenes and natural flora, respectively.

in investigations pertaining to food microbiology, the simplicity and flexibility of this
approach should prove a useful alternative in procedures concerning risk assessment.
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Abstract

In this paper, we consider microbiological dynamic systems encountered in food processing
and conservation (e.g., Listeria monocytogenes). In order to predict the evolution of bacteria
populations to improve our microbiological knowledge or to meet other objectives such as
risk analysis, the modeling and identification of such stochastic dynamic systems have to first
be subjected to adapted statistical approaches. However, the specificities of such systems
(nonlinear state space systems) in which the variables of interest are only indirectly observed
through a complex process of sampling, dilution series and counting, make it difficult to use
classical methods such as least squares or maximum likelihood. It is then necessary to resort
to specialized approaches such as sequential estimation techniques. This paper describes the
first results of such a promising approach that involves a new particular filter applied to
simulated microbial dynamics.

Keywords
Nonlinear filters, convolution kernels, particle filters, predictive modeling, microbiology.

Introduction

The complexity of food-type microbiological systems is related to both structure (ecosystems
involving several bacterial species in interaction) and to function. The latter is the result of the
distribution of their dynamics according to at least three hierarchal levels that we can
approximately represent here by: (a) an external level, only accessible to measurements
(counts taken in culture medium after sampling and dilution series); (b) an intermediary level,
corresponding to the dynamics of bacterial increases or decreases, strictly speaking, not
directly measurable in the food substrate considered but normally capable of being modeled
in the form of primary stochastic models; (c) a deeper level, characterized by kinetic variables
that determine the preceding dynamics and that are themselves the result of the interactions of
various biotic and abiotic factors (media conditions such as pH, temperature, water activity,
etc.). These kinetic elements can sometimes be modeled in the form of secondary stochastic
models.

These functional characteristics make all predictive modeling and identification of these
bacterial dynamics particularly difficult if not impossible when using classical approaches
(e.g., nonlinear least squares). Recent research (Rossi and Vila, 2003; 2005; 2006) made it
possible to provide a relevant methodological response to the two problems of parametric
identification of these systems and to the estimation of predicted probability densities of the
evolution of bacterial concentrations in substrates of interest. This research is based on the
implementation of a new nonlinear particular filtering technique using a convolution kernel
approach.

The aim of this presentation is to show the results obtained by applying this new type of
filtering system with two actual microbiological dynamic systems (the second one will be
discussed at the conference), of great interest to the food microbiology community, using a
new user-friendly procedure written in Matlab (Bidot et al., 2009; Vila et al., 2009). Rather
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than go into the theoretical basis of the method, published in Rossi and Vila (2003; 2005;
2006), here, we will only provide some elements in the following section.

Method

Statistical samplings

The current data acquisition procedures are sequential: a sample is taken from a primary
solution tube, diluted in cascade (Fisher dilution series), and then spread over Petri dishes.
After a period of time, the bacterial units that form colonies (CFU) are counted, assuming that
each colony corresponds to a single deposited bacterium. The current practice in
microbiology at this time is to deduce the number of bacteria present in an initial solution of
the primary tube by simple extrapolation using successive dilution factors and ignoring errors
due to sampling (at the time the sample is removed), pipetting, dilution and counts on the
Petri dishes. This highly approximate determinist estimation leaves room for much
improvement. Using hypotheses involving spatial distributions to be validated experimentally
(Poisson distributions, aggregative distributions) and hypotheses involving handling errors,
we carried out probabilistic characterizations of these counts (depending on the initial
numbers), taking estimates of the variances of all successive errors into account.

Conditional density estimates of countings

The dynamic systems considered here are similar to nonlinear space state systems, written as
follows:

xt+1 :f;(xt+ll 01 gt)

Ve =L (l Xit1y 0)

where x,, is the real vector of dimension 4 of state variables, f; is a known function, y,., is the

real vector of dimension ¢ of observation variables, € is a vector of unknown and constant
parameters, & is a white noise vector and £ is the probability distribution of y,,. In the
convolution filtering approach, which is ours, we introduce the additional state equation,
6., =86,, to link the estimation of conditional densities of parameters 6 with those of variables
x,. On the basis of a priori densities at = 0 for the variable vector and for the parameter
vector, these estimations at time ¢ are calculated using the formulas given by Rossi and Vila
(2005; 2006). This is a non-parametric approach where the particles are generated from
densities based on Parzen-Rosenblatt kernels. We will refer to Rossi and Vila (2005; 2006)
for the equations and more details about this filtering algorithm and its convergence
conditions.

Results and discussion

The Baranyi-Roberts (BR) model

The very well-known equation of the BR model (Baranyi and Roberts, 1994; 1995) under a
discretized autoregressive form that will be our state equation is:

N,y = 0 No exXp(the A, ) (1 B)( e (dA, 1dt) = (dB, [dt)(1/ B)) + N, + ¢,
where:
A, =14 (U h0) INEXP(- L0 1) + €XP(Lhy A) = €XP(- Lyl = HxA))
B, =1+ (eXp(thyax 4) = DI(N,por | Ny)
where:
- N, is the state variable, i.e., the bacteria number in the medium at time ¢,
- N, is the bacteria number in the medium at the initial time ,; it is a parameter to
be estimated,
- N, is the maximum bacteria number; it is a parameter to be estimated,
- Aisthe lag time before growth; it is a parameter to be estimated,



- . 1S the maximum growth rate; it is a parameter to be estimated,

- ¢, is an error term, a centered Poisson random @Nc) - (Nc), where ¢ is a fixed
real constant or a parameter to be estimated and N the parameter of the Poisson
distribution,

- o isthe discretization step.

In this case, the observation model y,,, corresponds to the distribution based on the sampling-
dilution process (typically Poisson distributions) and CFU counts on the Petri dishes, referred
to as L(.|x.., €,), where @, is a sub-vector of 4. This distribution cannot be characterized
analytically, but it can be simulated, a requirement for putting the filter into practice.

Protocol

The CFU counting data were obtained using the following protocol:

- ten sampling times = 0, 72, 120, 168, 240, 264, 288, 336, 408, 504 (hours), with three
samplings at each sampling time,

- five different dilution factors: the dilution factor is equal to 1 on the 0-120 time range,
equal to 0.1 at the time 168, equal to 10-3 on the 240-264 time range, equal to 10-> on the
264-408 time range, and equal to 10-° at the time 504,

- the postulated parameter intervals were: [0.01 ; 2] for y,.., [20 ; 60] for 4, [100 ; 400] for
N,, and [107 ; 109] for N,y

- discretization step 6 = 24 (hours),

- particle number = 106,

With this protocol, we obtained (Fig. 1) the evolutions of the parameter estimations, as well

as their approximated confidence intervals for the considered number of particles.

The final estimations for the four parameters, taking a computing time of about 5 minutes into

account, are: N,= 280, N,,..= 3.44584x108, /=36, and 1,,=0.063.

We have shown here the application of our method to a model that is very well known to the

microbiology community, but since there are only four parameters in this model, this

estimation problem is too easy to fully illustrate the power of the method that we propose.

We do not have adequate space here to show the results of a model with seven parameters,

which would be the Baranyi model in which we would have replaced the parameter «,,. by its

expression given by the cardinal secondary model of Rosso et al. (1993). Calculations were,

however, made and we will present the graphs at the conference.

The advantages of the approach that we propose are highly significant and multiple. Three of

them stand out in particular:

- all of the variability sources are taken into account to estimate the parameters,

- we can directly obtain these estimations without using the estimation of the y,,. of the
primary model,

- it is not necessary to know the initial values for the parameters since the range of
variations (even very large ones) are sufficient.

Moreover, it can be observed that the estimation in two steps by nonlinear regression for

models with many parameters does not often work because of a poor choice of initial values.
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Figure 1: Evolution of the four-parameter estimates for 106 particles. The dashed lines represent the lower and upper
bounds of a 95% confidence interval, while the central line represents the parameter estimation.

Conclusions

We think that the method described here can be used to estimate the parameters for very
complicated models with many parameters, models often in demand in the food microbiology
community (Augustin et al., 2005). Moreover, this method is currently being generalized to
resolve the following problems: comparison and selection of dynamic models by Bayes
factors estimated by filtering (Vila and Saley, 2009), rupture detection in dynamic models or,
on the long term, perhaps even the regulation and control (for example, by means of
temperature) of microbiological systems.
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Introduction

Beyond temperature, pH, aw or salts are able to modify the heat resistance of bacterial spores.
The influence of these factors on heat treatment or recovery efficiency was modelled
(Leguerinel et al., 2005). The models describing the influence of other factors on apparent
heat resistance of spore are scarce. It has been shown that free fatty acids can affect not heated
pathogenic bacteria, inhibit germination and growth of micro-organisms (Ababouch et al.,
1994, Lee et al., 2002). The reduction of heat resistance of spore by free fatty acids during
heat treatment was described by Tremoulet et al., 2002, but these effects on recovered
surviving cells were never quantified. The aims of this work was to improve the knowledge of
the recovery impact of FFA and to quantify its effects on heat resistance of spores modulated
by unsaturation level and pH.

Material and methods

The study was carried out with Bacillus cereus NTCC 11145 spores.
Heat treatment was performed in capillary tubes of 200 pl filled with 100 pl of sample
(heating media), sealed, and submitted to a thermal treatment in a thermostated glycerol bath
for different heating times. The heat treatment was stopped by cooling capillary tubes in
water/ice bath. The viable spores were counted by duplicate plating in recovery media
incubated at 37°C

Heating media used was nutrient broth and recovery media was nutrient broth and
bacteriological agar with, for both

media, different concentrations of free . el IJ'
fatty acid.

Dilutions of FFA in heating and
recovery media were obtained by
mixing and microsonication with 0.1%
TweenTM80 as dispersant.  After 100 pl

Water Glyceral bath
suspension 100°C [

sterilization by autoclaving at 110°C for
45 minutes as described by Marounek et
al.2003.

To study the impact of insaturation
number in chain of FFA added in
recovery media stearic acid C18:0, oleic
acid C18:1, linoleic acid C18:2 and
linolenic acid C18:3 were used

To quantify of the interaction between
pH and oleic acid effects in recovery
media, pH of recovery media were
adjusted from pH 5.5 to pH7 by addition
of HCI or NaOH .

Results

3ml of Mutrient Brath
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Heating media

T
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Figure 1 : schema describing the heat treatment

and the recovery of Bacillus cereus NTCC
11145 spores

Bacterial survival curves show a log linear relationship between heating time and unite
forming colonies for all tested conditions. Thus the classical D values were used to quantify
the bacterial heat resistance. The presence of C18 free fatty acids ( stearic, oleic, linoleic or



linolenic) in the heating medium did not present significant influence on the heat resistance of
spores (Fig 1 and table 2).

6 0 0pM 6 0 0pM
a A 800pM A 800pM

5 5

E 41 E4

E E

S 31 o3

z z

827 321
1 1
0 T T T T 1 O T T T T Il\

0 5 10 15 20 25 0 5 10 15 20 25
time (min) time (min)

Figure 2: logN=f(t) at 100°C (o without FFA, A with 800uM of stearic (a) , oleic (b),
acids respectively in heating media for B. cereus NTCC 11145.

The variation of Dygec Value in presence of 800uM of C18 free fatty acids: stearic, oleic,
linoleic and linolenic is presented Table2. The presence of free fatty acids in heating media
present only slight effect on the apparent heat resistance of B. cereus spores.

Table2: D values at 100°C without FFA and with 800uM of stearic, oleic, linoleic and
linolenic acids respectively in heating media for B. cereus NTCC 11145,

C18:0 Ci18:1 C18:2 C18:3
opuM 5.61+1.49 6.74+0.41 5.48+1.40 6.33+0.68
800uM 4.61+0.69 5.00+0.89 5.63+0.41 3.46+0.78

Oppositely, the presence of these free fatty acids in the recovery media clearly reduced the
apparent heat resistance (Fig 3). No revivification was observed at 600uM with C18:2 or
400uM of C18:3 for unsaturation level.
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Figure 3: logN=f(t) at 100°C. with different concentrations of stearic (a) , oleic (b) , linoleic
(c) and linolenic (d) acids respectively in recovery media for B. cereus NTCC 11145.



A linear relationship was observed between logD values and FFA concentration. The
influence of acid concentration varies with the type of used fatty acid or pH tested with oleic
acid. The effect of FFA increased proportionally to the degree of unsaturation of the carbon
chain (Fig 4).
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value (uUM) corresponds to FFA
=% supplement which leads to a ten fold
E 041 reduction of D value .This parameter
% 02 4 quantifies the influences of FFA
~ oo . . . . concentration in the recovery media
200 . 60 mo | ontheapparent D value :
-0.2 A -
.04 IOgD: |Og D*—M
concentrations (UM) FFA

Figure 4: logarithm of Dygc Versus concentration
in recovery media for different FFA with 18C chain
length presenting different unsaturation numbers

The z' value for the different fatty acids were 2084 uM for stearic acid, 924 uM for oleic acid,
675 uM for linoleic acid and 356uM for linolenic acid. Thus an increase of unsatured bound
number of FFA free decrease the apparent bacterial heat resistance.

A complementary study was performed to evaluate the interaction between pH and the
addition of oleic acid in recovery media. For the different pH studied, “z” values were
calculated and presented Table 3. An increase of pH from 5.5 to 7 in recovery media did not
affect the influence of oleic acid on spore heat resistance.

Table 3 z'gra values as function of pH of recovery media

pH 55 6 6.5 7
AT 1015uM 1773 UM 1215 uM 911uM
Conclusion

In this study, free fatty acids had shown more pronounced effects in recovery media than in
heat treatment. The influence of free fatty acid concentration in recovery media was described
by a simple Bigelow like model using a “z” parameter which quantifies the influence of the
free fatty acid to the bacterial heat resistance. Moreover, the apparent bacterial heat resistance
decreasing as function of the unsaturation level of free fatty acid. The pH of recovery media
does not affect this influence of free fatty acid. By taking in consideration the free fatty acid
in food composition, the developed model and the associated parameters values can be used
to optimize and reduce heat treatment in canned food industry.
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Abstract

The current models developed in predictive microbiology to describe interactions between
microflora in foods are reviewed, with a special focus on the Jameson-effect and Lotka-
Volterra approaches. One case-study is further explored: modelling the sparse growth of
Listeria monocytogenes in diced bacon along the shelf-life.
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Challenge testing, Maximal Population Density, competitive growth, pork meat product.

Introduction

One of the major advances of predictive microbiology since the end of the 1990s has been the
increasing interest in the fate of the hazards (e.g. Salmonella, L. monocytogenes, Escherichia
coli, Staphyloccus aureus...) in situ, i.e. in the food itself, instead of in culture media. This has
been emphasized by the creation of databases, e.g. ComBase and Sym’Previus.

In this context, different approaches have been proposed to model microbial interactions
between one pathogenic micro-organism of interest and a specific microflora, or a group, i.e.
lactic acid bacteria (LAB), or even mesophilic aerobic flora. They are reviewed in this paper,
with a special interest for their eligibility to be integrated into simple and robust predictive
models. The discussion of these different approaches is applied to the case-study of L.
monocytogenes and LAB in diced bacon.

Jameson effect models

In the late 1990’s and early 2000’s, there were numerous observations that (/) many microbial
interactions in foods are limited only to a reduction in the maximum population density,
without any significant effect on the lag time and the growth rate [5; 6]), (ii)) the minority
population decelerates when the majority - or the total - population count reaches its
maximum [14; 20; 33]. On this basis, Cornu [9] proposed a model relying on the hypothesis
that decelerations of both populations would be simultaneous and would result from the
competition for a common limiting resource. Ross ef al. [37] proposed to call this
phenomenon the Jameson effect, after Jameson [22] who had studied growth of Salmonella in
an enrichment broth. To quote the fine comparison of Mellefont et al.[30], the Jameson effect
“can be described as a race between species to use the resources of the environment to
maximise their growth and population numbers. When those resources are depleted, the race
is over, and the growth of each species in the population stops”.
Since then, numerous papers have referred to the Jameson effect, concerning growth of:
e Listeria spp. in fishery products [2; 12; 15; 17; 29], in meat products [7; 25; 31; 35; 36],
in vegetables [11; 16; 39], on surfaces [21],
¢ shiga-toxin producing E. Coli in enrichment broth [41], and in meat products [7],
e Salmonella in meat and poultry products [7], in broth [23] and in alfalfa sprouts[27].
This simultaneous deceleration is a simplistic principle which is of course not applicable to
every interaction [9; 24; 30] but presents the major advantage to enable simple and
parsimonious modelling. Thus, most modelling approaches of the Jameson effect are achieved
through a modification of the standard primary growth model and can be conceptualized
through the following generic system of equations, in which N, and Ny stand respectively for



two populations, and all parameters are standard and easily obtainable in “pure cultures”
(which means in absence of the other population):

N = HA(®) = By - @a () -f(t)(l)
NLdeLtB = #B(t) = ,umaxB * aB(t) * f(t)

where a(t) is an acceleration function (e.g. that of the Baranyi model), and f(t) is a logistic
deceleration function based on the assumption that both populations inhibit each other to the
_ N4(®)+Np(®)

Nmax tot

same extent that they inhibit their own growth, e.g. f(t) = (1 ) with proposals

to derive Nypqy,,, from Nygy , and/or Nypgyp [95 10], or f(t) = (1 - NA—(t)) . (1 - NB—(t))

max A NmaxB

[17; 29]. All these proposed deceleration functions are equivalent when N4 (t) < Ng(t) or
N4 (t) > Ng(t). Notice that no analytical solution can be provided for the system of equations
with the above proposals, which does not help fitting.

Simpler variants of these models (based on the same empirical principle of simultaneous
deceleration) consist in an abrupt deceleration function (instead of logistic) [2; 7; 12]. Another
empirical variant is to keep a standard primary model for the population of interest only, and
to build a secondary model on N,,,,, as a function of the temperature, and then indirectly of
the extent of growth of background flora [38; 39] or as a function of N, [11].

Lotka-Volterra models

To circumvent cases in which the simplistic hypothesis of simultaneous deceleration is not
applicable, other models have been proposed:
i.  either based on the idea that growth of the minority population is only partly inhibited
after the majority population has reached its stationary phase [15]
ii.  or on the contrary based on the idea that growth of the minority population stops
before the majority population reaches its stationary phase [24]
In these two last models, a new parameter, specific to the mixed culture, is introduced: (i) an
inhibition coefficient of the growth rate[15], or (ii) a third N,,,, specific to the mixed culture
[24]. In reference to the hypothesis underlying the Jameson effect, both models could be
explained by a differential sensitivity to the unknown reason of growth limitation.
Lotka-Volterra models, historically proposed in ecology, and introduced in predictive
microbiology by Dens et al. [13] and Vereecken et al.[40], are another empirical approach of
the mixed cultures without referring to the simple simultaneous deceleration hypothesis. The
basic scheme of primary model is the system (1) with two, instead of one, deceleration

fa(®) = m(NmaxA —Ny(®) — aABNB(t))

fa(® = 5—— (Nmaxg — No (1) = @aaNa ()

The parameters a5 and ag, (coefficients of interaction measuring the effects of one species
on the other) have to be estimated in mixed culture.

Such Lotka-Volterra models have been proposed, concerning: growth of E. Coli O157:H7 in
ground beef [34], growth of L. monocytogenes in salami [19], growth of LAB, coliforms,
pseudomonads, Brochothrix, Salmonella, and yeasts on sliced pork shoulder [27], growth of
Aeromonas hydrophila on fish surfaces [18], yeast-yeast and yeast-bacterium interactions
during the ripening of smear cheeses [32].

functions:

Mechanistic models

Again in the late 1990’s, a third class of predictive models were proposed in which the
mechanism of the interaction was explicit (decrease of pH, consumption of the limiting
substrate, production of an inhibitory by-product...). Such models were far from
parsimonious, e.g. with 4 to 5-variable and 20-parameter models [4; 28]. In these approaches,
parameters have biological meaning and can be estimated from pure cultures, but at the cost



of an intensive work, which makes them weakly eligible for extensive application in situ.
Similar approaches published in the 2000’s are reviewed by Leroy & De Vuyst [26].

Case-study: Listeria monocytogenes and LAB in diced bacon

Here, we propose an illustration concerning L. monocytogenes and LAB in two related pork
meat products: (i) cooked smoked diced bacon (an ingredient used in industrially prepared
dishes such as pizzas), (if) unsmoked uncooked diced bacon (a product usually used in home
cooked preparations but occasionally consumed raw by 14% of French people [1]). Both
products share close physical-chemical properties.
In the first series, five growth curves were obtained at 8°C under air (i.e. without the modified
atmosphere) in one batch of cooked smoked diced bacon: three curves for L. monocytogenes
in “pure culture” by challenge testing in the cooked smoked product ionized at 5 kGy
(Ionisos, Dagneux, France), one for L. monocytogenes in “mixed culture” (i.e. challenge
testing in the non-ionized product), and one for LAB in “pure culture” by storage trial. Figure
la presents the fitted primary model to the “pure” LAB growth curve, and various models
used to predict the fate of L. monocytogenes in “mixed culture”, based on the median growth
parameters estimated in “pure culture” and on various interactions hypotheses. The
modification of the Jameson effect proposed by Le Marc ef al. [24] appears quite promising.
For uncooked unsmoked diced bacon, nine challenge tests (9 batches, 3 from 3 producers)
were performed at 8°C under the commercial modified atmosphere. Each challenge test
included monitoring of L. monocytogenes onto ALOA, of LAB onto MRS, of pH, water
activity (ay), organic acids concentrations, and gas composition. In most cases (7/9 batches),
no growth of L. monocytogenes was observed whereas in the 2 other ones sparse growth was
observed (see example Figurelb). The competition with LAB is likely to explain at least
partly the quasi-absence of growth even if none of the tested hypotheses appears satisfactory.
Stochastic modelling of the lag and stationary phases seems to be required.
(@ (b)
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Figure 1. Fate of L. monocytogenes (Lm) and lactic acid bacteria (LAB) at 8°C in diced bacon
(a): cooked smoked diced bacon. The 3 predicted growth curves for L. monocytogenes are simulated from parameters estimated in pure
cultures, with different hypotheses: Jameson deceleration (“Jameson”), Lotka-Volterra with a,5=1 (“LV1"), Lotka-Volterra with a,5=2 (‘LV2")
and assuming, according to Le Marc et al. [24] that growth of Lm stops when LAB reaches 107 ufc/g (instead of its own Niy,4)-

(b): uncooked unsmoked diced bacon. The predicted growth curve for LAB is based on parameters estimated in other batches. The 4 predicted
growth curves for L. monocytogenes are simulated with lag = 0, and either the median (*med”) or the 5th percentile (“low”) predicted by
Sym’Previus for umax using the measured pH, aw, and lactic acid concentration, and “Jameson”,‘LV1”, or “LV2".

Conclusion

Further research appears needed to validate the various proposed alternatives to model
microbial interactions, and would in particular be wuseful to model the fate of
L. monocytogenes in diced bacon along the shelf-life and then to expand the on-going
modeling work [3; 8] beyond the process per se.
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Introduction

Clostridium perfringens is a pathogen commonly found in meat products and often
responsible for foodborne diseases in institutions and restaurants (Crouch and Golden, 2005).
These outbreaks are often due to spores germination and vegetative cells growth during a too
slow chilling. Many studies have been published about modelling C. perfringens vegetative
cells growth during chilling (Juneja et al., 1999, Juneja et al., 2001, Huang, 2004, Juneja et
al., 2008, Le Marc et al., 2008). The aim of this study is to estimate the parameters of a
growth model using all the data published to date on beef, to be able to predict C. perfringens
growth in beef for risk assessment, taking into account potential sources of variability and
uncertainty.

Materials and methods

Growth data

Twenty five published growth curves were used from 6 experimental works published from
1980 to 2004. Each growth curve was obtained under constant thermal conditions (from 15°C
to 50°C) after a heat shock (most often 75°C for 10 or 20 minutes), from one strain or a
cocktail of C. perfringens strains inoculated in beef without modification of its natural
composition. We directly used raw data, reported as measurement times (units : hour) and log
counts (units : logso cfu.g™) values.

Growth model

The dataset made up of all the growth curves was modelled simultaneously by a Bayesian
approach such as the ones proposed by Pouillot et al. (2003) and Delignette-Muller et al.
(2006). Stochastic and logical links between nodes are displayed on the directed acyclic graph
(figure 1) and defined in table 1.

Growth curves were described by the primary growth model of Baranyi and Roberts (1995)
with immediate transition between exponential and stationary phase (Eq.1). The effect of
temperature on maximum specific growth rate was described by the cardinal temperature
model of Rosso et al (1995)(Eq.2). Only the effect of the temperature on the specific growth
rate was explicitly modelled. The effects of the other factors were taken into account by the

value of the optimal specific growth rate ( £, e )- The cardinal temperatures (Toin Topts
T ) @nd the optimal specific growth rate (24, peer ) Were not supposed variables. Quantity

In(ho) (equal to the product of the lag time and the maximum specific growth rate in constant
environmental conditions) was used to describe the “work to be done” during the
germination-outgrowth-latence phase (Baranyi and Roberts, 1995). It was supposed variable
between growth curves and described by a normal distribution N( 4,y ,Ojap, ). INpUt

parameters of the model (table 2, figure 1) were considered as random and uncertain
variables. Their prior distributions were defined from published data, that were not used in the
computations (table 2). The empirical posterior distribution of each parameter was computed
from its prior one and from the whole dataset. Computations were performed with JAGS.
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Fig. 1 : directed acyclic graph of the growth model. All model quantities are presented as nodes. Data are
denoted by rectangles; covariates are denoted by double-rectangles and parameters are denoted by ellipses. Arrows
run between nodes from their direct influence (‘parents’) to the ‘descendants’. Solid arrows indicate stochastic
dependences while dashed arrows indicate logical functions. Stochastic and logical links are presented in table 1.

Table 1 : links between nodes of the growth model

Node Type Definition
Y, stochastic N(M, ,.o,)
logical t
My.m 9 My =min o +M+|Ogm[‘3_”w‘°x{m X(l—e_m“ )+e_h°'°1ymaxc (Ea-1)
, : In(10) ’
Y c stochastic N (Yend,c Uy)
Yoo stochastic N(Yoe 0,)
/umax,c logical Hmax,c = Hoptpeet X (Te = Trin )*(Te ~ o) (Eq.2)
’ (TDPI = Trin l(Topt ~Tin XTC _Topt)_ (TOPI = Trrax XTOF" *+Toin = 2Te )J
In(hye) stochastic N(44np,  Oinn, )

Validation of the model

In order to check the ability of the model to predict bacterial growth in realistic conditions,
data of final cell number increase corresponding to several temperature scenarios were
collected. A first personal dataset was obtained under constant temperature (6 hours at 45°C)
but after a non classical heat shock chosen to mimic the cooking of beef-in-sauce products
(increase from 10°C to 100°C in 40 minutes). Other datasets were obtained from published
studies where the heat shock was classical but followed by an exponential cooling from 54°C
to 7°C in 12 to 21 hours, depending on the study. For each temperature profile, a set of 1500
values of the growth model parameters (table 2) was randomly selected from the joint
posterior distribution resulting from the Bayesian modeling, so as to take into account
uncertainty on each input of the model in the simulations.

Results and discussion

Growth model parameters

Statistics of the empirical distribution of the uncertain parameters are presented in Table 2.
For most of these parameters, Bayesian inference succeeded in narrowing distributions, thus

giving rather precise estimations, except for T, , due to the lack of growth kinetics obtained



above 50°C. Estimated parameters of the normal variability distribution of In(hy) (4, and

Opnn, ) are reflecting the great variability of germination-outgrowth-latence phase duration

observed in the data.
As shown on figure 2, the model seems to reasonably describe the observed values, without
clear outlier.

Table 2: Prior distributions (defined from previous publications cited below the table) and
empirical posterior distributions of the inputs of Clostridium perfringens growth model.

Parameter Prior distributions Posterior distributions
Defined distributions 2.5" 97.5™ Median 2.5" 97.5™
percentile  percentile percentile percentile
Toin ° N(10,2) 6 14 12.7 12.1 13.1
'|'0pt b N (44,2) 40 48 45.1 44.2 46.2
Trex ° N(52,1.5) 49 55 53 515 55
Hopt_beef c N(4.51.8) 11 8 3.8 35 4.2
Hinh, d N(1.95,0.32) 1.3 2.6 1.8 14 2.1
Oinn, * 072 o o Gamma(0.0010001)  15X10° © 0.9 0.6 1.2
oy 7,2 o Gamma(0.0010.001) 1.8x10* 0 0.33 0.3 0.36

a Blankenship et al. (1988), Juneja et al. (1994), Juneja et al. (2002), de Jong et al. (2005), Le Marc et al. (2008)

b de Jong et al. (2005)

¢ Schroder et al. (1971), Willardsen et al. (1978), Willardsen et al. (1979), Blankenship et al. (1988), Labbe et al. (1995), Juneja
et al. (2002), Jong et al. (2005), Le Marc et al. (2008), Juneja et al. (2008)

d Le Marc et al. (2008)

e classical non informative priors on precision parameters

o o
Huang, 2004
Huang, 2003
Juneja, 1994
Foegeding, 1980

o -

Labbe, 1995

Fapohunda, 1994 R
X
A N X

AO X+ o

observed log counts  log,g{cfu 9'1)
5
1
=3
X

SOk
<&
i
s
< - g X
0
™ o g
A
W_ﬁ)/_g
T T T T T T T
2 3 4 9 6 7 8 9

average predicted log counts \ogm(cfu.g'1)

Fig. 2 : Comparison of observed log counts with the averaged predicted ones.

Validation results

Figure 3 represents simulated 95% credibility intervals and observed values of final cell
number increase under different temperature scenarios. The credibility intervals reflect the
overall uncertainty combining variability and uncertainty. This uncertainty seems great but is

for most part due to variability on In(ho) and is consistent with the variability observed on
the validation data, especially when data come from various authors, which is the case for
scenarios d and e.

Discussion

Cardinal temperatures and optimal growth rate were not considered as variable in the
proposed model due to the lack of available data enabling the characterization of this



variability. It would be of interest to explore in particular the inter strain variability by
individually culturing various strains.

In our modeling approach, different alternatives were compared for parameter In(ho), first

assumed not variable, then assumed variable between studies and at last variable between
curves. The last alternative was chosen for its far better description of data. The source of this
observed variability seems hard to biologically explain without any further investigation, as
data collected for Bayesian modeling were all obtained on uncured beef, mostly with the same
classical heat shock and with only one strain or cocktail for each study. Nevertheless, the
impact of this variability on the overall uncertainty of growth model predictions should be
taken into account in risk assessment.

final cell number increase  logyg(cfu g")

T T T T T

temperature scenario

Fig. 3 : Simulated intervals and observed values of final cell number increase under different
temperature scenarios (a: cooking-like heat shock followed by 6 hours at 45°C, b to e : classical heat
shock followed by exponential cooling from 54°C to 7 °C within 12 hours (b), 15 hours (c), 18
hours(d), 21 hours (e)). Dark lines represent the 95% credibility interval obtained by simulation, while
crosses represent observed values. Data corresponding to scenarios b to e were collected from
Thippareddi et al. (2003), Smith et al. (2004), Sanchez Plata et al. (2005), Juneja et al. (2006), Juneja
et al. (2007), Juneja et al (2008)
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Abstract

This work introduces an alternative conceptual framewaded on zero-modified count data
distributions for the conduction of inferential statistics raicrobial data characterized by
relatively high numbers of zero counts. The effect dfinfion Escherichia coli plate counts
from beef carcasses (n=620) was elucidated by two zedified negative binomial
regressions, at group level and at carcass level. In sgeéssions, the individual plate count
Yi (whole number of colonies as enumerated in Petri distaaspriginate from two stochastic
processes, a binomial process determining if a plate caurerio or non-zero (logit
component), and a truncated-at-zero negative binomialr@geteeous Poisson) component
for count data determining all the positive counts. Thaugrlevel model, with a coded
variable (pre-chill/post-chill) as treatment, confirmedttiehilling had a decreasing effect
(p<0.01 for both logit and negative binomial components) on the ovezedlvery of
Escherichia coli. The second regression, with the pre-chill count valueoaariate and the
post-chill count as response variable, further eluciddi®yl for the positive counts (negative
binomial component), chilling does not necessarily decreasedtbeery ofEscherichia coli,
however, the proportion of zero couKig) in the post-chill group can be predicted (p<0.01)
from the plate counts of the pre-chill carcasses. Theligtesl wo (0.79) was in close
agreement with the actual value of 0.81. This conceptualefngrk can find interesting
applications in stochastic risk assessment and in the @ewveld of more realistic
microbiological criteria and performance objectives.

Keywords.  Zero-inflated, hurdle, negative binomial, chillirigscherichia coli, carcass.

Introduction

In the evaluation of microbiological quality of foodstuffsckerial load is conventionally
expressed in terms of log CFU énor g'. Logarithmic transformation is believed to
approximate data normality, which is fundamental forapplication of parametric statistical
data analysis such as analysis of variance. Whileritbgaic transformation can be suitable
for bacterial counts of high occurrence, such as mesophil®tal viable counts, this
approach may be unsuitable for bacterial counts of loas&ureence, for which an alternative
conceptual framework should be explored.

In recent years, there have been considerable developmamigréssion models for count
data (Boucher et al., 2008). Whereas the Poisson distribigtioften used as a baseline for
count data, its assumption of equi-dispersion (variagoels its mean) is too restrictive for
many applications. In practice, heterogeneity or clustering saaisondition called over-
dispersion, meaning that the variance of the observeu datia normally exceeds the mean.
A heterogeneous Poisson model loosens Poisson restrictiorotwnglithe expected number
of events X) to be a function of some random variable. If this randomabkr follows a
gamma distribution, the resulting heterogeneous Poisson will be ativweedinomial.
However, with some types of data, over-dispersion msy stem from a high percentage of
zero counts, for which the variance function of the fogfeneous Poisson (negative binomial)
model may be insufficient. To model the excess of zerosyxéure model of two data
generation processes — one generating always zero counts (pséateero) and the other
generating positive counts (either a Poisson or a negative iinpnocess) — may be



appropriate. Zero-inflated (Lambert, 1992), and hurdle Iy, 1986) heterogeneous
Poisson models are two types of zero-modified count @agaession models. The objective
of this work was to introduce an alternative count desanework to conduct inferential
statistics on microbial data that did not approximata tmrmal distribution after logarithmic
transformation due to the relatively high numbers of nenants. Specifically, the effect of
chilling on Escherichia coli plate counts recovered from Irish beef carcasses sassesl by
fitting a group-level and carcass-level zero-modified negiivemial regression models.

M ethodology

Assuming that the bacterial cells extracted from a sareaval is randomly distributed in

the 200-ml neat homogenate, the number of bacterial cellsnprese1-ml aliquot (poured to

the Petri dish) should follow a Poisson distribution with mgaCFU/ml). Assuming that

each of the plated cells will become a colony afteulation,Y; can be defined as the
bacterial count on the Petri dish or the number of qeksent in the aliquot. Thus, the
predicted probability of the plate couvit(CFU) can then be expressed as,

Pr(Y; )= Exp(_j(;!)MiYi

The baseline Poisson model is then generalized by includingparsion parameter to
accommodate the heterogeneity in the count data. Thus, aliFeiPoisson model lets the
expected number of cells (CFU/mI) be a function not only of the covaria¢ebut also of
some unobserved random variable

A =explBo + BiXi )explg ) 1)

The random variablexp(e) is assumed to follow a gamma distributio(il/a, «) with
expected value 1 and variangeso that the above modification yields a moreifiExmodel,
the negative binomial. As the negative binomiakesgion could not account for the amount
of zeros in the data (results not shown here)re-a®dified negative binomial of the hurdle
type (Boucher et al., 2008) was considered. A ladtgbe model assumes that the count
outcomey; is generated by two different stochastic processémomial process determining
if Y; is zero or non-zero, and a truncated-at-zero negéinomial process governing all
positive counts (CFU). The probability of the coiYyptan be expressed as,

) wy forY; =0 i
, -1 o
i a7) e an ) M00a) ()Y

PrY;)= (1- ap) r(% +rie™ - forY; 1 @)

a
a,—l
=
{0’ +/]ij

where the membership of the fixed-zero group ismeded by a probabilityo,, which is
calculated by a logistic model witly as intercept anld, as regressor for the covariage

LogLf”O%} =bp + by, ©

A group-level and an animal-level zero-modified adge binomial regression model were
fitted on Escherichia coli plate count (CFU) data that was available forhitieef carcasses



(n=620) sampled before and after chilling (24 hours at ~5°Cthdrfirst model, differences
in the proportion of zeros (logit component) and counts (negdtinomial component)
between the pre-chill and post-chill groups were assessddfioyng; as the plate count for
both pre-chill and post-chill and the covariXi€dEq. (1) and (3)) as a coded variable for pre-
chill (1) and post-chill (2) carcasses. In the second mdbel,possibility to predict the
proportion of zero counts in the post-chill group and tbsitye counts using the pre-chill
counts was assessed by defining the response vaYjadsethe post-chill plate count and the
covariateX; (Eg. (1) and (3)) as the pre-chill count.

Results and discussion

The group-level zero-modified negative binomial regression helueved that there were
significant differences in both the logit component (p<0.01) ianthe negative binomial
component (p<0.01) between the pre-chill and the post-chill ptatets (Table 1). Whereas
the probability of encountering a zero coung)(from a pre-chill carcass was on average 0.42
(95% CI: 0.39-0.44), in the case of a post-chill carcass it sigsficantly higher at 0.81
(95% CI: 0.79-0.83). Explained in other terms, the odds ratio (BRhé treatment covariate
was significant, and indicated that, chilling increa$esodds of producing a zero count from
a carcass swab in about 6 times (Table 1). For themsitunts, the model indicated that the
expected valué of the negative binomial component for the post-chill platent was
numerically higher (7.80 CFU/ml) than the one for pre-chaktelcounts (4.97 CFU/mI). To
elucidate the reason for this, the animal-level regpasaiodel was fitted. The statistical
difference between the pre-chill and post-chill groupdlustrated in Figure 1. As no other
covariate apart from the treatment coded variable is presetiis analysis (Eq. 1), the
probabilities of Eq. (2) (as calculated from the regmspiarameter estimates) take the shape
of a probability mass function of a zero-modified negativetnial distribution for pre-chill
and post-chill plate counts. Notice that the flexipibf the zero-modified negative binomial
is advantageous to model plate counts from microbial olatew recovery that are highly
heterogeneous (producing a highly skewed negative binomial) ameéxtit. zero counts.

Table 1: Chilling effect on the plate counts (CFUJEstherichia coli from beef carcasses, as
described by the group-level and carcass-level zero-modifiegtinvedinomial regression
models.

Regression Group-level regression model Carcass-leveksagnemodel
parameters Estimate St.error  Pr> |t Estimate er&r Pr> |t
Neg Bin

Bo (int) 1.151 0.381 i 2.042 0.701 i

B 1 (covariate) 0.451 0.160 *x -0.004 0.004 ns
Logit

bo (int) -2.131 0.131 ok 1.564 0.078 ok

b; (covariate) 1.797 0.089 ok -0.006 0.002 i
Other estimates
OR (int) 0.118 0.015 ok 4.777 0.373 ok
OR (treat) 6.034 0.542 ok 0.993 0.002 ok
M1 (pre-chill) 4.965 1.606 i - - -
X2 (post-chill) 7.795 2.648 i 6.916 4.854 ns
oo (pre-chill) 0.417 0.013 ok - - -
oo (post-chill) 0.812 0.011 Frx 0.798 0.013 ok

The second regression analysis resulted in a non-signifnegative binomial component (for
the positive counts) and a significant (p<0.01) logit componktitteomodel (Table 1). The
non-significance of the negative binomial component implies tthafpre-chillEscherichia
coli plate count did not have any effect on the post-chilepdatnt (in other words, the value
of the pre-chill positive count from a carcass could netliet its post-chill count). This is not



unexpected as many other important variables such assawdace dryness, extent and site
of swabs, proximity to contaminated carcasses, etc. plagle on microbial detection.
However, at least in this model, the post-chill positeant is governed only by randomness,
and, on this basis, the expectedf the negative binomial component for the post-chill ceunt
can be higher or lower than the one of the pre-chill co{intaccordance with the previous
group-level regression showing the expected valdegher for the post-chill carcasses).
Conversely, the statistically-significant logit part of tlegnession model showed that it is
possible to predict the proportion of zero coufais) in the post-chill group from the plate
counts of the pre-chill carcasses. Thus, using the preedhitits, the carcass-level regression
model predicted a proportion of zero counts of 049 (n the post-chill group, which was
very close to the actual value of 0.81 (Table 1). In teshexlds ratio (OR), the probability of
having a zero count from a post-chill carcass decrggs®s01) 0.99 times for a one-colony
increase in pre-chill plate count. Finally, it was téwger number of zero counts (significant
logit) — and not a potential lower positive count (non-sigaiftcnegative binomial), which
explained the decrease in the expected vE(Yg¢ from 10.85 CFU in the pre-chill group to
5.05 CFU in the post-chill group (Figure 1).

0.9

0.8 9

] =&~ Pre-chill E(Y)=10.85 CFU
0.7 -
=&= Post-chill E(Y)=5.05 CFU
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Escherichia coli plate counts from beef carcasses (CFU)

Figure 1:Escherichia coli plate counts from Irish beef carcasses as modeleukebyroup-
level zero-modified negative binomial regression showing exgeetieies.

Conclusions

This work showed an alternative framework to conduct emfgal statistics on plate count
data from microorganisms of low recovery, and assessaohbpifistically the decreasing
effect that chilling has oRscherichia coli counts from beef carcasses by means of two zero-
modified negative binomial regressions. The utility of the apghmoin stochastic risk
assessment modelling remains to be appraised.
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Abstract

Fish and fish products are now transported over long distances due to continued globalization.
The quality of a fish product and its shelf life is strongly dependent on the temperature
history, from production to distribution and storage until consumption. Temperature abuse
during any stage of the distribution chain usually affects both, the safety and quality of
seafood. In this context, the “Fish Shelf Life Prediction (FSLP)” software was developed to
predict the shelf life of farmed fresh fish according to the microbial growth and sensory
changes in constant and fluctuating temperature conditions. The aim of this work was to
evaluate the use of FSLP program as shelf life monitoring of fresh turbot in a real scenario
during international transport under fluctuating temperature conditions. Results showed that
FSLP program is a useful tool for monitoring fish quality in the cold chain.

Keywords: shelf life prediction, fresh fish, logistic chain, FSLP software

Introduction

Fish trade in general is paying increasing attention to aquaculture products as a source of fish
and other seafood products (FAO, 2003; Josupeit et al., 2001). Such is the case of turbot
(Psetta maxima) a highly valued flat fish species appreciated for its firm, white and flavourful
flesh. Recently, increasing production of this specie as an aquaculture product has raised its
availability.

In the global food marketplace, the distribution of chilled fish is a long logistic chain from the
origin to the destination, involving handling, intermediate points, and also includes air and
road transport. Temperature monitoring along the complete logistic fresh fish chain plays an
important role to ensure the quality and safety of these perishable foods. The break of the chill
chain results in a rapid decrease of shelf life of fresh food products. In this context, it could be
very useful for fresh fish sector to have tools for monitoring the shelf life of the product
during the distribution chain. In the last decade, advance of predictive microbiology has
allowed significant progress in monitoring the quality and safety status of food products. In
particular, in fresh fish products several growth models for spoilage bacteria have been
successfully used to predict the shelf-life (Dalgaard et al., 1997; Taoukis et al., 1999;
Koutsoumanis 2001; Nuin et al., 2008). Some of these models have been included in
available software application, as “Seafood Spoilage and Safety Predictor software”
developed by the Danish Institute for Fisheries Research (Dalgaard et al., 2002) and for
aquaculture products “Fish Shelf life Prediction (FSLP)” program (Nuin et al., 2008). Other
studies are focused on the development of management system (Giannakourou et al., 2001) as
“Shelf Life Decision System”, which was demonstrated to be an effective tool for food chill
chain management leading to reduce the probability of products consumed past after shelf life
end.

The main objective of the present work was the validation of the FSLP program to monitoring
the quality of the fresh turbot products during transport in an international logistic chain from
Spain to Italy.



Materials and methods

FSLP prediction program

Kinetic models were developed in a previous work (Nuin et al., 2008) to predict the microbial
spoilage and sensory quality in fresh fish and to evaluate the efficacy of two-time temperature
integrator (TTI) labels to monitor shelf life. The models were implemented in a Visual Basic
add-in for Excel called “Fish Shelf Life Prediction (FSLP)”. The FSLP software allows
prediction in fresh fish products of the growth of spoilage bacteria, sensory quality and TTI
responses at constant and fluctuating-temperatures. The program is freely available at AZTI
web site http://www.azti.es/fish-shelf-life-predictions.html.

Application of FSLP software for monitoring fish logistic chain

For the validation of FSLP software an international fresh turbot logistic chain was selected.
This real distribution chain, started with the turbot capture in an aquaculture company in
Spain, then the fish was packed into polystyrene boxes and loaded into the first refrigerated
truck. The field test involved monitoring the time- temperature of the fish travelling from
Spain to Italy into different refrigerated trucks. The whole logistic chain took about 3 days
from the capture of the fish in Spain to the local distribution point in Italy. For time-
temperature monitoring, 177-T4 data loggers (TESTO, Spain) were placed in different points
inside the pallet and were used to record the time-temperature during transport. At the end of
the distribution chain all temperature data loggers were collected and send back to AZTI
facilities.

In a second step, a simulated field test was performed; turbot samples were stored in climatic
chambers (Ibercex V-450, Spain) at the real time-temperature profile. Laboratory studies were
carried out to determinate the shelf-life of fresh turbot based on microbiological parameters
and sensory tests. For enumeration of total aerobic viable counts, at each sampling time,
samples were plate onto plate count agar (PCA, Pronadisa, Spain) and were incubated for 3
days at 31°C. Sensory evaluation was carried out by a 8 trained panel using a 6-point
descriptive scale where 9 is absolutely fresh, 6 rejection limit and 4 completed spoiled (ISO
4121:1987). Shelf life determinations were set on the increase of the total aerobic bacteria and
the response of a trained sensory panel.

Results and discussion

The FSLP software allows the prediction and the visualization of sensory acceptability,
growth of spoilage bacteria in fish products and the response of TTIs at constant and
fluctuating temperature conditions. Moreover, the software allows the graphical comparison
of experimental, microbiological or sensory raw data with the respective model at either
constant or fluctuating temperature. Optionally, the predictions and plots can be saved as an
Excel workbook.

The application of the FSLP software for monitoring the fresh turbot logistic chain is showed
in figure 1. In this case, the time and temperature profile during the international transport (72
hours) was fluctuating between 0°C and 2°C. The initial level of total bacteria was considered
as 10* CFU g™*. Moreover, figure 1 included the comparison of experimental microbiological
and predicted data, figure shows good correlation between both data.



(Pred. total bacteria) (Pred. sensory indicator)
m Exp. data — — (T(°Q)

=
1S)
-
©

©
/
[
o

\,
\

-

—

V4
: : :
o o ©o r B m
A O @ N

Log cfu/g - TTI/10 - Sensory
score
(62}
)
-—
Temperature (°C

t
o
N

o

80

Time (hours)

Figure 1. “Fish Shelf Life Prediction Program (FSLP)” software was used to predict the
growth of total bacteria and the response of a sensory panel for fresh turbot during the
international transport.

In order to determinate the quality of the turbot at the end of this logistic chain in Italy, after
70 hours, the FSLP program was used to predict the growth of total aerobic bacteria and the
response of a sensory panel at this time. According to figure 2, the predicted bacterial load
was 2.4 logy CFU g ™, that value indicated the high quality of the turbot at the end of this
distribution chain. Regarding predicted sensory score, in a scale from 9 (fresh) to 4 (spoiled),
the score of 8.2 indicating that the turbot was absolutely fresh at this point of the cold chain.
Sensory results (n=8) obtained from the laboratory test agreed with predicted sensory score.
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Figure 2. Turbot quality predicted data generated from “FSLP” program. All data were
obtained from the time-temperature profile field test along the cold chain logistic transport for
70 hours.

Conclusions

The use of “Fish Shelf Life Predictor” software for quality and safety data simulation can be a
valuable tool to a wide variety of companies in fish industry for monitoring the quality in the
distribution chain. In the future, the software FSLP will be applied as a tool for the
assessment of seafood safety and quality and may be combined with seafood traceability
systems. The software will be also used for educational purposes.
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Abstract

To assess the impact of the manufacturing process on the fate of L. monocytogenes, we built a
probabilistic model describing successively the different steps of the process. The model was
actually designed as a hierarchical Bayesian network leading to the elicitation of human
expertise. Contamination evolution was modelled in the adequate units (breasts, dices, then
packaging units through the successive process steps). The use of probabilistic modeling
allowed taking into account both the process intrinsic variability and parameter variability or
uncertainty. Global statistics were deduced, diagrams showing the variability were drawn, and
changes on the process were tested to look at the consequences on the final product.
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Introduction

In France, 50% of the pork belly is transformed into diced bacon, and this production
increases every year. The most recent data show that the L. monocytogenes prevalence for
pork pieces decreased from 2001 to 2004 to reach about 25%. This level of prevalence
remains however alarming when the pork pieces are used for the manufacture of raw meat
products such as diced bacon. Indeed, during the diced bacon manufacturing, there is no
physical or chemical treatment sufficiently drastic to eliminate the possibly present population
of L. monocytogenes. Moreover diced bacon is occasionally consumed raw by 14% of French
people (AFSSA, 2009).

In this work, we propose a basic model for the diced bacon process chain, from incoming
breasts to outcoming packaging units, in order to evaluate the impact of each step on the
contamination. Following the principles of Nauta's MPRM (2001), we adapted the model to
the studied process, and to the specificity of the product, that is its solid and heterogeneity
characteristics. Indeed, bacteria were assumed to be located only on the surface of the breasts,
with a higher affinity for the lean areas than for the fat ones. By the mean of simulations, we
exemplified the potential of the model. Simulations were performed with both a baseline
calibration and alternative scenarios, in order to assess the impact of changes in the process
and of accidental events.

Material and methods

Overview of the model

The model we built to study the behaviour of bacteria during the diced bacon manufacture
process chain is a sequence of various steps: arrival, brining-and-tumbling, steaming, dicing
and finally packaging. In the real process chain, storage steps occur between these steps.
However, basing on reasonable assumptions concerning physico-chemical conditions and
duration of the different storage steps, the bacterial contamination is expected not to evolve
during them. Consequently we neglected the storage steps in the modeling, to focus on the
other steps. During the process chain, the observation scale evolves, so we successively



followed the contamination of the breasts, the dices, then the packaging units. At every step,
the contaminations were assumed to only depend on the state of the units at the end of the
previous step and on modeling parameters. Thus we built our model as a Bayesian network.
We introduced process intrinsic variability and, when available, parameter variability or
uncertainty. In the diced bacon process chain, the batches considered at the different steps do
not always match, they can be divided from one step to the following and they can overlap.
For instance, a tumbling batch can be divided into several steaming batches and a dicing
batch can gather several steaming batches. However in this study it was decided to follow-up
the fate of tumbling batches of 1000 breasts, without overlaps later in the process.

Successive steps

(1) At arrival, L. monocytogenes contamination (Colony Forming Unit) on every breast was
assumed to follow a conditional Poisson distribution of parameter equal to the breast
concentration times the breast mass. (2) During the tumbling-and-brining step the breasts
gathered in a batch were assumed to swap bacteria during the tumbling step. A part of the
bacteria were assumed to be released from the breasts during this step. Then some bacteria
were assumed to be lost because of staying hanging on the tumbler surface, whereas the
others were assumed to be reallocated on the breasts of the tumbling batch. These two events
(release and loss) were simulated by the mean of binomial drawings. Finally, the reallocated
bacteria were distributed to the batch breasts using a multinomial distribution, in order to
ensure the conservation of bacteria. Besides, the breasts were supposed to absorb the brine, so
that their mass slightly increased. (3) To model the steaming step we used classical
deterministic predictive microbiology tools for inactivation. (4) For the dicing step, we had to
estimate how many dices would result from each breast. We began with geometrical
considerations, assuming that every breast had a parallelepiped shape with dimensions
proportional to the cubic root of their volume. The bacteria of each breast were shared
between the resulting dices by a multinomial drawing, with allocation probability
proportional to the exterior area, weighted by a fat/lean affinity ratio. Indeed, the bacteria are
known to have a lower affinity with fat areas than with lean areas and we considered that one
of the main faces of the breast was fat. Also we assumed that an additional contamination can
come from the dicing machine, where bacteria can grow in some surfaces inaccessible for
cleaning. (5) To model the packaging step, we cumulated the dice contaminations (CFU) by
packaging units.

Baseline calibration of the model

To calibrate the model, the parameter estimation was carried out (i) from data given by
partner business operators for the contamination at arrival and for the process parameters, (ii)
from data given by IFIP for the geometrical parameters, (iii) from the literature for the
inactivation parameters or (iv) basing on expert’s opinions.

Alternative scenarios

In addition to the baseline calibration, we tested the following alternative scenarios: (S1)
packaging units of 200g instead of 100g in the baseline, (S2) dice section of 5 mm instead of
8 mm in the baseline, (S3) steaming at an equivalent temperature of 50°C instead of 45°C in
the baseline, (S4) initial contamination ten times higher than baseline, and (S5) initial
contamination one hundred times higher than baseline.

Results and discussion

Results

As an example, Figure 1 shows the results of one simulation performed using the baseline
calibration. The contamination distribution after brining-and-tumbling was narrower than
after arrival. During the brining-and-tumbling step, the contamination was homogenized
within the breasts. Then steaming reduced the contamination. This simulation predicted that a
large proportion of dices were not contaminated by L. monocytogenes. In the packaging units,



L. monocytogenes prevalence was not negligible, however the contamination level remained
low.
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Figure 1: Results of one simulation. Bacterial concentration (CFU/q) after the five steps
considered. First three graphs: on breasts, fourth graph: on dices, fifth graph: in packaging
units.

Looking at the result of one simulation allows to qualitatively comment on every step.
However, because our model is probabilistic, every simulation is different and numerous
simulations were necessary to describe the baseline model outputs. According to the proposed
model and its baseline calibration, every tumbling batch of 1000 breasts lead to 1 986 000 [1
976 000-1 996 000] dices and then 35 910 [35 610-36 210] packaging units. Figure 2 shows
the results of 10,000 simulations. For each process step, the median simulation results is
plotted (solid lines), as well as the 2.5% and 97.5% quantiles of the simulation results (short-
dashed lines), corresponding respectively to low and high contamination levels. At every step
the simulation results were quite close, indicating a low variability between simulations. In
the median simulation results, at arrival about 5% of the breasts were uncontaminated by
L. monocytogenes, 50% of the breasts had no more than 0.001 CFU/g, and 100% of the
breasts had no more than about 0.005 CFU/g. After brining-and-tumbling, 100% of the
breasts had no more than about 0.003 CFU/g. The steaming step reduced L. monocytogenes
contamination so that 50% of the breasts had no more than 0.0005 CFU/g (that is 1 CFU on a
breast), and 100% of the breasts had no more than about 0.002 CFU/g. In the dices, with the
baseline calibration, the maximum contamination observed over all the simulations was about
1.2 CFU/g (that is 2 CFU on a dice) and 99% of the dices were predicted to be
uncontaminated by L. monocytogenes. After the packaging step, the maximum contamination
observed over all the simulations was about 0.04 CFU/g (that is 4 CFU in a packaging unit)
and 95 [90-95]% of the packaging units were predicted to be uncontaminated by
L. monocytogenes.
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Figure 2: Cumulative distributions of the bacterial concentration (CFU/qg) after the five steps
already considered in Figure 1. Solid lines correspond to simulation median, long-dashed
lines correspond to simulation 95% interval. The cumulative distributions must be interpreted
as the repartition of items during a given step, and their variation.

The results obtained with the five scenarios alternative to the baseline calibration are
summarized in Table 1. In the first three alternative scenarios, we tested changes in the
process at the steaming, dicing or packaging steps. The contamination of the incoming breasts
was not modified compared to the baseline calibration. Regarding the outcoming packaging
units, the increase in packaging unit weight (S1) and the decrease in dice section (S2) reduced
the model variability. For (S1), the 95% contamination is about 5.10° UFC/g that is 1 CFU in
200g instead of 1.107 for the baseline calibration (in the 2.5% most pessimistic simulations),
that is 1 CFU in 100g. With the scenario (S2), the 95% contamination is about 1.102, that is
1 CFU in 100g, in all the simulations, not only in the pessimistic ones. Indeed, in the scenario



(S2), much more dices were produced, and the packaging units gathered more dices than in
the baseline calibration, so the contamination was homogenized within the packaging units of
a batch. With the scenario (S3) the 95% contamination of the packaging units is reduced to 0.
So an increase of 5°C in the steaming temperature seems to drastically inactivate the bacteria.

The last two tested scenarios concerned the breast contamination at arrival. Multiplying by 10
this initial contamination (S4) lead to a 95% concentration about 2.10%, that is 2 CFU in
100g. However the median contamination of the packaging units remained null, in contrast to
the scenario (S5) (one hundred times higher initial contamination), where almost all the
packaging units were contaminated.

Table 1: L. monocytogenes 5%, median and 95% concentration (median [95% extreme]
simulation) in 10 CFU/g on the breasts at arrival (process chain inputs) and in the packaging
units (process chain outputs), according to the alternative scenario.

Incoming breasts Outcoming packaging units

Scenario 5% median 95% 5% median 95%
Baseline 0[0-9.5]

S1 5.0 [5.0-5.1]

— 5 0[0-029]  0.91[0.73-0.99] 2.2[1.9-2.6] 0 [0-0] 0[00] 970698

S3 0[0-0]

S4 5.3[4.8-57]  9.1[8.6-9.6] 17 [15-20] 20 [19-20]

S5 62 [59-65] 90 [86-94] 170 [150-190]  10[10-11] 42 [41-47] 90 [85-95]

Discussion

In this study, we simplified the step combination, since we followed tumbling batches without
considering overlapping between them during the process. In reality, the step chain is
complicated by practical constraints, both in terms of time and in terms of batch overlapping.
In order to refine the step combination, it would be necessary to develop a process chain
manager model, taking into account open stocks and carrying capacities at every step.

To date, we neglected bacterial growth, arguing that growth was not possible during the
process, given the environmental physico-chemical conditions and durations of the successive
steps. However, if we want to simulate a storage step accidentally long at an accidentally high
temperature, bacterial growth could occur. Also if we want to extend the model to the post-
process storage until consumption, by considering further steps such as refrigerated transport
and home storage, a growth model would be necessary, and potential competition between
L. monocytogenes and the lactic acid bacteria shoud be considered (see Cornu et al., same
conference). As this model enables us to compare various scenarios, it could be used to
update the optimisation of the monitoring (see Commeau et al., same conference) and for re-
engineering.

Conclusions

In this work, we propose a model for the diced bacon process chain, from incoming breasts to
outcoming packaging units, in order to evaluate the impact of each step on the contamination.
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Introduction

Food industry is increasingly concerned in developing and applying rapid and non-destructive
methods to offer safer foods and high quality foods to consumers.

In the last years, Fourier transform Near-Infrared (FT-NIR) has been widely used to determine
food quality based on spectrum (Lopes et al. 2004). Besides this, FT-NIR has been proposed
as an innovative and promising non-destructive rapid method capable to detect and identify
microorganisms in foods (Alexandrakis et al, 2009); however, little progress has been made to
date.

Lactic-Acid Bacteria (LAB) is a wide group which is identified as main responsible for
deterioration in vacuum ready-to-eat meat (von Holy et al., 1991; Lambert et al., 1991).
Indeed, spoilage flora is a concern for food industry because of the huge economic loss
associated to foods deterioration. In this study, the use of FT-NIR spectroscopy in conjunction
with multivariate regression modeling was evaluated for the rapid detection and identification
of BAL species in water-based matrices.

Material and Methods

Test suspension

Different LAB species (Leuconostoc ..
mesenteroides, Latobacillus sakei, and
Lactobacillus plantarum) were selected -
from the Spanish Type Culture |
Collection (CECT). The strains were |
maintained at -18°C in cryovials ] /\/—/’
containing bead and cryopreservative /
(MicrobankTM). Two days before the ™7 S .
experiment, a bead of each strain was
transferred to a tube containing 10 ml of
Tryptone Soya Broth (TSB, Oxoid, UK)
and incubated at 37°C for 24 h. Finally, B
1ml of the initial subculture was pipetted
into a tube containing 10 ml of TSB, and IH

incubated at 37°C until the early - ”J.'-lrr“.‘.u.' I i s
stationary phase was reached (18 h). “]

Cells were harvested by centrifugation
(Micro 7; Fisher Scientific, Pittsburgh,
Pa.) at 4000 rpm for 10 min and washed
three times in solution saline (0,85 %). — v i v o o v @ w T W

Cell pellets were re-suspended in Saline  rjg,re 1. FT-NIR reflectance-transmittance spectra (A)
Solut!on and 10-fold dilutions |_n Saline and second derivative spectra (B) of different Lactic
Solution were made to obtain cells Acid Bacteria strains: Leuconostoc mesenteroides,

suspensions at different concentrations . . .
(~9. 8,7, 6,5, 4 and 3 log cfu/ml). Latobacillus sakei, and Lactobacillus plantarum




FT-NIR measurements

All FT-NIR spectra were recorded with a FT-NIR Perkin EImer Spectrum One NTS (Shelton,
Conn.). The FT-NIR spectra were recorded from 1100 to 2500 nm at intervals of 0.275 nm.
Spectra were obtained analyzing aliquots of the test suspension for different LAB species at
different concentrations (~10°-10° cfu/ml).

Data treatment and statistical analysis

Before statistical analysis, the FT-NIR reflectance-transmittance data were separately treated
by baseline corrected, smoothed by the Savitsky-Golay smoothing function with 20 points,
and first and second derivatives by difference equation with Unscrambler® v. 7.8 (Camo
Technologies, Woodbridge, NJ). These three transformed-spectra sets were then used to
classify the samples by applying Principal Component Analysis (PCA), PCA regression and
Partial least Square (PLS) regression which was performed by using Unscrambler® v. 7.8
(Camo Technologies, Woodbridge, NJ).

Results

FT-NIR Spectra of Bacterial Strains

Figure 1 shows the characteristic absorption spectra of the different BAL strains evaluated. As
the bacterial strains showed similar basic FT-NIR spectral patterns (Figure 1A), mathematical
transformations were required to use the FT-NIR data for qualitative and quantitative analysis.
Second derivative transformation (Figure 1B) of spectra extracted and highlighted distinct
features among the bacterial strains, especially in the information-rich region of 1490-2000
nm. Using the Savitzky-Golay second derivative (optimal window size was 20 points) allowed
the extraction of useful band information and reduced spectral noise.

Fz2 Scores
DDD'] __ ..........................
1 /A L5104 :
0] % i
I\ AR 8 s
0001 — e Lsakei........|............ L L ;
] & LP-1(3 :
] Lo m LPOE) )
] Outlier samples :
DDDE_ .................................................................
FCt
0,002 -0.001 0 0.001 0.002 0.003

Figure 2 PC1 versus PC2 scores (PCA analysis) plot of the second-derivative transformed spectral data
over the wavelength range 1490-2000 nm.

PCA analysis and Regression Models

PCA of the whole data set revealed that the best separation between bacterial strains was
found using second—derivative transformed data in the wavelength 1490-2000 nm and using
spectra of samples at high bacterial concentration (10%-10° cfu/ml). The PCA explained 87%
of the total variability using the first seven principal components (PC), whereas PCland PC2
were particularly representative of the spectral information and accounted for 70% of the total
variance. The scores plot of PC1 versus PC2 displayed distinct clustering for the bacterial
strains (see Figure 2). Figure 2 reveals that each bacterial strain formed a well-defined cluster.
L. mesenteroides clustered separately from all other strains on the left-hand side, except for
one sample which was misclassified on the clustering formed by L. sakei. The L. sakei
clustering was formed on the right-hand side, close to L. plantarum, but there was not



overlapping between both. Besides, it was found two outlier samples belonging to L
plantarum which were removed for the PCA regression model (See Figure 2). These results
strongly suggest that differentiation between the different species in isolated systems may be
possible on the basis of their near-infrared spectra.

The loadings obtained from the PCA analysis for the different wavelengths studied indicated
that 1100-1200 nm and 1900-2000 nm regions were the bands most contributed to bacterial
variance. These regions are related to water absorption bands. Examination of the loading
weights, in Figure 3, indicated which FT-NIR frequencies contribute significantly to the
variation in the selected data set (1490-2000 nm). In Figure 3, it could be seen a great
contribution of the water absorption band (1920 nm) which could also be an important
interference source affecting the seloadings

model performance. Besides ** 3 : :
this, other significant bands E
associated to microorganism %'
presence could be observed :
around 1520 nm ,corresponding  °
with protein content, and around
1930 nm, related with C=0 .13
bond which can also be linked to :
microbial structures. 02

X-varlables

A regression  model to
differentiate the bacterial strain

was performed with only Fi 3. Loadi lot showing PCL1 ina for 60 % of
Samples at high bacterial igure 3. Loadings plot showing , accounting for 00

concentrations based on the the total variability in the PCA analysis performed on second —
most important PCs generated in derivative transformed data in the wavelength 1490-2000 nm for
PCA analysis (Principal spectra of samples at high bacterial concentration (10%-10°

Component Regression, PCR).

The PCR model obtained a high correlation coefficient (R= 0.98). When the concentration
range was extended to include 10° cfu/ml, values previously not considered, the PCR model
generated lost predictive ability and the correlation coefficient dropped up to 0.6, which
indicates that the differentiation capacity of bacterial strains is better performed at high
concentration,

PCA analysis was also carried out to determine the potential of NIR to detect different
concentration levels within each organism for enumeration purposes. The whole data set for
each bacterial strain was analyzed separately and in whole, and the category variable was the
dilution factor (0-6) which corresponded with concentration levels between 10°-10° cfu/ml.
However, results did not show any clusters for the six dilution factors.
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Figure 4. PC1 versus PC2 scores (PLS regression) plot of the second-derivative transformed spectral data
over the wavelength range 1490-2000 nm (A) and correlation plot of measured concentration level vs.
visible/near infrared predicted (B).

When a PLS regression model was developed to predict concentration level for each bacterial
strain based on the whole data set, again results did not show clear clustering of dilution



factors (~concentration levels), however, it could be observed that higher dilution factors
(lower concentrations) were situated at the left-hand side (low scores) in the PC1 versus PC2
plot (Figure 4A), while, lower dilution factors (higher concentrations) were found at the right-
hand side (high scores). Thereby it may be stated that the higher concentration, the higher
scores. As consequence of this fact, the predicted values derived from the PLS regression
model showed good correlation with the measured concentration levels (R= 0.99), as shown in
Figure 4B.

Results clearly demonstrated the potential of FT-MIR spectroscopy as a tool for microbial
species identification and classification; however, further investigation should be carried out
so that this technique can be used on a food system and more efficient methods and
mathematical models can be developed to detect and differentiate bacteria specie.
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Abstract

In previous work a deterministic and a stochagpiclemic model for the compartment level
of the pig farm were built. However, the stochasticdel needs a lot of resources and may
not be very useful as is for the risk managers @olaty makers. Thus, an empirical meta-
modeling approach is proposed fitting regressiodetmoto the results of the stochastic model
in order to predict the prevalence of the pathagesiaughter age. For this reason the stochas-
tic model was run for different starting conditiooinfection (SCI: 0.25% to 100% infec-
tious pigs) and different population sizes of tiepartments (TPC: 200 to 400 pigs). In a
second stage the data that was produced from dbbastic model was used for the genera-
tion of secondary simpler empirical models. Theaultsssuggest that this approach can pro-
vide relatively good models for the decision makersich are more useful and easier to use.
It is stressed however that the parameterizatioth@fprimary stochastic model is a critical
issue, because the secondary models simply repeathecresults of the primary model and
cannot correct any underlying problems that magtexi

Keywords

Pigs, Pork, Farms, Salmonella, Typhimurium, Stotbagpidemiology, Model, Regression,
Meta, Prevalence

I ntroduction

Human Salmonellosis is the most common foodboreeadie. In previous work a stochastic
mathematical model was built and run for differemmpartmental sizes and different starting
conditions of infection in order to estimate thefifiect on the probability of the disease extinc-
tion, on the mean age that extinctions occur antherprevalence of different risk groups at
slaughter age. However, the stochastic model nedalsof resources regarding computation-
al time and storage. Moreover, it is somehow diffito run it as is, except if a graphical user
interface is built.

The objective of this work was to build simpler @edary mathematical models using differ-
ent types of regression that can predict the immdeand the prevalence of the pathogen at
slaughter age. In this way decision makers carthese secondary models to test and decide
strategies on a more quantitative basis.

Materials and M ethods

The primary stochastic model, which was developethe first stage, was consisted by 5
classes as shown at figure 1. The S represensitioeptible class, the HI and LI the two in-
fectious classes (High and Low Infectious), theh€ tarrier class and the Im the immune
class. The classes of pigs were categorized ir thigk groups” of cecal-, culture- and sero-
positive pigs. Cecal-positive pigs were considdretle pigs in the HI and LI classes, which
carry the pathogen in the intestinal contents,ucedpositive pigs in HI, LI and C classes,
which carry the pathogen in the internal organsutiiog the intestinal contents, and sero-
positive pigs in the C and Im classes, which camybodies against the pathogen (Soumpasis
and Butler, 2009). The cecal- and culture-positisk groups may pose a risk of introducing
the pathogen into the slaughterhouse, while the-gesitive risk group is frequently used for
the categorization of the farms regarding the lola8almonella.



The stochastic model utilized thdeap method for demographic stochasticity and gum-
marized in table 1 (Soumpasis and Butler, 2009)prtfer to build the stochastic model, all
the possible events should be described in thepisse: The move of the pigs from the Sus-
ceptible to the High Infectious (high infection)dato the Low Infectious class (low infec-
tion), the recovery of the High Infectious (HI) st the recovery of the Low Infectious (LI)
class, the recovery for the Carriers (C) class thedoss of immunity (move from Immune
(Im) class to Susceptible class). A time step wafindd as one day (as in the deterministic
model), in order to calculate the number of evémtisappen in this time step. For small time
steps the number of events in each time step engapproximately by a Poisson distribution
(Keeling & Rohani, 2007).

Figure 1. Conceptual representation of the modalifpasis and Butler, 2009).

The model was run for 113 days, which correspondhé¢ average day that pigs are har-
vested. Different Starting Conditions of Infecti(®Cl: 0.25-100%) and Total Population siz-
es of Compartments (TPC: 200-400pigs) were evaludter each combination of SCI and
TPC, 50 iterations were run. This resulted in gdatable of 139,400 rows and 9 columns.
This table was used in a second stage for fittiegsecondary regression models.

Table 1: Events of the model and calculation ofrtmber of events per time step using the
“1 -leap method” (Soumpasis and Butler, 2009).

Name Number of events Font style
High Infection M1=Poissont[ p*S*(HI+ e*LI)/N]) S->S-M1, HI->HI+M1
Low Infection M2=Poissont[ p*S*(HI+&*LI)/N]) S->S-M2, LI->LI+M2
Recovery of HI M3= Poissoti[ y*HlI]) HI->HI-M3, C->C+M3
Recovery of LI M4= Poissom] y*LI]) LI->LI-M4, C->C+M4
Recovery of C M5= Poissort( I'*C]) C->C-M5, Im->Im+M5
Loss of Immunity M6= Poissori( k*Im]) Im->Im-M6, S->S+M6

Exponential regression using non-linear least spiarethod was applied for each class and
risk group in question. Given that there were tremdls in each graph, one decreasing for low
SCI and one increasing for higher SCI, two regmssivere made for each of the trends. The
limit for which the data was divided in these twarfs was calculated from the results of the
stochastic model. Bootstrapping of the models wad,thowever given the increased number
of observations, uncertainty was very small. Mosrpthe 95% CI of bootstrap coincided
with the 95% CI provided by the standard errorhaf parameters of the original fitted regres-
sion model.

The model and the scenario analysis were writtelRyitthon programming language v.2.5.1,
using the scientific libraries Scipy/Numpy, for nerical calculations. Optimizations were
made using Pyrex python extension for translativegrhain algorithm to compiled x86_64 C
shared library and using parallel computing witiithn. For the statistical analysis and the
fitting of the secondary meta-models, R statistlealguage version 2.9.1 (R Development
Core Team, 2009) was used. For bootstrapping ofntre linear least squares models, R
package boot (Canty & Ripley, 2009; Davison & Hmkl 1997; Venables, & Ripley, 2002)
was used.



Results and discussion

The regression models that were fitted to the piynaata of the stochastic model for the Hl
and LI classes and the risk groups of culture-serd-positive pigs are presented in equations
1 to 4. Although, TPC had a significant effect ba probability of extinction of the infection
during the fattening period (Soumpasis and Buf6f9), the effect of TPC on all the classes
and risk groups in question was insignificant.

The predicted values of the models along with th& I of uncertainty and variability are
plotted in figure 2. From figure 2 it is apparelmat uncertainty is very small due to the large
number of observations. The standard error of #rarpeters was very small, resulting to this
very low uncertainty. On the other hand, variapithat was calculated from the standard er-
ror of the model was substantial and the 95% descelatively well the data produced from
the experiment.

oI = { Normal (0.966 — 0.188 * SCI, 3.415), for SCI < 5.5 )
~ \Normal (—0.406 — 0.037 * SCI,0.294), for SCI > 5.5
L {Normal (1.804 — 0.066  SCI,3.622), for SCI < 6.2 @
~ Normal (0.875 — 0,011 * SCI, 1.234), for SCI > 6.2
Culture — tive = {Normal (3.335-0.273 %« SCI,17.18), for SCI < 2.1 3)
witure = posttve =1 N ormal (3.699 — 0.004 + SCI, 4.671), for SCI > 2.1
Cero — positive — { Normal (3.609 — 0.149 = SCI,17.24), for SCI < 4.2 @
eT0 = POSIIVE =1 Normal (4.087 — 0.0016 * SCI,3.929), for SCI > 4.2
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Figure 2. Scatter plot of the results of the stetihanodel and the predicted prevalence
(green continuous line) of the meta-model with@B&6 confidence intervals of the uncertain-



ty (red dashed line) and the variability (cyan dakline) of the Infectious classes (a) HI and
(b) LI and the risk groups (c) Culture- and (d)&®positive (at slaughter age) over Starting
Conditions of Infectious (SCI) as a percentagénefTotal Population of Compartment
(TPC).

The variability is bigger for the increasing pafrtlee equations because for low SCI, there are
many cases of early extinctions that could resulzéro cases of all the classes and risk
groups. On the other hand, starting with low SCl legd to a low propagation rate at the be-
ginning of the fattening period, when the infectames not go extinct. In this way there will
be a large pool of pigs in the susceptible claasthn get infected in the last days increasing
dramatically the prevalence of the classes andgrisips of pigs up to 80% in some cases.
For higher SCI, smaller variability was observedawese of the lack of early extinctions. In
this way the infection is established in all theesand the prevalence of the classes is more
predictable. In these cases, when extinctions bserged, these are late extinctions. Their
effect on the variability of the risk groups of wuk- and sero-positive is very low, because
the classes that constitute these risk groups gcelgng period in the infection cycle.
Although these models are capable of predictingptbgalence and the standard deviation for
different SCI for the day of harvest, given thaypwere infected the first day of the fattening
period, further work is ongoing to make models e predict the prevalence for different
ages of introduction of the pathogen in the conmpant. Regression, non-linear least squares,
splines, polynomials (simple and fractional) orreweural networks will be tested, in order to
automate this procedure and provide with robustticriships of expected prevalence of risk
groups and classes of pigs with SCI.

Conclusions

The secondary meta-models that were developedrealicpin a good extent the prevalence
of the risk groups and classes of interest, givendtarting conditions of infection (SCI).
They can describe efficiently the variability ottprocedure, using the standard error of the
model. The uncertainty of the models was very sngalen the large number of observation
due to the many iterations of the stochastic maddelvever, it has to be kept in mind, that
whatever inadequacy was introduced in the paramefethe primary stochastic model will
affect the results of the secondary models. THhus, proposed, that limited targeted experi-
ments should take place in a first phase that taeyassure parameterization and develop-
ment of a stochastic model that is as accurat@ssilge. In a second phase, creation of data
running the stochastic model and fitting of secondagression type meta-models can pro-
vide easy to use decision tools for risk managedspmlicy makers.
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Abstract

The quantitative evaluation of (adaptive) microbial responses in food products undergoing
heat processing is imperative for assessing the efficacy of such heat treatment steps. Different
artificial neural network (ANN) models are constructed. A Feed Forward (FF) and a multi-
step ahead Feed Forward with a Delay (FFD) that can embed microbial memory. Their input
vectors were the time tx and temperature rate (dT/dt),, while for the latter the microbial load
delayed with one time unit, logNy.; was also included. The predictive capability of the ANNs
that had tx as an input vector was influenced by the chosen increments of ty therefore another
multi-step ahead FFD network where the input vector of time has been replaced by the vector
of temperature Ty was studied. This network appeared to be more appropriate for performing
accurate microbial predictions that did incorporate the induced microbial phenomena for the
off-line microbial data in hand.

Introduction

The microbial safety of thermally processed foods relies on the inactivation of pathogenic
microorganisms during heating. Possible induction of an increased microbial heat resistance
due to a specific time-temperature history (e.g., slowly increasing temperatures) may lead to
unintentionally less efficient food heating steps. In a previous study sound differential
equations that describe accurately the microbial inactivation kinetics by incorporating
physiological adjustments during experiments of changing temperature conditions were
developed as an independent mathematical building block (Valdramidis et al., 2007). More
recently, the Weibullian-log logistic inactivation model was also modified to account for heat
adaptation by introducing a logistic adaptation factor (Corradini et al., 2009).

Another approach to account for the induced microbial phenomena is the development of
memory based models. On this line the power-law memory models incorporating a memory
kernel function have been proposed to take into account memory effects associated with
cumulative cell damage or progressive cell adaptation (Vaidya et al., 2009). Similarly Kaur et
al (2008), Takhar et al (2008) hypothesized that the effect of microbial injury at a given
instant can make the physical process nonlocal in nature where destruction at a given time is
also affected by the injury occurring at previous time. Therefore, they proposed a 1-term and
2-term fractional differential equation (FDE) model. Some limitations of these developed
memory based models is that they are built considering that the present survival rate at time t
is influenced by all the previous thermal states of the system at a temporal distance, i.e., t-t’.
Because of this time dependency this approach appears to be more appropriate for
applications that on-line microbial data are available. Nevertheless, the most classical
microbiological techniques of predictive modelling in foods account for off-line microbial
data for which time intervals for performing microbial predictions are not available to the user
beforehand.
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The objective of this study was to develop Artificial Neural Network (ANN) structures that
can embed memory and evaluate their applicability in Predictive Modelling in Foods. Their
time dependency and any limitations and constraints that arise for performing predictions of
microbial populations were assessed. Based on these observations alternative autonomous
ANN structures were also developed and a general outline on the exploitation of all these
structures for on-line or off-line microbial studies is suggested.

Materials and Methods

Data

Previously generated inactivation data of Escherichia coli K12 MG1655 under dynamic
temperature conditions were used (Valdramidis et al., 2006). These experiments were
performed in cell suspensions and at temperature controlled conditions. Six different heating
regimes were studied, i.e., dT/dt of 0.15°C/min, 0.20°C/min, 0.40°C/min, 0.55°C/min,
0.82°C/min, and 1.64°C/min. Experiments took place in sterile glass capillary tubes
(Hirschmann Laborgerite FmbH & Co.KG, Heilbronn, Germany) in which a volume of

100uL cell suspension (cell concentration approximately 10° cfu/mL) was pipetted. Tubes

were then sealed by a gas flame and immersed in a temperature controlled circulating water
bath (GR150-S12, Grant Instruments Ltd, Shepreth, UK). At regular times, two capillaries
were removed from the water bath, plunged into an ice-water bath and analysed within
approximately 30 min. Decimal serial dilutions of the samples were prepared in a BHI
solution and surface plated on BHI Agar (1.2 %) using a Spiral Plater (Eddy Jet, IUL
Instruments, Barcelona, Spain). Plates were incubated for 24 h at 37°C and colony-forming
units were enumerated. For the purposes of the ANN development these experimental sets
were split on training, validation (for performing an early-stopping approach) and test set
data.

Model structures

A multi-step ahead Feed Forward with a delay artificial neural network (ANN) modelling
structure was constructed. In this structure there were three input vectors, namely, time t; and
temperature rate (dT/dt)y, and the microbial load delayed with one time unit, logNy,. Its
architecture was consisting of one hidden neuron and one output neuron. The selected transfer
functions for the hidden and output neuron were the logistic-sigmoid and the linear functions,
respectively. All input values were linearly normalised into [0,1] before they were entered
into the network. Initial values that lie within [-1, 1] are picked randomly from a uniform
distribution for the ANN’s connection weights. The predictive capability of these models was
also compared with a Feed Forward (FF) network (with as input vectors the tx and
temperature rate (dT/dt),) while an autonomous multi-step ahead FFD network (in which the
input vector of ty of the initially developed FFD network is replaced by the temperature Ty)
was also considered. The performance of this autonomous structure has also been evaluated
when vector of temperature rate (dT/dt),, has been omitted and when bias parameter of the
logNy.1 was present or not.

Results and discussion

The increased induction of the heat resistance of Escherichia coli K12 under treatments of
decreasing heating rates was quantified for all the developed ANN structures. The developed
FFD structures appear to have a non-autonomous character due to their time dependency.
Consequently, the predictive capability of the ANNs that had t; as an input vector was
influenced by the chosen increments of ty. This clearly appears in Figure 1. The results show
that non-autonomous ANN structures result on different predictions depending on the chosen
time increment, phenomenon which is more pronounced for the multi-step ahead FF structure.
It should be mentioned that although this type of networks are a common practise for or
online control applications their application in predictive microbiology that microbial



information is originating from off-line data should be reconsidered. For that purpose an
autonomous ANN structure was also evaluated.
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Figure 1. Examples of predictions of Feed Forward (left plot) and multi-step ahead Feed
Forward with a delay (right plot) ANN architectures for tx = experimental time of the test set
(--) and tx = 0.5 min increment (-). Microbial inactivation data (used as test set) (o) of E. coli
K12 with their corresponding temperature profile at the studied heating rate of 0.55°C/min.

When microbial predictions were performed without presenting time explicitly as an input
vector of the ANN structures (i.e., the case of the autonomous multi-step ahead FFD network)
resulted in accurate microbial predictions that did incorporate the induced microbial
phenomena. Results (Figure 2) show that a NN with two input variables, i.e., Tk, Nk-1 was
suffice to describe the microbial inactivation kinetics. This means that increase of the
parameters of the model did not improve the generalization of the ANN. The good prediction
capability of the FFD network indicates that an input incorporating past events, i.e., Ni.1, can
improve the modelling performance by encompassing the microbial stress adaptation of the
examined microbe due to the slowly increasing temperatures. This input delay can be
considered as a dynamic a priori microbiological knowledge suitable for extracting the
information contained in the microbial experimental data. Further experimental investigation
of these adaptations may require studies focusing on the mechanisms influencing the
microbial physiology.

A property of the currently used microbial inactivation models in Predicitve Modelling in
Foods (like the classical log-linear survivor curve) is memoryless, i.e., each cell inactivation
event is distinct and has no information (i.e., memory) of earlier thermal events (Vaidya et al.,
2009). The current study outlines that quantifying adaptive microbial responses can be tackled
by memory embedded modelling structures which could then asses accurately the efficacy of
a heat process. The need of novel models that can incorporate the cell’s history appears to be
imperative for other types of food processes e.g., cooling storage (Juneja et al., 2008).

Conclusions

Incorporation of past events seems to be an essential input for taking into account the
observed induced microbial heat resistance and can be assessed by the development of
memory embedded modelling structures. Non-autonomous ANN have implications on the
prediction of the momentary microbial population. Their application should be restricted to
on-line microbial measurements in which time increments are experimentally or industrially
targeted. Performing predictions based on information coming from off-line techniques, like
colony counts, requires the development of autonomous Neural Networks.
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Figure 2. Predictions of autonomous multi-step ahead FFD network at heating treatments of
0.82°C/min (top left), 0.55°C/min (top right), 0.40°C/min (bottom left), 0.20°C/min (bottom
right), Experiment: microbial inactivation data (used as test set) (o) of E. coli K12, case 1:
input vectors Ty, Ny.1, case 2: input vectors Ty, Ngy with bias factor on Ny case 3: input
vectors Ty, Ni.q dT/dt, case 4: Ty, Ni.1, dT/dt, with bias factor on Ny.;.

Acknowledgements

Research was supported by the National Development Plan, through the Food Institutional
Research Measure, administered by the Department of Agriculture, Fisheries & Food
(Ireland) and by the Research Council of the Katholieke Universiteit Leuven (Belgium). VPV
is funded by the president’s fund grant of the Society for Applied Microbiology (SfAM) for
presenting this work at the ICPMFo6.

References

Corradini, M. G. and Peleg, M. (2009) Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation.
Applied and Environmental Microbiology 75(8), 2590-2597.

Juneja, V. K., Marks, H. and Thippareddi, H. (2008) Predictive model for growth of Clostridium perfringens
during cooling of cooked uncured beef. Food Microbiology 25(1), 42-55.

Kaur, A., Takhar, P. S., Smith, D. M., Mann, J. E. and Brashears, M. M. (2008) Fractional Differential Equations
Based Modelling of Microbial Survival and Growth Curves: Model Development and Experimental
Validation. Journal of Food Science 73(8), E403-E414.

Takhar, P. S. and Kaur, A. (2008) Modelling nonlinear microbial survival curves using one-term and two-term
fractional differential equations, Shanghai, China.

Vaidya, N. and Corvalan, C. M. (2009) An Integral Model of Microbial Inactivation Taking into Account Memory
Effects: Power-Law Memory Kernel. Journal of Food Protection 72(4), 837-842.

Valdramidis, V. P., Geeraerd, A. H., Bernaerts, K. and Van Impe, J. F. (2006) Microbial dynamics versus
mathematical model dynamics: The case of microbial heat resistance induction. Innovative Food Science
& Emerging Technologies 7(1-2), 80-87.

Valdramidis, V. P., Geeraerd, A. H. and Van Impe, J. F. (2007) Stress-adaptive responses by heat under the
microscope of predictive microbiology. Journal of Applied Microbiology 103(5), 1922-1930.



Development and validation of predictive model for the growth and
survival of Vibrio vulnificus in post harvest shellstock

L.V. DaSilva’, S. Parveen’, A. DePaola?, J.C. Bowers®, and M.L. Tamplin®

tUniversity of Maryland Eastern Shore, Princess Anne, MD 21853 (lvirsi@yahoo.com/ sparveen@umes.edu)
2U. S. Food and Drug Administration, Dauphin Island, AL 36528 (Angelo.Depaola@fda.hhs.gov)

3U. S. Food and Drug Administration, College Park, MD 20740 (John.Bowers@fda.hhs.gov)

“University of Tasmania, Tasmania 7001, Australia (Mark. Tamplin@utas.edu.au)

Abstract

Vibrio vulnificus, an opportunistic human pathogen found in the estuarine environment, is the
leading cause of reported deaths in the U.S. associated with the consumption of seafood. V.
vulnificus can cause septicemia (with 50% mortality rate) in susceptible individuals and most
cases are linked to consumption of raw oysters. Post-harvest growth of V. vulnificus in oysters
can greatly increase risk but there is limited information available on growth and survival of
V. vulnificus in post-harvest oysters. The reliability of predictive models for the growth and
survival of V. vulnificus in shellstock oysters harvested from Chesapeake Bay (CB) and Gulf
Coast (GC) would benefit from more comprehensive information. The objective of this study
was to address this existing data gap. Oysters (Crassostrea virginica) were collected
seasonally (spring, summer and fall of 2007-2008) from the CB and then stored at 5, 10, 15,
20, 25, and 30°C. Two samples of six oysters each were analyzed at selected time intervals
using a most probable number (MPN) procedure. The Baranyi D-model was fitted to the V.
vulnificus growth data to estimate the parameters of lag phase duration (LPD), the growth rate
(GR) and the maximum population density (MPD). V. vulnificus was slowly inactivated at 5
and 10°C with estimated GRs of -0.0043 and -0.0042 log MPN/h, respectively. The highest
MPD (7.09 log MPN/g) was observed at 30°C. The estimated GRs at 15, 20, 25 and 30°C
were 0.016, 0.041, 0.086 and 0.16 log MPN/h, respectively. LPD was observed at 20°C (30h)
and 25°C (25h) in Spring. The V. vulnificus model bias (Bf) and accuracy (Af) factors were
1.01 and 1.06, respectively. Models developed for the growth and survival of V. vulnificus in
CB oysters were validated against a new set of model independent data, where American
oysters were collected from the GC in Spring, Summer, and Fall and Asian oysters from CB
in Spring-Summer, and analyzed using the same protocols as in the primary model
experiments. The Bs and A; for the GRs determined in GC American and CB Asian oysters
were 1.02 and 1.09. These results suggest that the model developed for the growth of V.
vulnificus in CB oysters are valid for, and predictive of, growth occurring in oysters harvested
from the GC and CB, respectively. GRs were similar over the three seasons but were lower
than predicted than by the FAO/WHO V. vulnificus Quantitative risk assessment. The results
of this study will assist risk managers and seafood industry in designing and implementing
food safety plans to minimize the risk from V. vulnificus in seafood consumers.

Keywords: V. vulnificus, shellstock oysters, predictive model, growth model

Introduction

Vibrio vulnificus is a gram-negative, halophilic, motile and curved bacterium found in marine
and estuarine environments. V. vulnificus is the leading cause of reported deaths in the U.S.
associated with the consumption of shellfish, especially oysters (Food and Nutrition Board,
1.0.M., 1991). Among individuals without predisposing medical conditions, V. vulnificus
infections due to consumption of raw or undercooked oysters are generally limited to
gastroenteritis. However, among individuals with predisposing medical conditions, more
extreme cases of infection can cause septic shock and skin lesions (Hlady et al., 1993, Klontz
et al. 1988, and Kumamoto and Vukich, 1998). Such infections can lead to death within 24
hours and, for susceptible individuals, approximately 50% of such reported infections are
fatal. Reported cases of infection follow a seasonal pattern that correlates with the
temperature dependence of prevalence and post-harvest growth. To better understand the



seasonal pattern of infections, environmental surveys of V. vulnificus levels in relation to
seawater salinity and temperature have been conducted (Motes et al. 1998, Tamplin et al.
1982) and the growth and survival of V. vulnificus in post-harvest oysters have been studied
(Cook, 1994, Cook, 1997). Based on these studies, predictive risk models have been
developed (FAO/WHO, 2004) but uncertainties remain due to the relatively narrow range of
storage temperatures considered in previous post-harvest growth studies. Further studies are
needed to determine predictive models for growth and survival of V. vulnificus in post-harvest
shellstock oysters stored at temperatures relevant to commercial and consumer handling
practices.

Material and methods

Sample collection, handling and storage

American Oysters (Crassostrea virginica) were collected seasonally (Spring, Summer and
Fall 2007-2008) from the Chesapeake Bay. The temperature and salinity of the seawater
where oysters were harvested were measured in the upper 0.5 m of the surface water with a
dissolved oxygen conductivity meter (Model 85, Yellow Springs Instrument Co., Yellow
Springs, OH). Oyster samples were shipped in an insulated chest with ice bags along with a
data-logger to the Food Safety laboratory at the University of Maryland Eastern Shore. Upon
arrival, oysters were stored at 5, 10, 15, 20, 25 and 30°C for analysis. At each storage
temperature, two samples of six oysters each were collected at selected time intervals for
bacteriological analysis.

Bacteriological analyses

Levels of V. vulnificus were determined by the Most Probable Number (MPN) procedure
using alkaline peptone water (APW) with 3% NaCl for enrichment broth. Positive APW tubes
were streaked onto modified cellobiose polymyxin colistin agar and incubated at 39°C for 18-
24 hours followed by confirmation of the isolated colonies with DNA a probe technique using
Alkaline Phosphatase-labeled probes for the whA gene (Kaysner and DePaola, 2004).

Estimation of primary and secondary growth model

For model development, the mean and standard deviation of log MPNs of replicate
observations were calculated and plotted with Excel® spread-sheet. The dynamic model
described by Baranyi and Roberts (1994) was used to fit growth curves to the experimental
data at each storage temperature and determine estimates of lag phase duration (LPD [h]),
growth rate (log MPN/h) and maximum population density (MPD [log MPN/g]). The DMFit
curve-fitting software kindly provided by the Institute of Food Research (Norwich, UK) was
used to fit the primary model. A Secondary growth model was estimated using Table Curve
2D (SPSS Inc., Chicago, IL) with built-in and customized equations. The Ratkowsky square
root model was used as the secondary model for GR as a function of storage temperature
(Ratkowsky et al., 1982). Model performance was measured by bias (Bf) and accuracy (Ay)
factors (Baranyi and Ross, 1999). Estimated GRs were further analyzed by an analysis of
covariance (ANCOVA) to evaluate possible effect of season and harvest site conditions on
the growth and survival of V. vulnificus in oysters. The ANCOVA was performed using the
PROC GLM procedure in SAS (Statistic Analysis Software Version 9.1, SAS Institute, Cary,
N.C.). Differences were considered statistically significant at P<0.05.

Results and discussion

The growth and survival of natural population of V. vulnificus in multiple collections of
oysters were measured at 5, 10, 15, 20, 25, and 30°C at selected time intervals. The V.
vulnificus levels gradually decreased to a non-detectable level at 5 and 10°C. The inactivation
rate of V. vulnificus at 5 and 10°C was estimated to be -0.0043 and -0.0042 log MPN/h,
respectively (Table 1). While the level of V. vulnificus decreased at 5 and 10°C, V. vulnificus
increased 1 to 2 log MPN in oysters stored at 20, 25 and 30°C after one day of storage.
Similar results were observed by Cook and Ruple (1989) where V. vulnificus decreased



during storage at 10°C, but increased by 1 to 2 log cycles in oysters after one day of storage at
22°C and 30°C. The maximum MPD (7.09 log MPN/g) was observed at 30°C for oysters
harvested during Summer months (Table 1). Similar results were observed for oyster
collected from CB in Summer 2006 where the maximum population density of 8.16 log
CFU/g was observed in samples stored at 20°C (DaSilva, L. 2007, personal communications).
For all CB studies, the estimated GR at 15, 20, 25 and 30°C were 0.016, 0.041 and 0.086 and
0.16 log MPN/h, respectively. A lag phase was not observed except at 20°C (30h) and 25°C
(25h) in Spring 2008.

Table 1: Inactivation/growth parameters for V. vulnificus in CB oysters stored at 5-30°C.

Temperature GR (log MPN/h) LPD (h) *MPD (log MPN/qg)
(°C) Spring Summer Fall Spring Summer Fall Spring Summer Fall
5 -0.002 -0.007 ND 0 0 ND ND ND ND
10 -0.004 -0.005 -0.004 O 0 0 ND ND ND
15 0.016  0.028 ND 0 0 ND 355 6.02 ND
20 0.049 0.144 0035 30 0 133 571 6.19 6.34
25 0.091 0.098 0.073 25.21 0 350 4.77 6.78  6.40
30 0.064 0.095 0.215 0 0 0 5.54 7.09  6.63

GR= growth rate, LPD= lag phase duration, *MPD= maximum population density before oysters died,
ND= not determined

For model-dependent data, the V. vulnificus model bias (Bf) and accuracy (Ay) factors were
1.01 and 1.06, respectively. Baranyi et al. (1994) suggested that the As of an acceptable model
should be less than or equal to 1.15 (15% error) for one independent variable (e.g.
temperature). Therefore these new models meet the definition of “acceptable.” The model for
V. vulnificus growth in CB oysters was validated against independent data for GC, American
and CB Asian oysters (Crassostrea ariakensis) (Figure 1). Bf and A; for the GR in GC were
1.02 and 1.09 respectively.
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Figure 1: Observed and predicted GR of V.
vulnificus in raw oysters stored at 15-30°C.
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(dashed lines).

Generally, GRs of V. vulnificus were similar over the three seasons and no statistically
significant differences (P>0.05) were identified between the GR estimates in oysters
harvested from the CB versus the GC. However, relative to the expectation based on storage
temperature alone, GRs did appear to be depressed at low (CB) and high (GC) salinity. The
deviation from expected was small (i.e., near zero) around 20 ppt salinity, which is consistent
with salinity levels found to be favorable for V. vulnificus in previous environmental surveys



(Motes et al. 1998). In addition, there was no apparent relationship between deviations from
expected GR versus water temperature at harvest. Although consistent across sample
collections, the GRs estimates for CB and GC collections held at 25 and 30°C were found to
be lower than predictions of the FAO/WHO (2004) V. vulnificus Quantitative Risk
Assessment, based on observations in studies by Cook in 1994 and 1997 (Figure 2).

Conclusions

These results indicate that the model developed for the growth of V. vulnificus in CB oysters
are valid for, and predictive of, growth occurring in oysters harvested from GC and CB,
respectively. GRs were similar over the three seasons but were systematically lower than that
predicted by the FAO/WHO V. wulnificus Quantitative Risk Assessment at temperatures
greater than 20°C. The results of this study will assist risk managers and seafood industry in
designing and implementing food safety plans to minimize the risk from V. vulnificus in
seafood consumers.
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Development of Predictive Models for Listeria monocytogenes in
Selected Refrigerated Ready-To-Eat Foods
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Abstract

Deli salads, deli ham and smoked salmon are three popular refrigerated ready-to-eat foods.
These products are ready for consumption without prior cooking. If not processed and
handled properly, they could be contaminated with L. monocytogenes, a pathogen of capable
of growing at refrigerated temperature. To ensure the safety of these products, it is critical to
understand the ability of L. monocytogenes to grow or survive in these products as affected by
the product formulation and storage condition. Studies were conducted to examine the growth
characteristics (lag phase duration and growth rate) of L. monocytogenes in seafood salad,
ham and smoked salmon as affected by the mayonnaise pH in seafood salad, lactate and
diacetate in ham, and salt and smoke compounds (phenols) in smoked salmon under
refrigerated and abuse temperatures. Models were developed to describe the effects of
formulation and storage temperature on the growth characteristics of L. monocytogenes, and
the effects and significance of the individual factor and their interaction on L. monocytogenes
were identified. Validation studies indicated that these models were acceptable for predicting
the growth of L. monocytogenes in seafood salad, ham and smoked salmon. These models
were examined to identify their applicability and limitation.

Keywords: Listeria monocytogenes, salad, ham, smoked seafood, model

Introduction

Refrigerated ready-to-eat (RTE) foods are ready for consumption without prior cooking. Deli
salads, luncheon meats and smoked seafood are some of the popular RTE foods on the
market. L. monocytogenes, a pathogen of capable of growing at refrigerated temperatures, is
a concern in refrigerated RTE foods. A study found that L. monocytogenes was positive in
4.7% of seafood salads and in 2.4% of deli salads (Gombas et al. 2003). The prevalence of L.
monocytogenes in sliced luncheon meat ranged from 4.2 to 8.0% in samples collected from
federally inspected establishments between 1990 and 1999 in the U.S. (Levine et al. 2001).
Gombeas et al. (2003) reported that 0.89% RTE luncheon meats collected from grocery stores
in California and Maryland in the U.S. between 2000-2001 were tested positive for L.
monocytogenes. The prevalence of L. monocytogenes in cold-smoked salmon or smoked fish
were reported to be at 13% (Nakamura et al. 2004), 4.3% (Gombas et al. 2003), and 10.3%
(Beaufort et al. 2007). In a risk assessment reported by the U.S. FDA/USDA/CDC (2003),
deli salads, RTE meat and smoke seafood had high relative risk of causing listeriosis among
20 RTE foods. Since RTE foods are normally consumed with prior heating, the high
prevalence of L. monocytogenes in deli salads, RTE meat and smoked seafood and the ability
of this pathogen to grow at refrigerated temperature render the pathogen a particular
microorganism of concern in these RTE foods. The behavior of L. monocytogenes in seafood
salad, cooked ham and smoked salmon as affected by the product formulation and processing
and/or storage temperature were examined, and models were developed to describe the effects
of product formulation and temperature on L. monocytogenes.

Materials and Methods

Product factors that are likely to affect the growth of L. monocytogenes in seafood salad,
cooked ham and smoked salmon were examined. These factors were mayonnaise pH for
seafood salad, lactate and diacetate, two common food additives which are increasingly used
in RTE meat products, for cooked ham, and salt and smoke compounds (phenols) for smoked



salmon. The effects of prevalent processing/storage temperatures that these products were
commonly exposed to were also examined. For seafood salad, a mixture of 5 strains of

L. monocytogenes was inoculated onto the surface of a shrimp and crabmeat. The inoculated
seafood components were mixed with mayonnaise of pH 3.7, 4.0, 4.4, 4.7 and 5.1, and then
stored at 4°-12°C. Ham samples containing 1.0-4.2% lactate and 0.05-0.2% diacetate were
inoculated with L. monocytogenes and stored at 0-45°C. Samples of minced cooked salmon
containing 0-10% NaCl and 0-34 ppm phenols were inoculated with L. monocytogenes and
stored at 0-25°C. The initial inoculum of L. monocytogenes in samples were 10>~ cfu/g. The
lag phase duration (LPD, h) and growth rate (GR, log;, cfu/h) of L. monocytogenes were
obtained and modeled as a function of the product factor and temperature.

Results and Discussion

Growth of L. monocytogenes occurred in seafood salad formulated with mayonnaise of pH
3.7-5.1 at 4-12°C. It is well recognized that commercial mayonnaise with pH <4.1 is
sufficient to maintain its microbiological stability. The growth of L. monocytogenes in
seafood salad formulated with mayonnaise of pH 3.7 and 4.0 indicated that the seafood
components protected L. monocytogenes cells from the high acidity of mayonnaise. The LPD
and GR of L. monocytogenes in seafood salad as affected by the mayonnaise pH and storage
temperature can be described as:
LPD (h) = 620.83 + 2.916(temperature) - 186.5(pH) + 3.841(temperature*pH) - 1.463
(temperature)” + 9.879(pH)’.
GR (log;o cfu/h) =-0.00313 + 0.00338(temperature) + 0.00214(pH) -
0.0003 1(temperature*pH) — 0.000024(temperature)” — 0.000169(pH)>.
Regression analyses showed that mayonnaise pH was the main factor that affected the LPD of
L. monocytogenes, and storage temperature was the main factor on the GR.

The LPD and GR of L. monocytogenes in ham as a function of concentrations of lactate and

diacetate at 0-36°C are:

LPD =79.97 - 13.17(temperature) + 35.76(lactate) + 1059.73(diacetate) —
1.03(temperature*lactate) - 28.55(temperature*diacetate) — 176.53(lactate*diacetate) +
0.31(temperature)’ + 4.93(lactate)” + 1300.49(diacetate)

GR (log;o cfu/h) =-0.0146 + 0.0098(temperature) - 0.0206(lactate) - 0.2220(diacetate) -
0.0013(temperature*lactate) - 0.0392(temperature*diacetate) + 0.0143(lactate*diacetate)
+0.0001(temperature)*+ 0.0053(lactate)* + 2.9529(diacetate)”

The LPD of L. monocytogenes were affected by lactate, diacetate and storage temperature,

whereas the GR were affected by the temperature and the interactions of temperature and

lactate and diacetate. In general, the LPD were extended by the increased concentrations of
lactate and diacetate at storage temperatures <12°C, while the GR were reduced by both
additives at temperatures 15°-36°C.

The LPD and GR of L. monocytogenes in smoked salmon as affected by the salt and phenol

concentrations and storage temperature can be described as:

LPD (h) = 61.35 - 11.66(temperature) + 10.16(phenol) + 14.75(salt)-
0.15(temperature*phenol) - 0.86(temperature*salt) + 0.42(phenol*salt) +
0.32(temperature)” - 0.23(phenol)* +0.49(salt)’

7GR =-0.0639 + 0.0136(temperature) + 0.0103(phenol)+0.0257(salt) -
0.0001(temperature*phenol) - 0.0018(temperature*salt) - 0.0014(phenol*salt) +
0.0003(temperature)” - 0.0002(phenol)” - 0.0011(salt)*
The increase of salt concentrations or lower storage temperatures extended the LPD and
reduced the GR of L. monocytogenes in smoked salmon. The growth of L. monocytogenes
was affected by salt, phenol, storage temperature and their interactions. The LPD of L.
monocytogenes were particularly extended by higher concentrations of phenols at lower
storage temperatures. The GR of L. monocytogenes were reduced only at salt concentrations
>6% at temperatures <10°C.



For L. monocytogenes in seafood salad, ham, and smoked salmon, polynomial (quadratic)
models were developed and found to be acceptable for describing the LPD and GR of L.
monocytogenes as affected by the product factor and temperature. Polynomial models have
been long used to describe the effects of food factors on the growth and survival of L.
monocytogenes in meat products or model systems. These models were validated and reported
to be acceptable in estimating the behavior of L. monocytogenes in food products within the
product parameters that the models were developed (Devlieghere et al. 2001; Seman et al.
2002; Hwang et al. 2009). In addition to polynomial models, non-polynomial models that
described the growth of L. monocytogenes in meat products, smoked seafood and other food
products have also been developed (Augustin and Carlier 2000; Devlieghere et al. 2001;
Gimenez and Dalgaard 2004). The square-root model of Ratkowsky et al. (1983) was a basis
for most of the non-polynomial models. Two examples of non-polynomial models were
proposed by Devlieghere et al. (2001) to describe the growth of L. monocytogenes in
modified atmosphere-packed cooked meat products:

Ln (1) =In {1/[b(Aw-Ay min)(CO2 max-CO2)(T-Tinin) (NaL ax-NaL)

VHmax =2 (T=Tpip)- \/(AW ~Awmin) (CO2max —CO2) - (NaLyyy —Nal)
Where A is lag phase, pm.x is maximum specific growth rate, T is temperature, CO, is carbon
dioxide, NaL is sodium lactate, and min and max are the theoretical maximum and minimal,
respectively, temperature/quantity of T/CO,/NaL at which the p,,.x of L. monocytogenes is
Zero.
Devlieghere et al. (2001) fitted these non-polynomial models and two polynomial models to
Umax and A of L. monocytogenes in cooked meat, and reported that both types of models well
described the pm.x and A. This indicated that these two types of models are equally suitable for
use in the development of L. monocytogenes growth models.

The comparison of the quadratic models of seafood salad, ham and smoked salmon to other
polynomial or non-polynomial models were limited due to the different products and/or
environmental factors were modeled. In general, the estimated LPD and/or GR of L.
monocytogenes from the ham and smoked salmon models were higher than those reported by
two comparable studies by Devlieghere et al. (2001) and Gimenez and Dalgaard (2004). This
may be attributed to by the variations in product and environmental factors, notably
packaging atmosphere and native microflora, in these studies. The models for seafood salad,
ham and cooked ham were developed without the interference of native microflora. The
estimated growth characteristics of L. monocytogenes by the models represent a worst-case
scenario as native microflora in these products have been reported to be competitive to the
growth of L. monocytogenes (Amezquita and Brashears 2002; Gimenez and Dalgaard 2004;
Andrighetto et al. 2009).
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Abstract

A predictive model was created for the effects of temperature, pH, water activity, and
inclusion of sodium diacetate and sodium/potassium lactate in product formulations, on
growth of Listeria monocytogenes. The growth rate model was based on Mejlholm et al.
(2007). The effects of several post-lethality treatments (hot water or spraying treatments) on
hy, the “work to be done” prior to growth were evaluated on literature data. The model can be
applied to predict the growth of L. monocytogenes on frankfurters in the presence or absence
of antimicrobials.
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Introduction

Contamination of ready-to-eat meat products with Listeria monocytogenes is recognized as an
important public health issue. Mathematical models predicting growth of the pathogen during
product distribution and storage can be useful in determining safety-based product shelf-life
under different conditions.

To inhibit the growth of L. monocytogenes on ready-to-eat meat products, post-lethality
inactivation treatments and/or growth inhibitors can be used. The aim of this study was to
develop a predictive model for L. monocytogenes on frankfurters and other ready-to-eat meat
products integrating i) the reduction in numbers of L. monocytogenes caused by post-lethality
treatments, ii) the effects of these treatments on the bacterial lag time, and, iii) the growth of
L. monocytogenes during storage. The model should also be able to deal with situations such
as contamination after the application of post-lethality inactivation treatments or growth in
opened packages during storage at consumer homes or food service establishments.

Materials and Methods

Inoculum preparation and product inoculation

A cocktail of 10 L. monocytogenes strains were used in this study: 558 (serotype 1/2, pork
meat isolate), NA-1 (serotype 3b, pork sausage isolate), N-7150 (serotype 3a, meat isolate),
and N1-225, N1-227, R2-500, R2-501, R2-763, R2-764, and R2-765 (serotype 4b; outbreak-
related strains of food, clinical or environmental origin).

Cultures of each strain were individually suspended in autoclave-sterilized product extract,
and were incubated at 7°C for approximately 72 h in order to acclimate the cells to a low
temperature product environment (Lianou et al., 2007). Following the habituation procedure,
the 10 cultures were combined, serially diluted in freshly prepared product extract, and 0.1 ml
or 0.25 ml of the diluted mixture was used to inoculate (1-2 log CFU/cm?) the surface of
sliced deli meats (5 X 5 cm; 0.1-0.2 cm thick) or frankfurters, respectively. After allowing for
cell attachment (4°C, 15 min), inoculated products were placed into vacuum bags (two deli
meat slices or frankfurter links per bag) and were vacuum-packaged and stored at 4, 7 or 12°C
for up to 90 days.



Growth data

The data used to generate the model consisted of 60 growth curves of L. monocytogenes on
frankfurters, ham, roast beef and bologna formulated without or with antimicrobials (1.5%
potassium lactate and 0.05% sodium diacetate, or 1.44% sodium lactate and 0.1% sodium
diacetate). Six growth rates on bologna, calculated by Barmpalia et al. (2005), in the presence
of sodium lactate and/or sodium diacetate were also included in the data set. Other (18)
curves obtained near the growth limits were used for validation purposes.

The ability of the model to predict the growth of L. monocytogenes on frankfurters at various
stages of storage was assessed on 14 growth curves published by Byelashov et al. (2008a).
Frankfurters formulated with or without 1.5% potassium lactate and 0.1% sodium diacetate
were inoculated with L. monocytogenes, vacuum-packaged, and stored at conditions
simulating: storage before transportation to retail; temperature abuse during transportation
and storage before purchase; and temperature abuse during transport from stores to homes.
Sample packages were then opened (i.e., aerobic conditions) or held vacuum-packaged to
simulate storage in the home environment.

Model development

The growth model used in this study is based on the equations proposed by Mejlholm et al.
(2007). The terms for CO, concentrations, phenol and nitrite were omitted here as they were
not relevant to this work. The model comprises an interaction term based on the y-value (Le
Marc et al., 2002) to predict the growth/no growth interface of L. monocytogenes. The final
equation is written as follows:

Hinax = Hier-P (T )-7 (pH )'g(aw )-TLACU ([LA Cy ])-TDACU ([DA Cy ])f (1)

where .ris the specific growth rate at T,.—=25°C (the other environmental conditions being
optimum), p(T), y(pH), 8(aw), tacu ([LACy]), tpacu ([DACy]) are the individual effects of
temperature, pH, water activity and the concentrations of undissociated lactate [LACy] and
diacetate [DACy], respectively, & is the term representing the effects of interactions between
the environmental factors as defined by Le Marc et al. (2002). The individual effects of the
environmental factors are written as:

p(T)= [L] 7(pH) = [1-100"==), (aw) = [wj

Tref _Tmin aWopt = aW i

IVIICU LAC MICU DAC

zine, [LAC, D= (1—MJ . Tons, (DAC, )= [1_ LCuJ

where Tin, PHmin, @Wmin are the theoretical minimum temperature, pH and water activity,
respectively, supporting the growth of L. monocytogenes. MICyrac and MICypac are the
theoretical minimum inhibitory concentrations of lactate and diacetate, respectively. The
contributions of the factors to the interactions were calculated as suggested by Mejlholm et al.
(2007). pHin, MICypac, MICypac were also derived from Mejlholm er al. (2007) and kept
constant during the fitting procedure. aw,, was fixed to 0.997. The values for Tpyin, @Wimin, Hrer
(for each food product) in this study were estimated from 66 growth curves obtained on roast
beef, frankfurters, bologna and ham.

The modelling was carried out in two steps. First for each curve, the specific growth rate
(umax) Was calculated by fitting the primary model of Baranyi and Roberts (1994) to the
experimental data. Then equation 1 was fitted to the bacterial growth rates. Before fitting, a
square root transformation was performed to homogenise the variance of the growth rate.



Results and discussion

Growth rate model

The model describes satisfactorily the effects of temperature, pH, water activity, lactate, and
diacetate on the growth rate of L. monocytogenes (RzadJ: 0.89). The estimated values for 7,
and aw,,;,, were -3.7°C and 0.926 respectively. The values for u,.r were estimated as 0.31, 0.38,
0.45, 0.49 h™' for frankfurters, ham, roast beef and bologna products, respectively.

Model predictions and observed rates were compared with 18 specific rates of L.
monocytogenes obtained in the “interaction region” as defined in equation 1. Values of 0.9
and 1.4 were obtained for the bias factor B and the accuracy factor Ag, respectively.

The developed model for frankfurters was validated by comparison with 14 curves of L.
monocytogenes on frankfurters formulated with or without antimicrobials under fluctuating
conditions (Byelashov et al., 2008a). Figure 1 shows an example of the comparison between
model predictions and experimental data. For frankfurters formulated with antimicrobials, the
model was found to slightly overestimate in some cases the concentration of L.
monocytogenes (fail safe prediction) at the end of storage. The mean of the absolute
difference (MAD) between the predicted and observed viable counts was 0.6 log;, CFU/cm?
and 0.9 logj CFU/cm® for frankfurters formulated without and with antimicrobials,
respectively.
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Figure 1: Predicted growth of L. monocytogenes on frankfurters with or without 1.5%
potassium lactate and 0.1% sodium diacetate (solid and dotted lines, respectively) under
fluctuating temperature (broken line) simulating storage from manufacturing to consumption.
Comparison with log-counts observed with (m) and without (e) antimicrobials. Experimental
data from Byelashov er al. (2008a).

Effects of post-lethality treatments

The “work to be done” hy prior to re-growth of L. monocytogenes were calculated for 3
antimicrobial treatments (spray with lactic acid [5% v/v], sodium lauryl sulfate [0.5% w/v] or
a mixture of lactic acid [5% v/v] and sodium lauryl sulfate [0.5% w/v]. Results are
summarized in Table 1.



Table 1: Effects of antimicrobial treatments on the pH of frankfurters and the “work to be
done” prior to re-growth.
Antimicrobial treatment . “Work to be done prior”
. . pH reduction
(after inoculation) to re-growth, hy

A. Lactic acid (5%) 0.2 6.8

B. Sodium lauryl sulfate (0.5%) 0 3.0

C. Lactic acid (5%) + sodium lauryl

sulfate (0.5%) 0.2 6.7

These values of %, can be combined with the reported reduction of bacterial levels (Byelashov
et al., 2008b) and equation 1 to predict the kinetics of L. monocytogenes during storage after
the application of these treatments. Table 2 shows the prediction of the time (days) to obtain
an increase of 1 log;, CFU/cm’ in the concentration of L. monocytogenes after treatment C
(spray with a mixture of lactic acid and sodium lauryl sulfate, reduction of 2.8 log;o CFU/cm?)
as a function of storage temperature.

Table 2: Predicted time to obtain a 10-fold increase in the concentration of L. monocytogenes
after treatment C on frankfurters (initial pH 6, water activity 0.97) during storage at 4, 7 or
10°C.

Temperature (°C) Time to a 10-fold increase

(days)
4 43
7 23
10 14

Conclusion

The developed model may be useful in efforts to select conditions for control of L.
monocytogenes on frankfurters and may be applicable in the development of models for other
ready-to-eat meat products.
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Abstract

In the present study, the performance of six predictive models for Listeria monocytogenes
were evaluated for 971 growth responses of the pathogen in meat, seafood, poultry and dairy
products. The performance of the evaluated models was closely related to their complexity
i.e. the number of environmental parameters they take into account. The model of Mejlholm
and Dalgaard (2009) included the effect of nine environmental parameters and it performed
better than the other less complex models both with respect to prediction of growth rate (Jmax
value) and growth boundary for L. monocytogenes. For this model bias and accuracy factors
were 1.0 and 1.5, respectively, and a correct prediction percentage of 89 were obtained for
growth/no-growth responses. The performance of the models of Zuliani et al. (2007), PURAC
(2007) and Gunvig et al. (2007), including the effect of five to seven environmental
parameters, were considered acceptable with bias factors of 1.2, 1.4 and 1.2, respectively.
These models all included the effect of acetic acid/diacetate and lactic acid, but, the effect of
CO,, smoke components or nitrite was not always taken into account. Less complex models
that did not include the effect of acetic acid/diacetate and lactic acid (Pouillot et al. 2007;
Augustin et al., 2005) were unable to accurately predict growth responses of L.
monocytogenes in the wide range of food evaluated in the present study. When the complexity
of L. monocytogenes growth models matches the complexity of food then predictions can be
accurate and useful for assessment and management of the pathogen in processed and ready-
to-eat (RTE) products.

Keywords: Bias and accuracy factors, correct prediction percentage, growth/no-growth
predictions, Psi (y) value.

Introduction

For L. monocytogenes, the EU regulations specifically indicate predictive models can be used
to document that growth is controlled in RTE foods (EC 2073/2005) and similar criteria were
recently agreed upon by the Codex Alimentarius Commission. Clearly, models that accurately
predict the combined effect of product characteristics and storage conditions on growth and
the growth limit of L. monocytogenes are interesting for the industry and food inspection
authorities. Complex predictive models have been developed and they include the effect of
important environmental parameters to reduce and prevent growth of L. monocytogenes e.g.
the effect of acetic and lactic acid. However, evaluation and comparison of the performance
of complex predictive models are lacking for different types of RTE foods.

Materials and methods

The performance of six existing predictive models for growth of L. monocytogenes was
evaluated in the present study (Table 1). The number of environmental parameters included in
the evaluated models varied between one and nine. The least complex models, not taking into
account the effect of acetic acid, diacetate and lactic acid, were studied to determine the
difference in model performance when compared to the more complex models including the
effect of these organic acids.



Table 1 Environmental parameters included in the evaluated predictive models for L. monocytogenes

Models Temp. | NaCl/a, | pH CO, Smoke Nitrite A/\c(j:ieat(l:(;; (;Ld L;CCit(;C
Pouillot et al. (2007) + - - N
Zuliani et al. (2007) + + + R ¥ T
Augustin et al. (2005) + + + + + + -

PURAC (2007)? + + + ) n "
Gunvig et al. (2007)° + + + + - + + +
Mejlholm and

Daljgaard (2009)° * * * + + + + +

& Available from: http://www.purac.com/purac_com/a5348511153c582f5bd69fd6bd64bb49.php.
b Available from: http://1.test.dezone.dk/
¢ Available from: http://sssp.dtuaqua.dk/

Data from 971 experiments with growth responses of L. monocytogenes in processed and
RTE foods were collected to evaluate the performance of the six predictive models. Data for
model evaluation were collected from 34 independent sources and represented more than 20
different types of meat, seafood, poultry and dairy products. For each of the 971 experiments,
information on growth of L. monocytogenes was obtained together with product
characteristics and storage conditions of the foods. Growth of L. monocytogenes was
described by the maximum specific growth rate (Uma h™) and by growth/no-growth
responses. To differentiate between growth and no-growth, the latter was defined as an
increase in the concentration of L. monocytogenes being less than 0.5 log CFU g within the
experimental time. Predicted and observed pmax Values of L. monocytogenes were compared
by calculation of bias and accuracy factors. Bias factor values were calculated so that
numbers higher than 1 always indicated that predicted growth was faster than observed
growth. To graduate the performance of the predictive models, the following interpretation of
the bias factor was used (Ross, 1999): (i) 0.95-1.10 good; (ii) 0.87-0.95 or 1.10-1.43
acceptable and (iii) < 0.87 or > 1.43 unacceptable. Predicted and observed growth and no-
growth responses were compared by calculating the percentage of all samples that were
correctly predicted. Incorrect predictions were categorized as fail-dangerous (i.e. no-growth
predicted when growth was actually observed) and fail-safe (i.e. growth predicted when no-
growth was actually observed).

Results and discussion

The model of Pouillot et al. (2007), including the effect of temperature as the only
environmental parameter, significantly overestimated growth of L. monocytogenes as shown
by bias and accuracy factors of 2.1 and 2.3 for all data, and a high percentage of fail-safe
predictions (Tables 2 and 3). This model was developed as part of a quantitative risk
assessment of L. monocytogenes in French cold-smoked salmon. The effect of parameters
other than temperature was considered constant and taken into account by the mean value of
the reference growth rate of L. monocytogenes. When evaluated for seafood in the present
study (with 86% of the samples being cold-smoked salmon), predicted pmax Values were 70%
faster than the observed ones (Table 2). To explain the poor performance of this model, even
for cold-smoked salmon, products with added acetic acid/diacetate and lactic acid was
removed from the data set. This resulted in bias and accuracy factors of 1.5 and 1.7 for the
reduced set of seafood data (n = 121). The approach of modeling the effect of storage
temperature and considering other environmental parameters to be constant is therefore not
supported by the present study.

For the model of Zuliani et al. (2007), bias and accuracy factors were 1.2 and 1.9
(Table 2). This model was developed for ground pork meat, but importantly, its performance
was good or acceptable for other types of products with the exception of ham/cold-cuts (Table
2). The performance of this growth model may be improved by including terms for the effect
of nitrite, CO, and smoke components. However, this will most likely increase the already
high percentage of fail-dangerous predictions (Table 3).




Table 2 Comparison of predicted and observed pipa Values of L. monocytogenes

Bias/accuracy factors based on comparison of predicted and observed .« Values
Products n Pouillotet | Zulianiet | Augustinet | PURAC | Gunvig et Mejlholm and
al. (2007) | al. (2007) al. (2005) (2007) | al. (2007) | Dalgaard (2009)
Meat
Pork loin 100 1.8/2.3 0.8/1.8 1.5/1.9 1.0/1.7 0.9/1.5 0.8/1.5
Ham/cold-cuts 154 2.9/2.9 1.8/2.1 2.212.4 1.9/2.1 1.3/1.6 1.3/1.5
Sausages 448 2.212.4 1.2/2.1 2.212.7 1.4/1.7 1.0/1.5 1.0/1.5
Seafood 193 1.7/1.9 1.2/1.6 0.7/2.0 1.3/1.6 1.4/1.7 1.0/1.5
Poultry 64 1.5/1.9 0.9/1.5 2.0/2.1 1.0/1.4 1.2/1.5 0.9/1.5
Dairy 12 0.8/1.3 1.1/1.2 0.9/1.2 0.9/1.2 1.9/1.9 1.3/1.4
All data 971 2.1/2.3 1.2/1.9 1.8/2.4 1.4/1.7 1.2/1.6 1.0/1.5

Bias and accuracy factors of 1.8 and 2.4 were obtained for all data when the model of
Augustin et al. (2005) was evaluated (Table 2). The conservative performance of this model
was mainly explained by the fact that it did not include the effect of acetic and lactic acid.
Dividing the data set, bias and accuracy factors of 1.2 and 1.9 were found for products
without addition of acetic acid/diacetate and lactic acid (n = 349) whereas corresponding
values of 3.3 and 3.6 were determined for products added these organic acids (n = 214). Thus,
use of this model should be limited to foods without added acetic acid/diacetate and lactic
acid.

For the PURAC model, bias and accuracy factors of 1.4 and 1.7 were obtained for all
data. The performance of this model was good or acceptable for all types of food with the
exception of ham/cold-cuts (Table 2). As discussed for the model of Zuliani et al. (2007), the
performance of the PURAC model could be improved by including the effect of CO, and
smoke components. But again, this is likely to render the model more fail-dangerous with
respect to growth/no-growth predictions (Table 3).

The model of Gunvig et al. (2007) was developed for RTE meat products. For all
data, bias and accuracy factors of 1.2 and 1.6 were obtained and its performance was good or
acceptable except for the few dairy products studied (n=12). The model of Gunvig et al.
(2007) was slightly fail-safe partly because it did not include the effect of smoke components
(Table 1). When products including smoke components were removed from the data set, a
small improvement of the model performance was observed as indicated by average bias and
accuracy factors of 1.1 and 1.6 (n = 454).

Table 3 Comparison of predicted and observed growth/no-growth responses for L. monocytogenes

Number of fail-dangerous/fail-safe predictions
Products n Pouillotet | Zulianiet | Augustinet | PURAC | Gunvig et Mejlholm and
al. (2007) | al. (2007) al. (2005) (2007) al. (2007) | Dalgaard (2009)
Meat
Pork loin 100 0/64 8/0 6/29 812 4/14 6/1
Ham/cold-cuts 154 0/52 27/13 17/26 10/30 6/29 8/22
Sausages 448 0/144 50/20 28/66 102/25 25/57 29/29
Seafood 193 0/33 12/9 39/18 21/6 0/27 1/6
Poultry 64 0/14 10/0 1/13 5/1 1/2 11
Dairy 12 0/0 0/0 0/0 0/0 0/0 0/0
All data 971 0/307 107/42 91/152 146/64 36/129 45/59
Correct predictions (%) 68 85 75 78 83 89
Fail-dangerous (%) 0 11 9 15 3 5
Fail-safe (%) 32 4 16 7 14 6

The model of Mejlholm and Dalgaard (2009) include the effect of more environmental
parameters than the other models in the present study (Table 1). On average, this model
performed better than the less complex models both with respect to prediction of pma values
and growth/no-growth responses of L. monocytogenes (Tables 2 and 3). This model was
originally developed for processed and RTE seafood, but importantly, its performance was
also good or acceptable for other types of products with the exception of pork loin. The good
overall performance of this model suggests that it includes the effect of parameters actually
controlling growth of L. monocytogenes in the examined foods (Fig. 1). As an example, when




the effect of smoke components was ignored for the model of Mejlholm and Dalgaard (2009),
bias and accuracy factors increased to 1.4 and 1.7 for seafood. Interestingly, these values are
identical to the bias and accuracy factors obtained for seafood by the model of Gunvig et al.
(2007), not including the effect of smoke components (Table 2). This finding support that

smoke component have an important and predictable inhibitory effect on growth of L.
monocytogenes in smoked seafood.
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Figure 1 Comparison of observed and predicted iy, Values for growth of L. monocytogenes in meat,
seafood, poultry and dairy products (n = 605). Predicted piyax Values were obtained by the model of
Mejlholm and Dalgaard (2009) and did not included those products where growth was not observed or
where no growth was predicted. The solid line represents the perfect adequacy between observed and
predicted values.

Conclusions

This extensive validation study showed that pp. values and growth limits of L.
monocytogenes in processed and RTE food can be accurately predicted. Appropriate models

with a relevant degree of complexity have promise for future assessment and management of
L. monocytogenes in food.
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Abstract

The population density of S. aureus in the dairy chain under dynamic environmental
conditions (pH, a,, and temperature) that fluctuate from growth to survival/slow inactivation
conditions was modelled. To do this, the dependence of the probability of growth, and of the
growth and inactivation rate of S. aureus on the temperature, pH and Aw was modelled.
Probabilistic and kinetics models were combined to give predictions on the concentration of
S. aureus at any stage of the dairy chain under fluctuating pH, Aw and/or temperature. To
validate the models, predictions were compared with observations at different stages of hard
and semi-hard cheese production. Models were implemented in a user-friendly computing
tool freely available from www.ifr.ac.uk

Keywords
Staphylococcus aureus, Predictive Microbiology, dairy chain, BIOTRACER

Introduction

Staphylococcus aureus is a ubiquitous bacterium and one of the most common pathogens
causing mastitis in cattle. Therefore it is usually isolated from raw milk and other points of
the dairy chain. Human intoxication is caused by ingesting enterotoxins produced in food by
some strains.

Studying the response of S. aureus to the fluctuating conditions of the dairy chain is part of
the tracing strategy needed to identify the sources of contamination. We have developed
mathematical models able to predict the concentration of S. aureus at any time during the
dairy chain. Probability of growth models have been integrated with kinetic models for
growth and slow inactivation (or survival) at fluctuating environmental conditions.

Material and Methods

Data collection and generation

Data was selected from ComBase (www.ComBase.cc) in the range of conditions relevant to
the dairy chain. This was between 0-37°C, 2.5 - 7 pH values and 0.8-1 Aw values.

505 growth curves/rates were used to model the dependence of the maximum specific growth
rate on temperature, pH and Aw.

40 survival/slow inactivation curves/rates were used to study the dependence of the
inactivation rates on the environmental conditions.

660 growth and 55 no growth conditions were used to fit the probability of growth model.
More than 50% of the data was generated with the strain S. aureus 196E, which produces
enterotoxins A and D.

24 of these curves were explicitly generated at temperatures below 10°C to fill the data gaps
at survival/slow inactivation conditions.



http://www.ifr.ac.uk/
http://www.combase.cc/

Validation of the models was performed during cheese manufacturing. Hard and semi-hard
cheese made from pasteurized milk inoculated with S. aureus was monitored during
manufacturing and ripening.

In addition, observations on semi-hard cheese produced from raw milk naturally
contaminated were compared to predictions. Coagulase-positive S aureus were monitored
after milking, before pressing the curd and during cheese manufacturing at 12 and 24 h.

Modelling

The dependence of the maximum specific growth rate, zma, On the temperature in Celsius
scale, T, pH and Aw, was modelled as previously described (Presser, et al., 1997).

o =B(T =T ) JAW= Aw /1107~

Where:
dx . .
Mooy = dt in exponential growth phase

The parameters of the model, b, Tuin, AWmin and pHpin  Were estimated by non-linear
regression using SAS 9.1

The inactivation rate was modelled by an Arrhenius-type function as already reported (Ross,
et al., 2008)

Ln(-rate) =a, + a; (1/T) + a, (1/pH) + az (1/bw)

Where:

dx . ) o
rate = ~dt in log linear inactivation
X

T is absolute temperature (Kelvin scale)

bw = 1— Aw

ao, a1, ap and az are the model parameters fitted by linear regression. The energy of
activation, Ea, typical parameter of the Arrhenius model, can be estimated as

Ea = a;/K

were K is the universal gas constant (8.314)

The dependence of the probability of growth, P, on the temperature in Celsius scale, T, pH
and Aw, was modelled by a logistic regression model as previously described (Presser, et al.,
1998):

In (P/(1-P)) = bo + by IN(T - Trin) + b2 In (pH - pHmin) + b3 IN(AW - AwWpin)

The minimum values of the environmental factors for growth were fixed according to
ComBase data Tyin =7 , pHmin = 3.8 and Awp,;, =0.85. The parameters a,, a;, @, and a; were
estimated by logistic regression using SAS 9.1

Modelling at fluctuating conditions

Under fluctuating temperature, pH and Aw the differential equations were solved numerically
by the Runge-Kutta method. Simulations were carried out using an in-house Excel add-in
developed within this study, named "S.aureus Predictions" freely available at
http://www.ifr.ac.uk/



Results and Discussion

Table 1 shows the value of the estimations for the model parameters and the coefficient of
determination from the models. Estimations were robust and met the convergence criterion in
all cases. The R? of the model for the probability of growth was relatively small. However, the
predicted ability of a logistic model is given by the concordance between predictions and
observation and this was ca. 93% for our model.

Table 1: Parameter estimates.

Model Term Estimate se? R®
Growth rate b 0.0988 0.00475 0.92
Toin 3.921 0.6172
AWpin 0.8822 0.00673
PHumin 3.9931 0.0175
Inactivation rate a, 0.3243 3.207 0.86
a -2480 894.6
a 22.33 1.542
as -0.0112 0.008598
Probability of growth bo -0.1977 1.5903 0.60
b, -1.2857 0.2312
b, -3.4477 0.4537
bs -0.6305 0.7578

% standard error of the parameters

In real food scenarios the growth/no growth boundary is frequently crossed. In these
conditions either slow growth or slow inactivation can occur. The response of probability of
growth models needs to be completed with the increase/decrease in the bacteria concentration
as a result of the time under those conditions.

The predictions of the model were compared with the observations during hard-cheese
manufacturing produced from pasteurized milk inoculated with S. aureus. Fig 1 shows that at
the beginning of the process, mainly in the first 10-12 hours, the values of temperature, pH
and Aw allowed S. aureus to grow giving ca 2 decimal log increase in the concentration.
After ca. 4 days, Aw decreased to ca 0.86, pH to 5.1 and temperature was 12°C. This
conditions halted growth giving place to a slow decrease of the concentration. S. aureus was
not detected after ca. 800 hours of ripening.

In addition, the model was validated with observations on semi-hard cheese produced from
raw milk naturally contaminated with S. aureus. Coagulase-positive S aureus were monitored
after milking, before pressing the curd and during cheese manufacturing at 12 and 24 h. Milk
from fourteen farms was monitored and in general predictions were in good agreement with
observations.

The development of user-friendly software tools is important to facilitate the practical use of
predictive models. In this study, we have implemented the models developed for the growth
rate, inactivation rate and probability of growth in an Excel add-in. Predictions can be
obtained either at static or fluctuating temperature and the program makes it possible for users
to input their own temperature, pH and Aw profiles
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Figure 1. Predicted and observed (dots) concentration of S. aureus during the manufacturing
of hard cheese made from pasteurized milk inoculated with S. aureus. Temperature, pH and
Aw fluctuated during the process

Conclusions

A computing program, available as an excel Add in, has been developed to predict the
concentration of S. aureus in the dairy chain. In the growth/no growth boundary, either slow
growth or slow inactivation can occur. In real food scenarios this boundary is frequently
crossed. It is desirable to know the increase or decrease in the number of bacteria as a
function of the time at the boundary conditions. We have integrated probability of growth
models with models for the growth and inactivation rate to give dynamic predictions of the
bacteria concentration in the growth/no growth boundary
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Abstract

Salmonella Typhimurium is the main risk regarditngdborne human Salmonellosis attri-
buted to pork products. The main source of theqgmh in the pork production chain is the
pigs that arrive at the slaughterhouse sheddingaéli®ogen. In this work, a stochastic model
for the propagation of the pathogen at the compantrievel of the pig farms was built, in
order to estimate the effect of the compartmenta and the starting conditions of infection
on the probability of disease extinction, mean afgextinctions and on the prevalence of in-
fectious pigs at slaughter age.

Keywords
Pigs, Pork, Farms, Salmonella, Typhimurium, StottbaSpidemiology, Model, Prevalence

I ntroduction

Human Salmonellosis is the most common foodboreeadie. Regarding the cases attributed
to pork, the main risk arises from S. Typhimuridn.Typhimurium is mainly introduced into
the pork production chain from the infected pigseeng the slaughterhouse. Reducing the
prevalence of positive pigs at the pre-harvestestam help reducing the risk of introducing
the pathogen into the slaughterhouse and hencee¢lda incidence of human Salmonellosis.
Thus, a mathematical model, that can describe yhardics of S. Typhimurium in the com-
partment level, can help in the prediction of ptemae and in the testing of intervention
strategies in order to reduce the risk arising ftbenhigh prevalence of positive pigs.

The objective of this work was to build a stochastiathematical model that can predict the
incidence and the prevalence of the pathogen agistar pigs. The use of different compart-
mental sizes and different starting conditionsndéction were tested to evaluate their effect
on the probability of disease extinction, on theam@ge that extinctions occur and on the
prevalence of different risk groups of slaughteyspi

Materials and Methods

Using the findings of experimental infections ared experiments on S. Typhimurium at pig
farms conducted by different researchers, an epadermadel was developed for the propaga-
tion of the pathogen in the compartment level efpig farms. According to Fedorka-Cray &
al. (1994), Salmonella Typhimurium in pigs may agpwith two disease syndromes, depend-
ing on the dose of infection. In that work, the igere shedding the pathogen in higher
numbers when they were challenged per os with Himges of S. Typhimurium than when
pigs were commingled with other pigs already shegldhe pathogen. Consecutively, they
concluded that “their data gives evidence for asdadisease syndrome. This syndrome is
subclinical and may be important in establishingperier state.” Accordingly, in this work
two syndromes were employed, a high propagatiodrsyne with High Infectious (HI) pigs,
and a low propagation syndrome with Low Infectiqu$) pigs. The conceptual model is
represented in fig. 1 (Soumpasis and Butler, 20G9)en that the low infectious pigs shed
less frequently and in smaller populations the qpg¢in, they are expected to have smaller
transmission rate, which was modeled by a reduetsmitability factor. The decision of
which of the two syndromes will be triggered, wasdeled using the concept of the Infec-
tious Equivalent (IE). When IE exceeds a critlgait (IEcl), the high propagation syndrome
is triggered. It was assumed that the pigs in loaes develop antibodies at the same time,



around 16 days PI (Nielsen & al., 1995). At thaidipigs stop shedding and pass to a carrier
stage, carrying the pathogen in internal orgaks,liimph nodes and tonsils for approximate-
ly up to 12 weeks PI (Wood & Rose, 1992). Aftestheriod, the pigs clear of the pathogen
but still retain antibodies for an approximate kqtariod of sero-positivity around 110 days
(Nielsen & al., 1995).

Figure 1. Conceptual representation of the modalifpasis and Butler, 2009).

The model is mathematically described with theolwlhg equations (Soumpasis and Butler,
2009). The frequency-dependent transmission wdsrped over density-dependent (Keeling
& Rohani, 2007) because of the infrastructure efrttodern pig farms. This is why the popu-
lation of the infectious is divided by the totalgutation of the compartment (N).

CHI+e&xLI
lfTZIEcl:
ds HI +¢exLI
Ez_ﬁ*S*T-}_K*Im
dHI HI + e LI
ar  PrSr——y Tyl
dLI
s
dc
E=y*(HI+LI)—1"*C
dim
7=F*C—K*Im
else:
ds HI + &= LI
Ez_ﬁ*S*T-l_K*Im
dHI
ar -
dLI HI +ex* LI
E: * S % N —y*L[
dc
E=y*(HI+LI)—1"*C
dim
7=F*C—K*Im

In the mathematical model the paramefers and IEcl could not be retrieved from literature
or experiments. A scenario analysis was run udiegiriputs of a field experiment made by
Beloeil & al. (2003) in order to simulate the expent. In that experiment three different
compartments of a farm were followed bacteriololfjjcand serologically. Using different
combinations of parametese and IEcl, the scenario analysis was used to findvhich of
the combinations the field experiment results agjmgith the results produced by the simula-
tion. The range of values resulted from this sderemalysis was fo from 0.145 to 0.19, for

¢ from 0.61-0.8 and for IEcl from 0.10 and 0.14 (®pasis and Butler, 2009).

In a second phase, a stochastic model was builg s event-driven approach that is more
appropriate for pig farms (Soumpasis and Butle®80Thet-leap method was used in order
to increase the simulation speed. The median valtig$0.165),c (0.7) and IEcl (0.12) were



used for the stochastic model, along with the opfa@ameters already used at its deterministic
counterpart. The model simulated different compartts with population ranging from 200
to 400 pigs and different starting conditions déation from 0.25% to 100%. The probability
of extinctions and the mean prevalence of eacls dhthe model and each risk group of pigs
were recorded along with the population of the caripent and the starting conditions of
infection. The events and the number of eventstima step are presented in table 1 (Soum-
pasis and Butler, 2009).

Table 1: Events of the model and calculation ofrtmber of events per time step using the
“1 -leap method” (Soumpasis and Butler, 2009)

Name Number of events Font style
High Infection M1=Poissont[ p*S*(HI+ e*LI)/N]) S->S-M1, HI->HI+M1
Low Infection M2=Poissont[ p*S*(HI+&*LI)/N]) S->S-M2, LI->LI+M2
Recovery of HI M3= Poissoti[ y*HlI]) HI->HI-M3, C->C+M3
Recovery of LI M4= Poissom] y*LI]) LI->LI-M4, C->C+M4
Recovery of C M5= Poissort( I'*C]) C->C-M5, Im->Im+M5
Loss of Immunity M6= Poissorti( k*Im]) Im->Im-M6, S->S+M6

The model was run for 113 days, starting from thst@lay of life of the pigs, which it was
supposed to be age that pigs lose maternal immukdgordingly, the last day of the model
(day 174) is considered to be the average haregstTthe stochastic model was compared to
the deterministic model, using the predicted me&wvalence of the stochastic model and the
predicted prevalence of the deterministic modelthar different classes and risk groups for
the range of TPC and SCI used for validation resison

The model and the scenario analysis were writteRyithon programming language v.2.5.1,
using the scientific libraries Scipy/Numpy, for nemcal calculations. Parallel computing
with Ipython and optimizations using Pyrex pythottemsion resulted to an overall 86% re-
duction of execution time on an Intel core-duo catap clocking at 3GHz running x86_64
Linux Mint. For the graphical representations @ tesults Gnuplot v.4.2 was used.

Results and discussion

From the results of this work it is concluded thety low or very high starting conditions of
infection can lead to increased observations afadis. However, these extinctions differ qua-
litatively and the impact of this difference is shoat the prevalence of the classes and risk
groups with long duration in the infection cycle.

In the case of low SCI, the extinctions were eariinctions leading to a minimum of preva-
lence of all classes except the susceptible. klay the distributions of prevalence of Hl,
LI, C and Im were highly zero-inflated and the riskintroducing the pathogen into the
slaughterhouse was minimized. Thus, measures ¢daice SCI like cleaning of the com-
partment between batches and good farming practicelsl have a positive effect at the re-
duction of the risk of introducing the pathogenhat slaughterhouse.

For SCI from 3.7% to 5.4% the extinctions almogsbee, while the mean age of extinction
maximized leading to late disease extinctions. Abthis level, the cases of extinctions were
increasing linearly with SCI, while the relationghof the probability of extinction and TPC
was negative. Thus, the reduction of the size efabmpartment has a positive effect in the
reduction of the risk of S. Typhimurium.

For these late extinctions, although the distriimaiof the prevalence of the infectious classes
(HI and LI) were zero-inflated, the distributionktbe classes of C and Im were approximat-
ing the normal distribution. Thus, while the ristogps of culture- and sero-positive cannot
predict the actual risk of introducing the pathogo the slaughterhouse through the infec-
tious classes, they can be used for charactenzaficthe farm status regarding Salmonella,
because of the property of “memory” that they have.

Indeed, this was observed for SCI above 50%, wtnergrevalence of the risk groups of cul-
ture- and sero-positive was relatively stable ado8ih% and 53% respectively. However, for



very low SCI, both risk-groups showed a lot of &tidn, which partly explains the big varia-
bility between consecutive serology tests of threeséarm observed at national serology pro-
grams. A key point is that at least for farms ttadw a relatively high sero-positivity to con-
secutive tests are heavily contaminated. The nmathwn scheme of farm serology monitor-
ing programs for Salmonella, which is followed ailsdreland, is to define the index of the
farm with a weighted average of three consecutarapdes. There are taken 3 samples per
year and in each sample 24 animals are testeddggrst with meat-juice ELISA). Having

in mind the above and the hypergeometric natuthesampling process, it is proposed that
the serology monitoring programs should take irdooant the size of the farm, in order to
define both the number of the animals tested aadrédguency of the sampling.

Conclusions

In a first phase a deterministic model was devealogking into account the two different
propagation syndromes, with which S. Typhimuriunyragpear in the farm and having as a
modeling unit the compartment level of the farmalsecond phase, a stochastic model was
built adapted to modern all-in-all-out farm systeamsl conditions. From the results of the
model, it was concluded that cleaning and disiidecof the compartments between batches
of pigs along with the reduction of the compartna¢isize could increase the probability of
disease extinction up to 45%. On the other harelptlkvalence of the culture- and the sero-
positive risk groups could be used as an indicatdhe status of the farm regarding S. Ty-
phimurium. A re-consideration of the Salmonella itmnng programs regarding the frequen-
cy and the sample size is proposed based on thefike farms.
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Abstract

In this study, the potential of using the metabolic profile of end-products, mainly organic
acids, as a conseguence of the evolution of the microbial association present initialy in meat
(minced beef), on predicting the shelf life of minced beef was evaluated, performing in
paralel microbiological analysis, sensory analysis, and pH measurements. The shelf life of
minced beef stored aerobically, under Modified Atmosphere Packaging (MAP) and MAP
with the presence of the volatile compounds of oregano essential oil (MAP + OEO) at 0, 5,
10, and 15 °C was assessed, monitoring the microbial association of meat and the biochemical
changes occurring in the meat substrate. Microbiological analysis that implicated counts of
TVC, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria (LAB),
Enterobacteriaceae yeasts, and molds was performed at the same time with sensory analysis,
pH measurements and HPLC analysis of organic acids. The spectral data collected from
HPLC were subjected to various analyses, including Principa Components Anaysis (PCA)
and Factoria Discriminant Analysis (FDA), reveaing qualitative classification of the samples
concerning their spoilage status, as this was pre-classified from the sensory evaluation.
Quantitative predictions of the TVC, Pseudomonas spp., Br. thermosphacta, LAB,
Enterobacteriaceae yeasts and molds where conducted using Partial Least Square-
Regression (PLSR) models, as well as Support Vector Machines (SVM) regression models
with linear and non-linear kernel functions. The above classification and calibration models
demonstrated that the metabolic profile of organic acids, i.e metabolic end-products derived
form the microbial activity of the microbia association developed during storage, as
attributed from the HPLC analysis, may be considered as a potential method to evaluate the
spoilage and the microbia status of a meat sample regardless the storage conditions (e.g.
packaging and temperature).

K eywor ds Minced meat, Spoilage, HPLC, end-product metabolites, PLS-R, SVMs

I ntroduction

The relationship between microbia growth and chemical changes occurring during meat
storage has been continuously recognized as a potential means to reveal indicators that may
be useful for quantifying beef quality or freshness (Nychas et al. 2008). Though, the imposed
different storage conditions and the preservatives could influence the production of these
potential indicators, through the establishment of a transient microbial association defined as
the ‘Ephemera spoilage micro-organisms - ESO (Nychas and Skandamis 2005). As a
conseguence, these compounds can be formed in different concentrations depending on the
storage conditions, whilst their absence or presence in low quantities, do not preclude
spoilage (Nychas et al.. 2008). This fact arises the need of a holistic approach in introducing
shelf-ife indicators that could be applied irrespective of storage temperature or packaging
system and be dligible to the income of new technologies. Considering the above, the aim of
the present study was to investigate the potential of HPLC analysis of organic acids as a quick
analytical method for monitoring the spoilage of minced beef samples stored under different



storage conditions (i.e. packaging and temperature). Conventional packaging conditions (as
aerobic storage and storage under modified atmospheres) as well as an alternative packaging
technique (packaging with the presence of volatile compounds of essential oil) were used in
order to explore the dynamics of the method in anaysing different meat ecosystems.
Moreover, different storage temperatures were tested, which represented chill (0, 5 °C) and
abuse temperatures (10, 15 °C) that may occur during the chill chain of the meat.

Materials and methods

Minced beef was stored aerobically, under Modified Atmosphere Packaging (MAP) and MAP
with the presence of the volatile compounds of oregano essential oil (MAP + OEO) at 0, 5,
10, and 15 °C and micrabiological analysis that implicated counts of total viable counts
(TVC), Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria (LAB),
Enterobacteriaceae yeasts and moulds was performed in paralel with sensory analysis, pH
measurements and HPLC analysis of organic acids. The spectral data collected from the
HPLC (areas under peaks) were subjected to a principal component analysis (PCA) to
investigate the peaks that significantly fluctuated during storage, followed by a second PCA
using the selected peaks which revealed the Principal Components (PCs) that were further
used for analysis. These last PCs were subjected to Factoria Discriminant Analysis (FDA) in
order to predict the spoilage status of a sample belonging to a previousy-defined qudity
group (fresh, semi-fresh, and spoiled). In an attempt to predict the different groups of
microbial flora, the above PCs were regressed using a fully cross validated partial least
squares regression (PLS-R) model and Support Vector Machines (SVM) regression models
with linear, polynomial, radial basis and sigmoidal Kernel functions.

Results and discussion

The analysis of the chromatograms from the HPL C resulted in the selection of 17 pure peaks
(purity was aways greater than 99%, as calculated from the Jasco Chrompass
Chromatography Data system v1.7.403.1). These peaks had Retention Times (RT) of 6.2, 6.9
(citric acid), 7.0, 7.9, 8.3, 9.7, 10.9 (lactic acid), 11.9 (formic acid), 12.9 (acetic acid), 14.9,
15.1 (propionic acid), 16.1, 17.8, 18.6, 20.5, 24.6 and 28.1. Figure 1 represents the metabolic
profile of afresh mince sample and a spoiled one as attributed from the HPLC organic acid
analysis.
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Figure 1: The metaboalic profile of afresh mince sample A) and a spoiled one B) during
aerobic storage at 15 °C, as attributed from the HPLC organic acid analysis.

Qualitative classification of the samples

The FDA provided classifications of the samples regarding their spoilage status, giving a
correct classification of the samples 93.3% (fit of the model) and a cross validation of 88.0%.
More specifically, the classification of the samples after cross validation of the built model
was 88.46% correct for the fresh samples, 81.82% for the semi-fresh and 89.47% for the
spoiled ones. Figure 2 demonstrates the discrimination map of the samples regarding their
spoilage status (fresh, semi-fresh and spoiled). The map reveals the transition of the meat
samples from the fresh status to semi-fresh and finally to spoiled.
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Figure 2: Discriminant analysis similarity map determined by discriminant factors 1 (F1) and
2 (F2) for HPLC spectral data of the three different minced groups: e, fresh; o, semi-fresh;

A, spoiled

Prediction of the microbial loads

PLSR analysis, that employed one latent variable in all cases, as well as the SYM models
with linear, polynomial, radial basis and sigmoidal kernel functions demonstrated a
predictions onto viable counts of the total microflora (TVC), Pseudomonas spp, Br.
thermosphacta, LAB, Enterobacteriaceae, and yeasts and moulds. The values of B, A, and
RMSE indices (Ross 1996; Panagou and Nychas 2008) that demonstrate the performance of
the models built for every group of microorganisms are shown in Table 1 (data not shown for
the polynomial models because they exhibited an overprediction trend). Figure 3 shows the
distribution of the predicted cross validated values of the TVC compared to the observed

ones.

Table 1: The performance of the models using the full cross validation estimates from the four

built models.
PLSR Linear SVM Radial basis SVM Sigmoid SVM

Microbial group

B A RMse B A Rvuse B A RvysE B A RMSE
TvC 099 110 0.88 099 110 094 100 110 0.89 100 110 0.83
Pseudomonasspp 100 1.17 130 135 139 220 100 1.15 109 102 119 1.30
Br.thermosphacta 100 1.18 109 099 1.18 114 101 117 106 100 118 1.07
LAB 100 1.09 075 101 1.09 074 101 108 071 102 108 068
Enterobacteriaceae 099 1.6 118 100 1.14 108 100 1.14 098 098 114 1.05
Yeasts & Molds 099 115 101 100 115 103 099 111 083 102 114 097
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Figure 3: Observed vs Predicted counts of the total microbial flora (TVC) as estimated from
the cross validated values of the PLS-R (A), linear SYM (B), radial basis SVM(C) and
sigmoid SVM (D) models.

The value of B describing the performance of the model, was generally close to unity,
indicating good agreement between observations and predictions, whilst the fact that it is
dightly bellow unity, indicates a ‘fail-safe’ model (Ross, 1996). The Ar values, that were aso
close to unity, describe the average differences between predictions and observations, For
example, the value A; = 1.100 for the TV C counts indicates a 10 % average difference (either
above or below). In general the PLS-R, radia basis SYM and sigmoidal SVM exhibited
dightly better performance than the Linear SVM whereas the models that described the
estimates of the TVC, as well asthe LAB, had better performance (according to the values of
Table 1), regardless of the type of the model built.

Conclusions

The above results reveal that HPLC analysis of organic acids can be proved as a potential
technique for meat analysis in predicting the spoilage status and the microbial load of a meat
sample regardless the type of storage conditions. A data reprocessing in which the type of
the packaging can be considered as a factor will strengthen the potential use of this approach.
It is clear that further studies are required to investigate the ligibility of the method and
update it with novel packaging and preservation techniques that are raising and sequentially
change the time course and character of spoilage.
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Abstract

In the present work, the survival of Listeria monocytogenes in the traditional Greek soft,
spreadable cheese Katiki Domokou was studied throughout the shelf life of the product. Five
strains of Listeria monocytogenes were aseptically inoculated individually and as a cocktail in
Katiki cheese, which was then stored at 5, 10, 15, and 20°C. Pulsed-field gel electrophoresis
was used to monitor strain evolution or persistence during storage at different temperaturesin
the case of the cocktall inoculum. The results suggested that strain survival of L.
monocytogenes was temperature dependent since different strains predominated at different
temperatures. Kinetic behavior of L. monocytogenes in the case of the cocktail inoculum was
also studied. The applicability of a neura network approach was compared with the
reparameterized Gompertz, the modified Weibull, and the Geeraerd primary models. The
developed neural network described the survival of L. monocytogenes equally well or dightly
better compared with the other models. The neural network and primary models all were
validated under constant temperature storage conditions (12 and 17°C). The prediction
performance of the neural network approach was equal to that of the primary models at both
validation temperatures. This study underlines the usefulness of predictive modeling as a tool
for redlistic estimation and control of L. monocytogenes risk in food products. Such data are
also useful when conducting risk assessment studies.

Introduction

“Katiki Domokou” is atraditional Greek Protected Designation of Origin (PDO) cheese since
1994 (pH 4.2 to 4.4). Its microflora has not been studied yet, while its structure (pseudo-
emulsion) and composition may enable (or even favour) the survival and growth of severa
pathogens, including Listeria monocytogenes. The persistence of L. monocytogenes during
storage at different temperatures has been the subject of many studies since temperature abuse
of food products is often encountered (Xanthiakos et al. 2006; Sivarooban et a. 2007). The
gualitative and /or quantitative risk of using single or cocktail strains is the purpose of this
communication which is based on the data provided in previous publications related to Katiki
cheese published from of our group (Mataragkas et a. 2008; Panagou 2008; Kakgli et al.
2009).

Materialsand Methods

The strains used in the study for the inoculum consisted of two type strains of serotype 4b and
three isolates belonging to our laboratory collection, isolated from soft cheese and a conveyor
belt of ready-to-eat (RTE) foods. The strains were chosen on the basis of their source of
isolation, since this could be crucia to the interpretation of the data. The cheese was stored at
5, 10, 15, and 20°C as temperature abused over a period of 40 days. The quantitative as well
as qualitative evolution of the pathogen was monitored throughout storage Additionaly,
pulsed-field gel electrophoresis (PFGE) was used to monitor the strain(s), which may survive
and / or grow at different temperatures (Heir et a. 2004). Kinetic parameters related to
survival and death of this cocktail of L. monocytogenes strains was estimated with four
models [the reparameterized Gompertz model, the modfied Welbull model, the Geeraerd
model and an artificial neural network model — radia basis function (RBF NN)], capable of
fitting linear and biphasic inactivation curves (Zwietering et a. 1990; Geeraerd et al. 2000;
Albert and Mafart 2005; Panagou et d. 2007). The kinetics were then described as a function
of storage temperature. The model was also validated in the actual product. The secondary



models for Katiki cheese, stored at various temperatures using a five-strain cocktail, are of
great importance since the existing kinetic models for survival / inactivation of L.
monocytogenes in different foods or food systems (e.g. broths, model systems), have been
derived mainly from experimentswhere single strain innocula were applied.

Results and Discussion

The kinetic parameters of L. monocytogenes during storage at different temperatures have
been the subject of many studies since temperature abuse of food products is often
encountered (Mataragas et al. 2006, Xanthiakos et al. 2007). Particularly the quartitative
estimation of kinetic parameters related to growth, survival, and death of a cocktail of L.
monocytogenes strains has been described recently (Mataragas et a. 2008; Panagou 2008) by
using either the reparameterized Gompertz, the modified Weibull, the Geeraerd models and
artificial neural networks (ANN) approach. It was concluded that the performance of the latter
(ANN) was equal to that of the primary models at both validation temperatures.

When the validation of these models was tested against the different strains used in this study
a significant variation occurred. Indeed the kinetic characteristics (death rate) of individual
strains displayed a different inactivation behavior at the temperatures studied, e.g. presence or
absence of shoulder phase and presence or absence of a sub-population (Kpae). The
inactivation rates of the primary population (K1) Were not directly comparable between the
strains at al temperatures. Therefore, the parameter of 4D reduction should be used for
comparison because it takes into account the existence or not of shoulder phase or the
presence or not of a sub-population (tailing). The results showed (Table 1) that there are
differences between strains regarding the time needed to reach 4 logs reduction and especially
at high temperatures (15 and 20°C) the parameter varied considerably. The best survivor
among the strains tested was the strain TS125 (Table 1).

Listeria monocytogenes strain

T°C TS124 TS125 TS128 TS131 TS133
5 26.40° 29.10 25.20 25.20 24.60
10 21.90 24.30 21.00 21.90 21.90
15 8.60 17.20 10.60 11.00 12.20
20 6.24 9.23 6.37 3.51 741

% days needed for a 4D reduction.

Table 1: 4D reduction (in days) of different Listeria monocytogenes strains inocul ated
individually in katiki cheese and stored at different temperatures.

This was also evident with the application of PFGE, which revealed that TS125 was present
in higher percentage among the other strainsin the cocktail experiments (Table 2). The fact
that different strains were recovered from different temperatures is of great importance per se.
There are certainly some strains which have better survival capacity. For example the most
persistent strain in all cases, both individually or mixed with other Listeria strains, was
TS125, a serotype 4b strain, which is in accordance with previous observations regarding
strain serotypes and food-borne illnesses (Cocolin et a. 2001; Borucki et a. 2003). The rest
of the strains studied did not show the same behavior and, when inoculated individually, were
more or less affected by the presence of other strains.



Temperature % contribution of Listeria monocytogenes strains

) TS124 TS125 TS128 TS131 TS133
5 0 0 0 100 0
10 0 95 0 0 5
15 18 68 0 14 0
20 0 78 5 3 14

Table 2: Contribution of individual strainsin the cocktail experiments at the end of storage of
katiki cheese stored at different temperatures

With this information it can be concluded that the developed model(s) could not be used for
the individual strains, but the model was only accurate in the case of the cocktail inoculum.
This was due to the fact that strain survival of L. monocytogenes was temperature-dependent
since different strains managed to survive at different temperatures (Table 1).

Such information is of great importance in risk assessment studies, which typically consider
only the presence or absence of the pathogen. Adopting such an approach, it can be concluded
that the derived models can be useful in risk assessment studies especially when the
probability o illness at the time of consumption can be assessed, in conjunction with data
derived from consumption patterns of the product, retail and home time-temperature profiles,
and storage times of the product. However, the strain variability should always be taken into
account.

This study demonstrates the importance of the selection criteria of one strain versus another
when risk assessment analysis is conducted. Whether the environment in which Listeria is
found, e.g., cheese or meat, could influence the survival rate might be another important
factor to take into consideration since it has been shown in several models that
microorganisms have a different behavior in broth culture than in a complex food matrix
(Xanthiakos et al. 2006; Dourou 2009). Relevant findings would contribute further to the
applicability of EU regulation 2073/2005 (European Commission 2005).
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Abstract

Foodborne pathogens including Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella
have been implicated in several food pathogens related outbreaks linked to the consumption of ready-to-
eat (RTE) food products. The appearance of L. monocytogenes in sliced RTE deli meats has drawn
considerable attention in regard to possible cross-contamination during slicing operation at retail and food
service environments. Deli meats (ham and salami) were used to investigate the surface transfer of three
foodborne pathogens between a meat slicer and meat slices and to understand its impact on food safety.
A cocktail of each foodborne pathogen (5 to 6 strains) was inoculated onto a slicer blade to an initial level
of ca. 3, 5, 6, 7 or 9 log CFU/blade (or ca. 2, 4, 5, 6 or 8 log CFU/cm” of the blade edge area), and then
the deli meat was sliced to a thickness of 1-2 mm (Case I). For another cross-contamination scenario, a
clean blade was used to slice the pre-surface-inoculated meat with target cocktail (ca. 3, 5, 6, 7, 8 or 9 log
CFU/100 cm” area), followed by slicing the un-inoculated meat (Case II). Results showed that the
developed empirical models were reasonably accurate in describing the surface transfer trend/pattern of
each foodborne pathogen between the blade and meat slices when the inoculum level was > 5 log CFU on
the meat or blade. With an initial inoculum at 3 or 4 log CFU, the experimental data showed a rather
random pattern of bacterial transfer between blade and meat. The resulting models are microbial load,
sequential slice index and contamination route dependent which might limit their applications to certain
conditions. However, the models may be further applied to predict the 3 or 4 log CFU level (and
below) cross-contamination of meat slicing process. The empirical models may provide a useful tool in
RTE meat risk assessment.

Introduction

Ready-to-eat (RTE) meat products such as sliced deli meats (e.g. ham, salami, bologna and other
restructured meat) were commonly prepared by using a slicer, which probably was the last processing
step before packaging or wrapping. Those consumer products are typically available in the retail
refrigerated food section, either produced by food companies or made to order in store. Sliced RTE
products are also commonly sold by delicatessen and fast food restaurants, where a retail-scale slicer is
commonly used on site for meal or sandwich preparations. If not properly cleaned and regularly
sanitized, the slicing machine may become the potential source of microbial cross-contamination.
Among the foodborne pathogens, Listeria monocytogenes is a psychrotrophic pathogen and has been
isolated from sliced RTE meats and caused outbreaks [The Centers for Disease Control and Prevention
(CDC), 2002], it is of special interest from public health protection perspective to minimize potential food
hazard. It is estimated that about 2,500 cases of listeriosis occurred each year, resulting in 500 deaths, in
the United States (Mead and others, 1999). The prevalence of L. monocytogenes in RTE meat and
poultry, seafood, dairy products and produce has been reported with published data collected in the retail
and food service environments (Lianou and Sofos, 2007). RTE meats also have been implicated in
salmonellosis outbreaks included roast beef (Shapiro, 1999) and fermented sausage (Sauer et al., 1997).
Although the contaminations of E. coli O157:H7 and/or Salmonella on RTE meats are not common, there
are possibilities that these two pathogens may cause potential food hazards if the slicing equipment used
for multiple products. The incidence of salmonellosis appears to be rising both in the U.S. and in
other industrialized nations (FDA, 2009).

In this study, the transfer of foodborne pathogen from one contact surface to another for RTE deli
meats with a delicatessen or restaurant type slicer was investigated. The objective was to develop
mathematical models to describe the surface cross-contamination of L. monocytogenes, E. coli O157:H7
and Sa/monella during slicing operation. The developed models may provide a better understanding of
microbial surface transfer patterns for the three foodborne pathogens during slicing to enhance RTE meat
food safety.

Materials and methods

Bacterial strains
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A cocktail of 5-6 strains of targeted pathogen was used for the surface transfer studies. The
foodborne pathogen strains were obtained from the Microbial Food Safety Research Unit in
USDA/ARS/ERRC. A loopful of each strain was transferred from a stock culture stored at -80°C into 10
ml of Brian Heart Infusion broth (BHI, Becton, Dickinson and Company, Sparks, MD) and incubated at
37°C for 6 h. A loopful of cell suspension of each strain was then separately transferred to 10 ml of BHI
broth and incubated at 37°C for 24 h. Each strain was plated on the properly selective agar plates (e.g.
MOX for L. monocytogenes, CT-SMAC for E. coli O157:H7 and Rappaport for Salmonella) to determine
the cell counts and adjusted to obtain equal cell contribution in the cocktail with 0.1% peptone water.

One ml of cell suspension from each strain was combined, and the mixture was further diluted with sterile
0.1% peptone water to the targeted level.

Delicatessen slicer and deli meat slicing

A retail-scale, gravity-fed (45° angle) mechanical slicer (Model 3500, Globe Food Equipment Co.,
Dayton, OH) was used for ham slicing. The slicer was equipped with a 305 mm (12-inch) diameter
hollow ground knife (round blade) and operated at 300 revolutions per minute (rpm). The meat holding
section was equipped with a 1.36 kg (3 Ib) stainless steel end weight to deliver a consistent cut weight.
Deli meats (ham or salami) were sliced to 1-2 mm in thickness and individually collected in stomacher
bags (one slice per bag). Each meat slice was weighed and added an equal amount of sterilized peptone
water (PW), then, stomached for 2 min. One ml or 0.1 ml of “meat juice” with proper dilution (with PW)
was spread on the microbial medium plate for enumeration (duplicate plates). The number of sliced meat
collected was based on the initial microbial inoculation level, i.e. the higher of inoculation level, the more
of sliced meat collected. Each experiment was repeated three times.

Model development and statistical analyses

Model development to describe the foodborne pathogen surface transferred patterns during
slicing of RTE meats was initially investigated and reported for L. monocytogenes (Sheen, 2008). Due to
the lack of clear understanding and complexity of the surface transfer mechanism, the empirical modeling
approach was applied. TableCurve 2D version 5.01 (Systat Software Inc., Richmond, CA) software was
used to derive the models where the surface transferred counts per sliced meat was the dependent variable
vs. slice sequence number as the independent variable. TableCurve 2D screened hundreds of equations to
fit the experimental data with regression analyses and reported the selected models in an order of either F-
statistic or coefficients of determination (r*) from high to low order. The statistic results including the t-
tests for all coefficients in the fitted models, in addition to the F-statistic, were considered the key factors
in selecting the best-fit model and for further model development. Model selecting criteria were F-
statistic, t-test of each coefficient for parameter, simplicity, singularity, convergence and r*. A “best-fit”
model fulfilled the following criteria was selected: (1) decaying transfer counts and approaching zero for
large slice number; (2) no singularity and divergence in prediction; (3) a simple model with fewer
coefficients and parameters; (4) P > |t| (< 0.001) for all coefficients; (5) highly significant F-statistic
results [i.e., P> F (< 0.0001)]; (6) r* higher than 0.6. The r* was used as a reference since F-statistic and
t-test results of all coefficients were more important for non-linear model development.

Results and Discussion

For L. monocytogenes surface cross-contamination during slicing, the microbial transfer followed
the exponentially decaying pattern which is similar to the first-order kinetic reaction model. The transfer
models were further developed to factor in the initial inoculation microbial level and presented as Egs.
LM-1 and LM-2 (Sheen, 2008).
For surface transfer from direct blade inoculation to meat (Case I):

-X
Y =0.461- Exp(0.255 n) Exp(———————
n ) p(0.0215'n4'%2)

For surface transfer from contaminated meat to blade to meat (Case II):

(LM-1)
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Y =0.495- Exp(0.244 - n)- Exp[ X ] (LM-2)
23.98- Exp(0.413 - n)
Models, LM-1 and LM-2 are empirical which well represented the experimental data (repeated three
times) and satisfied all the modeling selecting criteria.

The E. coil O157:H7 surface transfer models were developed (Sheen and Hwang, 2009) and
shown below. The surface transfer can be described by the non-linear models derived from the decaying
power or exponential law for Case I and Case 11, respectively. The model for Case II is similar to that for
L. monocytogenes.

Case I:

Y =0.017-n**° . x 02 (EC-1)
Case II:

Y =0.710- Exp(0.227 - n) - Exp| - X ] (EC-2)
14.83 - Exp(0.308 - 1)

For Salmonella surface transfer, models for Case I and Case Il were found following the decaying
power law which is non-linear with the inoculation level factor built in.
Case I:

Y - (0301 . nl.446) _X(—0.051n+0.061) (SL-I)
Case II:
Y =1.119-p%7% . x 01D (SL-2)

It is clearly demonstrated that the surface transfer of three different foodborne pathogens on RTE
meat during slicing did follow the decaying trend by either a power or an exponential law. Fig. 1 and Fig.
2 showed the predicted surface transfer patterns of three pathogens at inoculation level n=7 for Case I and
Case 11, respectively. Fig. 3 and Fig.4 showed the predicted transfer patterns at inoculation level n=4 for
Case I and Case I, respectively. Without the models, the cross-contamination of each food pathogen will
be difficult to describe and predict. Furthermore, the complexities of other factors, e.g. foods, operation
parameters and microbe itself (attachment, survival), make the transfer model development even more
challenging. This report provides useful information for microbial cross-contamination when designing
the slicing and/or other food processes in connection with food safety consideration. The transfer models
may be applied to risk assessment to enhance food safety.

Conclusion

The microbial surface transfer models during slicing of three commonly found foodborne
pathogens were presented for RTE meats. The models describe the microbial surface transfer patterns of
any initial contamination levels and maybe used for the risk assessment to enhance food safety.
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Figure 1. Transfer predictions using models with inoculation
level of 7 log CFU for Lm, Ec and Sal (Case I)
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Figure 2. Transfer predictions using models with inoculation
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Figure 3. Transfer predictions using models with inoculation
level of 4 log CFU for Lm, Ec and Sal (Case I)
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Abstract

Lactobacillus sakei is frequently present as the dominant microorganism in spontaneously
fermented meat products, demonstrating its competitiveness in and adaptation to the meat
environment. Since meat is generally low in carbohydrate content, the ability to utilize other
energy sources to generate ATP, such as arginine via the arginine deiminase (ADI) pathway,
represents a competitive benefit. The goal of this study was to gain insight in the
physiological role of the ADI pathway in L. sakei CTC 494, a natural dry fermented sausage
isolate, through modelling of laboratory fermentation data. The results indicated that the ADI
pathway was activated in the stationary growth phase. The pattern and the ratio of the end-
products of the ADI pathway were influenced by different pH conditions. Arginine
conversion resulted in production of both citrulline and ornithine for all pH conditions tested
(pH 4.5 to pH 7.75). However, for pH values between 5.0 and 6.5, a further conversion of
citrulline into ornithine was observed from the moment all arginine was depleted.
Characterization of responses of the ADI pathway of L. sakei CTC 494 to environmental
conditions will allow a better understanding and control of this potentially important starter
culture in food fermentations.

Keywords: Lactobacillus sakei, arginine deiminase, growth, stationary phase, fermented
sausage, stress response

Introduction

Lactobacillus sakei, a facultative heterofermentative lactic acid bacterium (LAB), is
frequently used as a starter culture for fermented sausage production. It is the most prevalent
species encountered in spontaneously fermented dry sausages, demonstrating its
competitiveness in and adaptation to the meat environment (Leroy et al., 2006). L. sakei lacks
genes encoding biosynthetic capabilities for most amino acids, naturally present in meat, but
contains abundant genes encoding several transporters (Chaillou et al., 2005). Unlike other
facultative heterofermentative lactobacilli, L. sakei and some strains of Lactobacillus
plantarum utilize arginine via the ADI pathway (Spano et al., 2007; Zufiga et al., 2002). In
summary, this pathway results in the conversion of one mole of arginine into one mole of
ornithine, with the concomitant production of two moles of ammonia, one mole of CO,, and
one mole of ATP. As is apparent from the end-products, the ADI pathway can serve several
physiological functions. The ammonia released offers protection towards acid stress
conditions, the ATP produced offers an improved survival in the stationary phase, and
carbamoyl phosphate, an intermediate of the ADI pathway, is essential for the de novo
pyrimidine biosynthesis (Larsen et al., 2004; Verges et al., 1999).

The aim of the present study was to perform a detailed kinetic analysis of the ADI pathway by
L. sakei CTC 494 as to evaluate the impact of environmental pH on the conversion of arginine
into ornithine. In addition, a mathematical model, recently constructed to describe the kinetics
of the ADI pathway in Lactobacillus fermentum IMDO 130101 was adapted and validated
(Vrancken et al., 2009).



Materials and methods

Fermentation experiments and analyses

L. sakei CTC 494 was stored at —80°C in de Man-Rogosa-Sharpe (MRS) medium,
supplemented with 25% (v/v) glycerol as a cryoprotectant. Fermentations were carried out in
reconstituted MRS, without glucose and supplemented with 3 g/L arginine, in a 15-L
Biostat®C fermentor (Sartorius, Goéttingen, Germany). The fermentor was sterilized in situ at
121°C for 20 min. The fermentation temperature was kept at 30°C; the pH was kept constant
at pH 4.5, 4.75, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 7.75 through automatic addition of 10 M
NaOH and 5 M HCI. The inoculum (1%, v/v) was prepared through three subcultures of 12 h
in MRS. Cell counts (colony forming units, cfu) were obtained by plating on MRS agar (MRS
plus 1.5 % agar, w/v). All measurements were performed on three independent samples.
Concentrations of arginine, citrulline, and ornithine were determined using a Waters 2695
liquid chromatograph coupled to a Quattro Micro™ mass spectrometer (Waters Corp.,
Milford, MA, USA) as described by Vrancken et al. (2009). Quantifications were performed
through the method of standard addition.

Modelling

Following the lag phase A (in h), biomass production [X] (in cfu mL™) as a function of time t
(in h) was modelled with the logistic growth equation (Vrancken et al., 2008):

d[X]/dt = Mmax [X] (1 - [X]/[x]max) ift>2 [1]

with X the maximum obtained biomass (in c¢fu mL™) and pmx the maximum specific
growth rate (in h™).

For certain fermentations, a decrease in the cell concentration was observed after the
stationary phase was reached. To take this into account, cell death according to first order
kinetics was introduced:

d[X]/dt = -kp [X] [2]

with kp the maximum specific death rate (in h™).

Arginine [Arg] (in mM) conversion into ornithine [Orn] (in mM), via citrulline [Cit] (in mM),
was modelled as (Vrancken et al., 2009):

d[Arg]/dt = -(Kac + Kao) [X] 3]
d[Cit]/dt = Kac [X] - Keo [Cit][X] [4]
d[Arg]/dt + d[Cit]/dt + d[Orn]/dt = 0 [5]
if [X] 2 Xt:rit

where Kac, kao [MM (h cfu mL™)™], keo [in (cfu mL™ h)™], and X [In(cfu mL™)] were
model parameters. This model, describing the evolution of arginine, citrulline, and ornithine
concentrations, was developed based on extracellular measurements as well as assumptions
concerning the kinetics of the conversions involved. The equations were fitted to the
experimental data with the numerical software package Athena Visual Studio
(www.athenavisual.com) using a multiresponse approach (van Boekel, 1996).

Results and discussion

For all fermentations, growth could be modelled using the logistic growth equation (Fig. 1;
examples of pH 4.5, 5.0, 6.5, and 7.5 are shown). The pH had a pronounced effect on the
kinetics of arginine conversion, as well as on the final ratio of citrulline and ornithine
produced. Initially, for all fermentations, no arginine conversion was observed. However,
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after around 5 to 6 h of fermentation arginine conversion occurred at pH 5.5 to pH 7.0. The
same was observed after 8 h for the fermentation at pH 7.5 (Fig. 1d), and after around 14 h for
the fermentations at pH 4.5, pH 5.0 (Fig. 1b), and pH 7.75. At pH 5.5 to pH 6.5 (Fig. 1b, c),
arginine was converted to depletion after 12-24 h of fermentation and both citrulline and
ornithine were released. When all arginine was depleted, a further conversion of citrulline was
found, resulting in ornithine as the main end-product at the end of the fermentation. For the
fermentation at pH 7.5 (Fig. 1d), both citrulline and ornithine were produced. However, no
citrulline-into-ornithine conversion was observed when all arginine was depleted, resulting in
a higher ratio of citrulline to ornithine at the end of the fermentation. Finally, for the
fermentation at pH 4.5 (Fig. 1a) and pH 7.75, incomplete arginine conversion took place after
50 h of fermentation. The consumption of arginine in these situations still resulted in the
formation of both citrulline and ornithine, albeit at a much slower rate.

(a) (b)
25 7Concentration IN(CFUmMLY) | 54 25 7 Concentration INCFUmML™Y) ,
(mM) (mM)
20 A
0 o - 19
15
00 - 14
10 A o
5 | -9
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(c) (d)
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Figure 1: Growth [In(cfu mL™); e] of L. sakei CTC 494 in MRS and extracellular
concentrations (mM) of arginine (O), citrulline (©), and ornithine (A) at different pH values:
(@) pH 4.5, (b) pH 5.0, (c) pH 6.5, and (d) pH 7.5. Full lines represent the predictions by the

model; symbols represent the experimental data.

All fermentations were fitted using the developed model for the ADI pathway (Equations [1]
to [5]). The resulting biokinetic parameters varied as a function of the pH of the fermentation
medium. The parameter Kac, indicating the rate of arginine conversion into citrulline, had an
optimum around pH 6.0. When the pH was increased or lowered, a decrease in this parameter
could be observed. The parameter kao, Which is a measure of the rate of arginine conversion
into ornithine, showed a less pronounced variation as a function of pH. A slight, linear
increase of this parameter was observed when the pH was lowered. The parameter Kco,



representing the conversion of citrulline into ornithine, showed a similar pattern as a function
of pH as for kac, with an optimum around pH 5.5. No citrulline-into-ornithine conversion was
observed from pH 7.0 to pH 7.5 and thus kco was estimated as zero for these fermentation
conditions. Finally, when the ratio of the parameters X, to Xnx Were plotted as a function of
pH, a constant value of around 98.6% was observed, indicating that the ADI pathway started
once the cell culture reached almost its final cell concentration.

Conclusions

In the present study, the effect of pH on arginine consumption by L. sakei CTC 494 was
investigated using a modelling approach. As is shown by the present study, pH seems to be an
important environmental regulator of the ADI pathway. High and low pH values resulted in a
decrease of the arginine conversion rate, as reflected in the model parameters. Arginine
conversion resulted in production of both citrulline and ornithine, whereby citrulline was
further converted into ornithine at certain pH values, from the moment all arginine was
depleted. Further research is needed to elucidate the practical significance of this pathway,
and will result in an understanding of the mediators for activation or repression of genes in
response to different pH conditions.
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Abstract

Solid phase cytometry in combination with Chemcheowé fluorescent probe was applied to
rapidly quantify esterase activity at the cell levdhe growth of stressed.isteria
monocytogenes cells was followed simultaneously by enumeration tcaditional culture
media and by cell esterase activity determinedmyréscence intensity measurement.

Firstly, it was determined that cell physiologisthte has a great impact on the fluorescence
peak-intensity distribution and that, the impacswigpendent on the stress suffered by cells.
Secondly, it was established that, in taking treuamption that the healthier cells, the higher
fluorescence peak-intensity, the “Minimal Peak-hsiey” is an effective parameter to
determine the concentration of cells able to miyltgm selective or non-selective media.
These results emphasize that solid phase cytoraetlysis could be an interesting tool to
obtain rapid information on the efficiency of a thréo allow cell revivification.

Keywords
Cell physiological state, revivification, esteraseivity, Listeria monocytogenes

I ntroduction

It is now recognized that conventional culture teghes are highly selective and
underestimate true viable cell counts in natur&irenments as they fail to detect injured or
stressed cells that are unable to reproduce onthrmedia. Moreover, those techniques are
still time-consuming.

In contrast to culture methods, the emergence ofautture based assays to detect activity
and viability in bacteria is becoming more and matteactive. They allow the detection of
metabolically-active cells and data can be obtawigin a short time.

In Solid Phase Cytometry (SPC), bacteria are fleweatly labelled on the surface of a
membrane filter, which is subsequently scanned lasar beam in a ChemScan apparatus.
The cellular activity detected with ChemChrome V6he is the esterase activity.

The aim of this research was to investigate if tsterase activity is telling of the
physiological state of cells and, to observe ifr¢his conformity between the fluorescence
intensity of cells detected and their ability toltiply in culture media.

Materials and Methods

Listeria monocytogenes cells were subjected to stresses usually met aal fadustry. The
cumulative peak-intensity distributions were chégazed for 4 stressing treatments: Lactic
acid pH4.2 at 25°C for 24 h, Osmotic stress in Z8#bvol) NaCl solution at 30°C for 48 h,
Peracetic acid stress with a 200 ppm solution &C2%r 15 min and Starvation stress for
which cells were placed in physiological water with nutritional contribution at 25°C for 24
h. Then, cell changes during revivification in itide broth, TSBye, and in selective broth,
the half Fraser broth (1/2FB), at 30°C has bedovad.

After being labelled with Chemchrome V6 probe (1thrat 40°C), cells, placed onto a
membrane filter, were scanned with ChemScan cy®méthe signals produced were
processed by a PC using a series of software aigaits to differentiate between valid
signals (labelled bacteria) and background.

This enzymatic activity staining implies that ndmacged and non-fluorescent substrate
penetrates the cell, and after being modified bsacellular esterases, becomes a negatively



charged fluorophore. For live cells, free fluordacgerivate stays inside the cell without any
noticeable influence on the life processes of #éscGiven plasma membrane is damage,
fluorophores leaks out the cell.

For each fluorescent cell, the peak intensity whiolresponds to the highest fluorescence
intensity detected for the scanned event was déatedrand then, the results of fluorescence
peak-intensity (PI) distribution obtained were camgul to the cell ability to multiply in non-
selective and selective media: TSBye and 1/2FByewssely for liquid ones, TSAye and
PALCAM agar for solid ones. In this purpose, thegartion of growing cells referred to the
cell concentration detected before the stress wead.u

Results and Discussion

Cell physiological state after stress

Figure 1a shows that the cumulative peak-interdigjributions are dependent on the stress
encountered by the cell: stressed cells have arlp@ak-intensity median than cells in the
exponential growth phase. In the light of theseltssit seems that the most active cells have
the higher esterase activity and therefore, thbdrifjuorescence intensity.

In taking this assumption and knowing that eacbkssing treatment has an effect on the
ability of cells to multiply in traditional mediaye introduced the concept of “minimum peak
intensity” (MPI) which defines the minimum PI recgd by a cell to be able to multiply in a
particular medium, namely, cells that grow arertiast fluorescent cells (Table 1).
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Figure 1: Cumulative distribution of peak-intengitiythe bacterial population (a) and only of
cells exceeding the MPI to grow on 1/2FB (b) withlls in exponential growth phase (black),
lactic acid stressed (dark-grey), peracetic aciebsed (light-grey), osmotic stressed (dash

black), and starvation stressed cells (dash grey).

Distributions of stressed-cells exceeding the M&juired in 1/2FB are presented in figure
1b. The MPI obtained for peracetic acid stressififerdnt against the others tested (1867
versus 307 on average). This is partly due to dcethat, after peracetic acid treatment, cells
detected before the stress (exponentially growiglts)care still visible by cytometry. The
mechanism of this disinfectant is the release ofiva” oxygen, which disrupts sulfhydryl (-
SH) and sulfur (S-S) bonds within enzymes containetthe cell membrane (Lefevre et al.,
1992). Actually, cells that are not detected owlitianal media (selective or non-selective)
still have esterase activity but have lost the igbito multiply on the media tested.
Consequently, cells able to multiply on traditiomaédia represent only a fraction of the
cytometry-detected population and therefore, MR4 arevitably lower on non-selective
media, 1601 for TSAye, than on selective ones, 208BALCAM.

On the other hand, for cells stressed by lactid &reiatment, concentration detected with non-
selective media (TSBye and TSAye) are higher tharone enumerated by cytometry. Visser
et al. (1979) observed that the fluorescence diamitaspectrum of fluorescein is pH-
dependent, for instance, the fluorescence intengity divided by 6, from pH 7 to pH 4.
Therefore, we can assume that the substrate wastieffly modified by esterases insides



cells but, as intracellular pH was reduced by tlressing treatment, cell fluorescence
intensity was below the detection threshold ofdy®meter.

We attempted to obtain a common minimal peak-intgns order to determine the ability for
cells to grow in a given environment, whatever ¢le# physiological state but it seems that
cells do not react to labelling in the same wayh®ystress suffered, meaning that, there is no
simple relation between the esterase activity detexd with ChemChrome V6 staining and
the ability for a cell to multiply.

Fate of stressed-cells during revivification in liquid media

The behaviour of stressed cells during revivificatin broth was followed by enumeration on
traditional media and by fluorescent labelling.

For osmotic stressed-cells incubated in TSByenarease in the bacterial proportion able to
grow in selective and non-selective media was ofeskirom 120 minutes at 30°C (Figure 2I
a). At the same time, a simultaneous rise was wedeior concentrations determined with
MPI for those media. Meanwhile, the bacterial caoricgions remained steady throughout
incubation in 1/2FB; and similarly, bacterial contrations determined by MPI stood stable
(Figure 21 b).

After lactic acid stress, the same behaviour waenked with a slower concentration rise
throughout revivification in TSBye (Figure 2Il adab).

Concentrations obtained were concordant and evdlvetie same way: the proportion of
cells whether growing or exceeding MPI was enharthealighout the revivification with a
rate depending on the media and on the stressopidyiencountered by cells.
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Figure 2: Logarithm of bacterial proportion of seffrowing (open patterns) and of cells

exceeding MPI (solid patterns) on TSBye (trianglé&FB (circles) and PALCAM agar

(squares) in the course of revivification in TSRg¢and 1/2FB (b) at 30°C after osmotic
stress (1) and lactic acid stress (I1)

For peracetic acid stress, an immediate returhachape of “cells in the exponential growth
phase distribution” was obtained as soon as cedisrdroduced in broth whether TSBye or
1/2FB (data not shown). This variation could notthe result of cells repair, moreover, as
MPI are very high for this stress, the bacteriapartion exceeding MPI remains low (0.01).
Then, no rises were observed in fluorescence iityemisin concentrations detected on media
tested throughout the revivification. Those rest#isd to show that, after peracetic acid



treatment, cells are more or less injured whichvéthg them or not to multiply in a given
environment but that, physiological state doesimprove regardless of the environment in
which they are introduced (for those tested).

On the other hand, there seemed to be a progredenrease in the bacterial proportions
above the MPI. On light of these results, it woségem that esterase active but not cultivable
cells gradually lose their esterase activity oweretand that, after a while, it would remain
only really viable cells.

The use of cytometry may be a useful tool in ortterdetermine whether a medium is
favourable or not to recover cell eventhough dificult to know if it shows the recovery of
stressed cells or the genesis of newborn cells.

To determine if a broth represents an appropriatg@ment for cell revivification to occur,
without enumerating on selective and non-selecthnedias, making a cell fluorescence
labelling at the time of the introduction in theothr and after a long enough incubation period
(e.g. 6 hours) could be efficient. Then, the apitift the media to allow cell revivification can
be deduced from the difference between the peaksity median APl egia). The results
presented in Table 1 clearly suggest that this rparer could rapidly give precious
information on the broth efficiency for cell repaindeed, the higher revivification observed
by enumeration on traditional media, the higherARd,cqian Moreover, for revivification of
osmotic stressed-cells in FB1/2, the cell repaetdomined by the difference between
enumeration on non-selective and selective brathgflected in the\Pleqan On the other
hand, for conditions where no revivification wasetved, thé\PlcqianiS always under 100.

Table 1: Minimal peak-intensity (MPI) for cells ¢gwow in given media and differences of
fluorescence peak-intensity mediawP(,.qia) DEtWeen the cells introduction in broth and after
6 hours of incubation at 30°C upon the stress seidfe

Stress MPI APl nedian

encountered TSBye TSAye 1/2FB PALCAM TSBye 1/2FB

Lactic acid pH 4.2 0 0 206 459 1072 15

Osmotic 25% 415 364 477 789 771 325

Starvation 294 217 237 436 614 nd

Peracetic acid 948 1604 1867 2083 0 87
Conclusion

This research sought to investigate if the cebreste activity was dependant on physiological
state of cells and to observe if there was anyiogldetween the cells fluorescence intensity
and the cells ability to multiply in culture media.

We have shown that the physiological state of dedls a great impact on the fluorescence
peak-intensity distribution. Moreover, in takingetlassumption that the healthier cell, the
higher fluorescence peak-intensity, we showed tatconcept of “minimal peak intensity”
could be an effective parameter to determine thie ability to grow in a given environment.
Although the impact on cell fluorescence intensgydependent on the stress suffered,
cytometry analysis could be an efficient tool tcalify broths according to their ability to
allow cell revivification, and moreover to easilgtdrmine growth-no growth interface.
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Introduction

Ready-To-Eat (RTE) meals have become increasingly popular in the last two decades,
particularly in metropolitan areas. The costumers of these meals have also become
more knowledgeable and demanding about the nutritional content, quality and safety
of these products. The objective of this work is to combine risk evaluation techniques
to assess the safety of the product with risk management concepts in order to reach a
suggested Performance Objective (PO) and a Food Safety Objective (FSO) (CAC,
2007). The procedure consisted of a complimentary combination of scientific
literature, challenge tests (growth and inactivation), and predictive modelling. The
combination of tests and predictions help to define different scenarios where practical
considerations are suggested to achieve an FSO for Listeria monocytogenes in a
Chicken Tandoori RTE meal.

Materials and methods

Growth and inactivation challenge tests were applied to a selected RTE meal: Chicken
Tandoori. This meal consisted of a fresh mix of vegetables, raw chicken and semi-
cooked rice in Tandoori sauce. The tests consisted of inoculating the meals with a
cocktail of six different strains of Listeria monocytogenes pre-incubated at 12 °C till
they reached their stationary phase. From these solutions, different concentrations
were inoculated into the meals (500 g) for their growth (5x10° cfu/g) and inactivation
(2x10° cfu/ml) experiments. After inoculation, the meals were stored at retail (7 °C)
and abuse (12 °C) temperature for eight days, one day after the expiration of the shelf
life. The growth of the pathogens was assessed daily on selective media, ALOA for L.
monocytogenes, together with the spoilage organisms (TVC (PCA), LAB(MRSA)),
gas composition and the pH of the meals. The heat inactivation trials of the inoculated
meals consisted of heating the meals at 700 W for 7 min as suggested on the label of
the product by the product manufacturer. The temperature was measured in three
different points of the meal after every heating time interval. The level of the
surviving bacteria after every heating time was measured in selective and PCA media.
The results from the growth were compared with the results of the gamma model
(Zwietering et al., 1996):

=7y (T) * vy (pH) * vy (aw) (1)

p= specific growth rate; y (T) = relative effect of temperature; y (pH) = relative effect
of pH; vy (aw) = relative effect of water activity

and ComBase® predictive program (Baranyi and Tamplin, 2004). For the gamma
model, the daily measurement of pH and T from the meal were used into the model.
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For the ComBase® predictor, the variables selected for the growth of both pathogens
were 30 % CO, for 300 h, with an initial level of 3 Log CFU/ml, a physiological state
of 0.7, a pH of 5.5 and temperature of 7 °C and 12 °C, were used for the whole
storage period. For the inactivation predictions, only the gamma model was used, as
the range of temperature in the ComBase program varied from 60-68 °C, which was
limited in comparison to the range obtained from the experiments, up to 70 °C.

Further, the results from the predictions and challenge tests were adapted to the
different variables of the FSO formula (ICMSF, 2002):

Ho - XR + XI + < FSO (2

Ho = Initial contamination concentration (Log cfu/g); ¥R = Total (cumulative)
reduction of the hazard (Log cfu/g); I = Total (cumulative) increase of the hazard
(Log cfu/g); FSO = Food Safety Objective (Log cfu/g).

Results and Discussion

Growth of Listeria monocytogenes in a Chicken Tandoori RTE meal

No significant growth was observed for L. monocytogenes (Fig 1) at 7 and 12 °C. The
gamma and ComBase® predictions showed similar predictions for the pathogen at
both temperatures. Nevertheless, when compared with the results obtained with the
challenge tests, only similarities were observed with the results from the lower
temperatures.
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Fig 1. Growth and growth prediction of Listeria monocytogenes in Chicken Tandoori
RTE meal. ¢ Concentration of L. monocytogenes in the RTE meal incubated at 12 °C;
o Concentration of L. monocytogenes in the RTE meal incubated at 7 °C; == gamma
model prediction for storage at 12 °C; ==== prediction from the ComBase® program at
12 °C. == gamma model prediction for storage at 7 °C; ==== prediction from the
ComBase® program at 7 °C.

L. monocytogenes showed no significant growth nor reduction throughout its shelf life
(seven days). At this stage, the pH dropped from 5.5 to 4.4. It was observed that the
gamma model and ComBase® showed similar results in the predictions, differently to
the results obtained from the challenge tests.



The difference between the challenge tests and the ComBase® might be because the
program does not consider changes of pH throughout the product shelf life, such as
growth of spoilage bacteria and antimicrobial additives that could have influenced the
pathogen growth. In the case of the gamma model, the effect of the gas composition is
not taken into account.

Inactivation of Listeria monocytogenes in a Chicken Tandoori RTE meal

The objective of the inactivation tests was to assess whether the product after artificial
contamination would achieve a 6D reduction. An inactivation of + 2 Log CFU/g was
observed when microwave heating was applied as recommended by the manufacturer
instructions. Figure 2 illustrates the recovery of the pathogen obtained from the meals
after being heated at different time intervals at constant power (700 Watts for 7 min)
and their comparison with the gamma prediction. Two scenarios are presented, the
first describes a fail safe approach where the inactivation was based on the
temperature measured in the centre of the container. The second scenario, depicts a
prediction based on the average temperature of three different measurements made in
the container (centre and sides) reaching a 6D reduction at the last minutes of heating.
It was noted that none of the meals was able to reach 70 °C for two minutes
throughout heating.
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Fig 2. Inactivation of Listeria monocytogenes in Chicken Tandoori meals. ¢
concentration of L. monocytogenes after microwaving the meals briefly incubated at 7
°C on the inoculation day; m concentration of L. monocytogenes after microwaving
the meals incubated at 7 °C on the expiration date; Aconcentration of L.
monocytogens in the meals incubated at 7 °C on the eight day of incubation; ¢
concentration of L. monocytogenes after microwaving the meals briefly incubated at

12 °C on inoculation day; A concentration of L. monocytogens in the meals incubated

at 12 °C on the eight day of incubation; == gamma prediction using the temperature
measured in the centre of the container; == gamma prediction using an average
temperature in three locations of the container.

Achieving an FSO for Listeria monocytogenes in a Chicken Tandoori RTE meal
Table 1 shows two scenarios, where a hypothetical representation of a very high
initial contamination (2 Log CFU/g) occurs. The first row describes a theoretical
framework proposed by Perni et al., (2009), where the product reaches a 6D reduction
with two logs of potential growth. On the second and third rows, a description of
growth and inactivation based on the results from the models and challenge tests are
presented.



In both cases the reduction by microwave heating would be enough to reach the FSO
suggested.

Table 1. Scenario to achieve an FSO in a ready-to-eat Chicken Tandoori

Pathogen Initial Growth PO - Cooking Level at  FSO Conformance
contamination -  during Level 7 min  consumption  Suggested®
Raw materials storage before 700Watts
cooking
L. 2 2 4 6" -2 -0.33  Accept
monocytogenes 2 0° 2 -2° 0 -0.33 Reject
1 0’ 1 -2° -1 -0.33  Accept

! From theoretical framework by Perni et al., (2009).
? Data from challenge tests.

Conclusions

Growth of the pathogens in a Chicken Tandoori RTE meal was lower than expected
for L. monocytogenes, particularly at abuse temperature. Inactivation of the pathogens
was also lower than expected by following the manufacturer instructions. The gamma
and ComBase® predictions showed similar results at different temperatures but
differed from the results obtained from the challenge tests at abuse temperature.
Further adaptations, e.g. including the inhibitory effect of additives, need to be
included in the models. Achieving a combination of PO along the food chain will lead
to reaching the targeted FSO for L. monocytogenes in the selected RTE meal.

Acknowledgements

This work was performed within the DoubleFresh project (contract no. FOOD-CT-
2006-23182), which is a European Commission funded project within the Sixth
Framework Program, Priority 5, Food Quality and Safety. The financing of the work
by the European Union is gratefully acknowledged.

Reference

Baranyi J., Tamplin M. L., 2004. ComBase: a common database on microbiol responses to food environments.
Journal of Food Protection, 67, 1967-1971. Combase -www.combase.cc/toolbox.html Last visited: 23rd March
2009

CAC (Codex Alimentarius Commission), 2007. Principles and guidelines for the conduct of microbiological risk
management. Annex II: guidance on microbiological risk management metrics. Joint FAO/WHO food standards
programme Codex Committee on Food Hygiene.

ICMSF (International Commission on Microbiological Specifications for Foods), 2002. Micro-organisms in foods
7. Microbiological testing in food safety management. New York: Kluwer Academic/Plenum Publishers.

Perni S., Beumer R., Zwietering M. H., 2009. Multi-tools approach for food safety risk management of steam
meals. Journal of Food Protection. Submitted.

Zwietering M. H., de Wit J. C., Notermans S., 1996. Application of predictive microbiology to estimate the
number of Bacillus cereus in pasteurised milk at the point of consumption. International Journal of Food
Microbiology, 30, 55-70.



http://www.combase.cc/toolbox.html

The use of meta-analytical toolsin risk assessment modeling for food
safety

U. A. Gonzales-Barron and F. Butler

Biosystems Engineering, UCD School of Agriculture, F8otence and Veterinary Medicine. University College
Dublin, Dublin 4, Ireland (ursula.gonzalesbarron@ucd.ie, f.h@tled.ie)

Abstract

This communication aims to demonstrate, by means of twocafiphs, that meta-analysis
can be used as a valuable tool in quantitative risk aseasgor food safety. Two sets of
primary studies oBalmonellain pork were separately combined using meta-analyticas tool
so as to obtain ultimately a more-informed risk amsest model. In both meta-analysis
applications, relative risk was selected as the most apat@mffect size measure. As both
study quality and slaughter procedures may not necessautilyifoem across primary studies,
assigning weights as the inverse of the effect sizeanegi was considered suitable in the
estimation of the overall effect size. In the first matelysis, a relationship (U=372;
p<0.001) between the proportion $&Imonellacarrier slaughter pigs entering the abattoir
and the resulting proportion of contaminated carcasdée @bint of evisceration was for the
first time elucidated combining data from different sésdiA stochastic weighted least
squares regression was modeled after weights were temtrémr heterogeneity (Q=29.3;
p<0.001). In the second application, meta-analysis confirmedheogrounds of increased
statistical power, the effect of chilling on the lower recgvef Salmonella(U=27.3;
p<0.001), and delivered a normal distribution of the overall efiéathilling (~2.4 times
reduction) orSalmonellaecovery on pig carcasses.

Keywords.  Meta-analysisSalmonellaslaughter, pig, pork, chilling.

Introduction

The primary aim of meta-analysis is to produce a moeeige estimate of the effect of a
particular intervention or treatment, with an increastadistical power than is possible using
only a single study. A large collection of results from primstydies, such as experimental
studies, opinion surveys and causal models, can be mdyaethavith the purpose of
combining the findings and producing an estimate that hasldérganeralizability.

The prevention of food-borne ilinesses is complex becauskeofmultiple stages in the
production and preparation of food. On the other hand, thergmbuata produced by food
safety research have been growing increasingly in thietdés years, and the advances in
information technology are likely to further contribute to this ghowiherefore, there is a
need for conducting meta-analysis in the field of foofetga to identify, evaluate and
synthesize results. Although, in principle, meta-analysy be conducted to address a broad
range of food safety research questions such as effepteefand post-harvest, disease
incidence, prevalence of pathogens, consumer practices,apmlications in food safety
research and especially in risk assessment arénsitidl infancy. To date, only six published
studies using meta-analysis as a tool to combine food/skeftt have been identified (Patil et
al., 2004; Vialette et al., 2005; Sanchez et al., 2007; Bdlaewl., 2008; Gonzales-Barron et
al 2008; and Gonzales Barron et al., 2009). This communicdtitnta present, by means of
two applications, the methods of meta-analysis and itvaiete for the synthesis of food
safety research as a tool to sustain risk-based policy

M ethodology

While building a risk assessment model for predicBagmonellaprevalence during pork
production in Ireland, Gonzales Barron et al. (2008, 2009jifa=h



(i) ten primary studies that reported resultsSaimonellapositive cecal contentsd) from
pigs entering the slaughter lines aBdlmonellapositive eviscerated pig carcasses) (
sampled from same production batches; and

(i) other ten primary studies report&hlmonellarecovery incidence from post-chill pig
carcassessf) in comparison to their recovery after splitting and ringsayy

In order to obtain more-informed overall effect sizénestes, both data sets were separately
meta-analyzed using a common methodology, whose stages armexgdalow. They will

be referred to as ‘slaughter meta-analysis’ and logilineta-analysis’, respectively.

Systematic review and data extraction

A systematic review begins with the formulation dbaused study question for which three
important facets are to be considered: population,viemion or treatment and outcome. The
two principal questions addressed in both meta-analysis: (i) is there any support in the
sampled population of studies for the causal inferencet tthee intervention
(slaughter/chilling) made a statistically significant difiece in the outcome (presence of
Salmonellaon a pig carcass)? And if so (i) how large an effectdifference did the
intervention make?

Parameterization of the effect size

Effect size refers to the degree to which the phenomenpregent in the population (for
example, decrease in the recoverySaimonellaon pig carcasses due to chilling). For the
primary studies to be compatible to analyze, meta-aisalyonverts the effect size into a
‘parameter’ that allows direct comparison and summatidghefndependent studies. In both
meta-analyses, the effect size was parameterizaglasve risk’ (probability of outcome of
interest in the treatment groupr)pelative to the probability of outcome of interest in the
control group (p)).

Estimation of the overall effect size

The next step is to combine the primary studies to compute thallos#ect size estimate
using a fixed-effects approach. Both meta-analyses usetbthmon method of weighting
individual estimates by means of their inverse variaritablé 1). Thus, more precise studies
will have more influence in the overall estimate as contpariéh less precise studies. The
null hypothesis of absence of effect on the ‘treated’ grouptegisd using the U statistic.

Assessment of heterogeneity among primary studies

The fixed-effects meta-analysis makes the strong assumiptat each study is estimating the
same underlying treatment effect. However, in food rebBeasuch assumption may be
unrealistic given the variability of the biological systerard also the differences in study
protocols. If effect size estimates vary between sgith a greater extent than expected on
the basis of chance alone (fixed-effects), the studiex@msidered heterogeneous and a
random-effects meta-analysis is more suitable. In bogta-analyses, heterogeneity was
assessed using the Q statistic to test the null hypstbkabsence of heterogeneity.

Presentation of meta-analysis results

There are a series of graphical displays to presewt-amglysis results (Table 1) although the
most common way to summarize the primary studies and overedit efize is by using a
‘forest plot’ which displays point estimates and confidemtervals of each primary study
and the overall estimate. The results from the slaugrg&-analysis and the chilling meta-
analysis were displayed as a bubble plot and a funnelrpsptectively.

Results and discussion

The first meta-analysis demonstrates how the synthegsméry studies can help reveal a
relationship between two variables. In the slaughter rueddysis, some of the primary

studies reported an statistical association (found bgaqimre tests) between the proportion
of Salmonellapositive cecal contents£sc/nc) from pigs entering the slaughter lines and the



proportion of positive carcass swafysse/ng) sampled from the same production batches;
although no relationship at batch level (or groups of slaughias) shown in any of the
primary studies. Since these binary data were extracted $tudies that used different
protocols forSalmonellaculture, it was necessary to allow for the differencesdiyecting
the underestimatexiandy values with test sensitivities for cecal culture @adcass swabs
(producing therx’ andy’). While the meta-analysis elucidated for the finsietia relationship
betweernx’ andy’ (U=372; p<0.001; Figure 1A), these data pairs could not be oechlinto

a simple regression since they had been extracted fissmies of primary studies presenting
various degrees of precision. It was therefore necessargsign weights to each of the data
pairs (studies), which were calculated as the inversanae of the relative risk. As the Q test
gave evidence of presence of heterogeneity (Q=29.3; p<0.001),iglitsvevere recalculated
for a random-effects solution. The relative size of the bubblesvn in Figure 1A is
proportional to the weight assigned to each primary studg. Mmata-analysis has shown how
the body of information contained in all studies revealedearer picture of the state of
knowledge (Figure 1A). In Gonzales Barron et al. (2009),ah&ysis was combined with a
non-parametric bootstrap technique in order to build a asdichregression between the
Salmonellecarriage rate in pigs entering the abattoirs and shdtieg incidence on carcasses
at the point of evisceration.

Table 1: Overview of commonly used numerical and graphieshanalytical techniques.

Numerical meta-analytical techniques Graphical meta-acalybols

Outcomes measure — parameterization Plot of normalized z-scores
Odds ratio, risk ratio, risk difference Radial plot (Galbraith plot), forest plot,
Mean difference bubble plot, funnel plot L’Abbe plot
Hedges’ g, Cohen’s d Baujat plot
Correlation coefficient, Fisher's Z Egger’s regression plot

Macaskill's regression plot
Fixed-effects meta-analysis Trim-and-fill plot

Inverse variance weighted method
Mantel-Haenszel, Peto
Maximum likelihood techniques

Random-effects meta-analysis and heterogeneity
Weighted, normal-normal and DerSimonian-Laird methods,
Cochran’s Q, Higgins’ H and 12

Hedges and Olkin test of homogeneity for correlation
coefficients

Meta-regression
Mixed-effect and multi-level models

Publication bias
Trim-and-fill test, fail-safe N
Egger’s regression test
Begg’s rank correlation test
Macaskill's regression test

The second case demonstrates the application of meta-anédysihe estimation of the
overall effect of a critical process stage on the incidehegpathogen under study. The meta-
analysis conducted on the relative risk (defined as thHeapility of encounteringalmonella
positive pig carcasses after chilling relative to the prolal®f encounteringSalmonella
positive carcasses before chilling), as derived from theinary studies, confirmed on the
grounds of increased statistical power the decreasfagtehat chilling has on the recovery

of Salmonella(U=27.3; p<0.001). As there was no evidence of heterogeneity (Q=2.9;
p=0.96), the fixed-effects meta-analysis was considesedtable solution and it delivered a
normal distribution of the overall effect of chilling (withmean of ~2.4 times reduction in
Salmonellarecovery on pig carcasses).



Meta-analysis, if carefully constructed and implementath assist food safety researchers to
determine the extent to which accumulated evidence tends tosiprally confirm or
conclusively refute a specified theory of the intervention uimlesstigation. The claimed
strengths of meta-analysis are all contingent on the ir@apiocondition that the measures that
represent and share the same theoretical concepts withetaanalysis be of at least
satisfactory validity (related to the principle ofulibish in — rubbish out’). The main
limitations of meta-analysis are related to qualitypafmary research and publication bias.
The latter exists because research with statisticagyificant results is potentially more
likely to be published than work with non-significant résuT he presence of publication bias
in a meta-analysis can be assessed informally byatgm of a funnel plot, which plots the
effect size of each study against some measure pfatssion (1/standard error). The funnel
shape of Figure 1B suggests that there is little evidehgaildication bias in the chilling
meta-analysis. This shape is expected because tridé¢sieasing size have increasingly large
variation in their effect size estimates due to randamation becoming increasingly.
However, if the chance of publication is greater for dargials or trials with statistically-
significant results, some small non-significant studies n@appear in the literature, leading
to the omission of trials in one corner of the plot.
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Figure 1: Bubble plot and funnel plot illustrating the metalgsis demonstration studies.

Conclusions

These two applications demonstrate that meta-analysidoeaused as a valuable tool for
synthesizing food safety research and quantitative rsgsament studies.
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A preliminary consumer risk assessment model of Salmonellain Irish
fresh pork sausages: Transport and home refrigeration modules
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Abstract

A stochastic risk assessment model aiming to evaluategkdéor human health posed by
Salmonella spp. associated with consumption of fresh pork sausag&elamd is under
development. The specific objective of this work was tarnege theSalmonella levels in
fresh pork sausages after the first two modules, transpiber purchase and home
refrigeration. The variability in initial level dkalmonella (Yy) in retail raw pork sausages
given aSalmonella-positive sausage pack was modeled by a lognormal distributiof)éE(
1.80 log CFU/g; 95% CI: 1.17-2.30 log CFU/g) using Irish survey’s.data the entire
duration of transport, the temperature profile of the cesfteesausage pack against time was
modeled using transient heat transfer equations For thgeration module, a simulated
continuous temperature profile was obtained in two stamdwieftemperature adjustment
stage modeled by heat transfer equations until approaching th@lsanfridge average
temperature, and &emperature oscillation stage which consisted of an actual time-
temperature section randomly sampled from a parallel empet until the completion of the
total refrigeration time. The Baranyi's primary growth mioaled the square-root secondary
model were applied to the dynamic temperature profiles wighrineSalmonella levels after
transport and refrigeration gY. While theSalmonella levels of fresh pork sausages prior to
cooking did not increase significantly during transport and hawmage (E(%)=1.85 log
CFU/g; 95% CI: 1.25-2.76 log CFU/qg), the probability of finding hdeasSalmonella levels
above 5 log CFU/g from contaminated sausage packs was ~03&9sitivity analysis
showed that, for the Irish conditions, tBamonella levels in raw sausages are more affected
by storage time (R=0.43) than by average temperature (R=0.17).

Keywords. Risk assessment, pork saus&@monella, refrigeration, Baranyi model

Introduction

Hald et al. (2004) estimated that, between 10-30% of alscafseood-borne salmonellosis
had pork and pork products incriminated as the actual solrdreland, a pork product that
merits attention is the fresh pork sausage for beirmpvacomminuted product that is widely
consumed — according to the Irish consumer’s databas&Q$512001) 55 g of sausage per
week is consumed on average per person. Assuming that apprelyin€5% of the
population - 4.2 million (http://www.cso.ie) — consume poskisages, an average of 7800
metric tons of sausages would be consumed each yeae Wisiltrue that the prevalence of
Salmonella on Irish pork cuts is relatively low (4.0%, 95% ClI: 0.312.0% in Gonzales-
Barron et al., 2009) and the fresh pork sausage is a produistithundergoes cooking, there
is evidence that pork sausage may become a potentiatbaggroduct, as suggested by the
24 reported outbreaks of salmonellosis associated with gesisa sausage meat in England
and Wales, corresponding to more than 1000 cases of food poig@tineen 1988 and 1994
(Nichols and de Louvois, 1995). Thus, the objective of our reSewas to develop a
stochastic risk assessment model in four modules fionastg the risk of salmonellosis from
consumption of Irish-style fresh pork sausages. This conuatiomn will briefly present the
methodology and results of the first two modules: transpaithome refrigeration.

M ethodology

The initial concentration dsalmonella in fresh pork sausage&) from contaminated packs
produced in Ireland was approached using the MPN data campildattick et al. (2002).



Likelihood functions of CFU/g representing the uncertainuad the positive tube counts
triplets were built for each of the tested sausageBd6) every pack (10). Bayesian analysis
was then used to derive a more-informed posterior distributiothefinitial Salmonella
concentration in every pack. A parametric bootstrap tecknigas finally performed to
propagate the uncertainty of the 10 posterior distributionswithin-pack Salmonella
concentratiorto a log-normal distribution of variabilityid). The distributions of uncertainty
for the mean ) and standard deviatiow)(are shown in Table 1. Distributions for the
transport timet(), refrigeration timetg) and average fridge air temperaturg) were fitted

to Irish data from Kennedy et al. (2005), while the ambtemperature during transport
(Tamp) was modeled from Irish meteorological daily data for m@mand winter (Table 1).

Table 1: Input parameters of the consumer’s risk assessnogie

Notation Description and unit Value Type
u Mean concentration @&lmonellain a Normal (4.0389,0.1039) Unc
contaminated sausage pack (CFU/Q)
c Standard deviation of the concentration of  Normal (0.6389,0.0591) Unc
Salmonella in a contaminated sausage pack
(CFU/qg)
o Concentration oBalmonellain a Lognormal (i,0) Var
contaminated sausage pack (CFU/Q)
b Constant of the square-root modeN(ifC) Normal (0.0176,0.0032) Var
Tmin Minimum temperature for growth of Normal (-5.0129,0.6899) Var
Salmonella (°C)
ho Lag-phase parameter in Baranyi’'s model Normal (2.4538,0.0860) Var
(log CFU/q)
tr Transport time — retail to refrigerator (min) InersGaussian (36.037, Var
38.761)
To Initial temperature of sausage packs at Normal(5,0.8) Var
market/retail display cabinet (°C)
Tamb Ambient temperature of Ireland Beta general (5.21, 3.68, Var
(summer/winter) (°C) -5.35, 25.63)
Beta general (4.03, 3.19,
-7.28, 18.52)
tr Refrigeration time — time sausage pack is Gamma(l.1, 15) Var
stored before preparing (h)
Tavg Average air temperature of a refrigerator in ~ Normal (5.3552, 2.49) Var

Ireland (°C)
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Figure 1: Simulated temperature profile of a contamthptek sausage pack during transport
and refrigeration with its respective expecBatihmonella growthY(t) and 95% CI as predicted
by the Baranyi's model. Arrow indicates the beginning of hosfiegeration.



The growth ofSalmonella spp. during transport and refrigeration was evaluated f§dtime

of purchase) using the dynamic Baranyi's growth model fanghhg temperatures (Baranyi
et al.,, 1995). The growth was calculated in small timeryals using temperature profiles
(T(t)) that were modeled as a continuum for transport and hefmeeration (Figure 1). The
estimates ofSalmonella growth rate (K« in fresh bratwurst obtained from Ingham et al.
(2009) were used as surrogate data, and further expressddrasi@n of temperature using

the square-root secondary model (p<0.0%0R77), 1/,umaxiTj = b(T el ) whereT is the

product’s temperature (°Ch,is a constant (1h-°C ) andTy, (°C) is the nominal minimum
temperature foSalmonella. The normal distributions fdy and T, (Table 1) as well as far,
(Baranyi’'s lag-phase parameter also derived from Inghaal. €2009)) were assumed to
describe the variability iSalmonella growth rate.

For the entire duration of transpoftthe temperature profil@(t)) of the centre of a sausage
pack of half dimensionis, (0.09 m),L, (0.02 m) and_, (0.06 m), was modeled using transient
heat transfer equationfor a one-dimensional (y) systenThe initial temperaturel,
corresponded to the sausage temperature at retail (Tabldnd)thermal conductivity and
diffusivity of the sausage were constant at 0.48 J/m-s-Klaitix10' m?/s, as well as the
convective heat transfer coefficientr) at 11.0 W/rf*C. The temperature of the air
surrounding the pack () was assumed to be 2°C abdyg, (Table 1).

For the refrigeration module, experiments were conductedgtuiee the oscillations in the
temperature of a sausage pack stored in domestic refogerap to 7 days. The real
temperature profiles were assigned to categories accadlithg average air temperature of
the refrigerator Tag): <1°C, [1, 3>, [3, 5>, [5, 7>, [7, 9>, and >9°C. Mimickirige
experimental dataJ(t) for the refrigeration module was modeled in two stagedrief
temperature adjustment stage (~2-3 h) governed by heat transfer equations until aghjpnga
Tavg, and aemperature oscillation period, which consisted of a temperature history sedion
T)s randomly sampled from the above experiment within the qooreing category until the
completion of the total refrigeration timég)( For the temperature adjustment stage, the
overall convective heat transfer coefficiehg)(of the cold air to the surface of the product
was estimated from the temperature daga=(16.2 W/m°C) and assumed to be constant for
all the surfaces of the product. For the three-dimensiosaésyT(t) was modeled using a
product’s initial temperature gk (product’s temperature at the end of transport) ard 1,4
Once the continuous temperature profile during transpartrefnigeration was modeled for
every iteration or sausage pack, Batmonella growth rate was estimated for the specific
temperature at timeusing the square-root model, and Salmonella log-concentration using
the Baranyi's equation (Figure 1). The simulation model waten in Matlab 7.0 (The
Mathworks, Inc) and run for 10000 iterations.

Results and discussion

Using the MPN data from Mattick et al. (2002), it wasgine to model the uncertainty and
variability around the initial concentration &lmonella (1o, CFU/g) in the contaminated
pork sausage packs produced in Ireland (prevalence of ~0itiié 96% CI of 0.032-0.064).
In log terms, the initiaBalmonella level (Yo) had an expected value of 1.80 log CFU/g with a
95% CI of 1.17-2.30 log CFU/g. While on average $Sabmonella concentration did not
increase significantly after transport and home storg@é: = 1.85 log CFU/g) because in
most cases th&lmonella cells remained in the lag phase, the frequency distribution o
Salmonella levels after refrigeration presented a longer right @8% CIl: 1.25-2.76 log
CFU/qg). This occured due to the possibility of tempeetabuse during home storage, as
illustrated in Figure 1, where the sausage pack subjeceeditoulated temperature of ~11°C
presented exponential growth around 20 hours after purchasaoiirhal distributions of the
parameters of the square-root modeland Ty, as modelled from Ingham et al. (2009),
introduced a high variability isalmonella growth for a given initial concentratiory, lag-
phase statuls,, and temperature profilEt) (see the extent of the 95% CI in Figure 1). While
it is recognised that the total variability in these paeters is partly due to uncertainty, in this
model they were assumed to represent the product of theedifes between industrial



batches of pork sausages and the variability among natuaats. When the model was run
for variability only, separating the uncertainty introdility the mean and standard deviation
of 4o, the probability of finding hazardo®slmonella concentration above 5 log CFU/g (that
may not be inactivated sufficiently by cooking) from a eomhated sausage pack was
estimated at 0.13%, with a 95% CI of 0.02-0.25% (Figure 2).it8éysanalysis has shown
that theSalmonella level in fresh sausages prior to cooking is highly influermethe initial
Salmonella load (R=0.77), and is more affected by storage tin¥® (&3) than by the average
fridge temperature and its oscillations (R=0.17). Figureggyssts that approximately beyond
2 days of storage, hazarddsedmonella concentrations are likely to occur.
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Figure 2: Influence of cold storage time on the concentrafi®@lmonella in pork sausage
after refrigerationYg) prior to cooking

Conclusions

The concentration oBalmonella in fresh pork sausages from a contaminated pack prior to
cooking was estimated to be within a 95% CI of 1.25-2.76 log/@,Fatthough ~0.13% of
the times, hazardous levels that may not be sufficiamtlgtivated by cooking can be present.
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Predictive Microbiology Models vs. Modeling Microbial Growth
Within Listeria monocytogenes Risk Assessment: What Gap? What
Impact?
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Center for Food Safety and Applied Nutrition/Food and Drug Administration. 5100 Paint Branch Pkwy, College
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Abstract

Despite the increasing complexity of predictive microbiology models, bacterial growth in
guantitative microbial risk assessmentsis generally predicted using very simple models. What
is the impact of the choice of the model on the final risk estimates? What issues still exist for
appropriate prediction of bacterial growth within risk assessments? As a partial answer to
these questions, the impact of the use of various published models to predict bacterial growth
during consumer storage was evaluated in a specific risk assessment for the occurrence of
listeriosis from consumption of cold smoked salmon. Results underline a gap between the
most studied factors in predictive microbiology modeling (lag, growth rate) and the most
influential parameters in some Listeria risk assessments (maximum population density,
bacterial competition).

Keywords
Quantitative Risk Assessment, Listeria monocytogenes.

I ntroduction

In most Microbial Quantitative Risk Assessments (MQRA), particularly those dealing with
Listeria monocytogenes (Lm), bacterial growth is a key basic process that influences the
evaluated risk. Some guidelines exist on how to incorporate predictive microbiology models
in MQRA (DMS model, van Gerwen and Zwietering 1998; Ross and McMeekin 2003).
Nevertheless, the growth models used in current MQRAS are generally very simple compared
to those developed in the predictive microbiology domain. For example, the FDA/FSIS
(2003) MQRA of relative risk from Lm in ready-to-eat foods used a single log-linear primary
growth model, which did not consider either lag or competition, a simple square root model
for temperature as a secondary model, and one exponential growth rate (EGR) distribution per
food category. More recent MQRASs have modeled lag as a multiple of the generation time
and may consider the effect of competition (Ross et al. 2009). Are the models used in these
MQRASs simple or simplistic? What is the impact of the choice of the model on the final risk
prediction?

To partially answer these questions, the impact of the model used to predict the growth of Lm
during consumer storage was tested within a quantitative risk assessment of listeriosis from
consumption of cold smoked salmon (CSS).

Material and Methods

The baseline parameters were adapted from a recently published MQRA of Lm in CSS in
France (Pouillot et al. 2007; Pouillot et al. 2009). The initial log;, concentration of Lm in
contaminated CSS follows a normal distribution with a mean of -2.57 logy, cfu/g and a
standard deviation of 1.76 log,o cfu/g. This distribution is rounded and truncated to provide a
discrete number of Lm per 100g package of CSS. The refrigerator temperature varied from
household to household according to a normal distribution with a mean of 7.0°C and a
standard-deviation of 3.0°C. The storage duration followed an exponential distribution with a
mean of 4.8 days. The serving size was fixed at 359. Dose-response for invasive listeriosis
was modeled as Pr(illnessD) = 1-exp(-r D), with r = 1.7E-14 ("population with decreased
susceptibility", FAO/WHO 2004).



The concentration of Lm at consumption was predicted using various growth models obtained
from the literature. All model outputs were compared to a baseline model that used an
exponential growth model without lag as a primary model and a square root model with
constant EGR and Ty, as a secondary model. The alternative models used were: 1) no growth;
2) fluctuating temperature within the refrigerator (DM S model, Pouillot et al. 2007); 3) strain
to strain variation in EGR and/or Tyn; 4) strain to strain variation and uncertainty in EGR and
Tmin; 5) Varying maximum population densities (MPD); 6) lag time estimated as a constant
number of relative generation times (RGT); 7) strain to strain variation in lag time; 8)
individual bacterial stochastic lag time; 9) competition with food flora or; 10) various
secondary growth models on temperature. Temperature was considered to be the only
environmental parameter that impacted the growth in this process. The results are expressed
in terms of i) impact on the mean of the logy,y concentration of Listeria per gram at
consumption and ii) impact on the number of expected cases of listeriosis. The code (R
software) is available on request to the author.

Table 1: Impact of the growth model on the mean log;q concentration of Listeria
monocytogenes per serving and impact on the number of cases.

Secondary model lag MPD Mean log;o Expected

on gor EGR cfu/g[95%CI] n cases
Basdline Square Root model, O 7.27[1] 0 (ref) 100 (ref)

s = 6.24d7,

Tmin = -2.86 [1]
1. No growth -1.70 0.00007
2. Fluctuating DMS model [2] 0 7.27 +0.08 110
environment
3. Varying M5, Trin from [1] 0 1.27 -0.03 129
growth
parameters Tin = -1.18°C, 71.27 -0.41 66

EGRs from [3]
4. Varyingand s, Ty from [1], 0 7.27 -0.01 136
uncertain second order [-0.03, 0.00] [126, 145]
growth simulation
parameters
5. Varying Basdline 0 from[1] 000 256
MPD from [3] +0.02 421
6. lag Basdline 309RGT[4 727 065 I

529RGT [5] 7.27 -0.92 60
7.Varyinglag Baseline ~LN(2.3,09) 7.27 -0.76 66
RGT [5]

8. Stochastic from [6] 7.27 -0.63 76
lag from [7] 7.27 -0.88 62
9. Competition Jameson effectusing O 7.27 -0.07 33

parms. for the food

florafrom [1]
10. Secondary  [8] asin[9] 0 7.27 -0.37 76
growth model  [10] asin[9] 0 7.27 -0.17 70

[1] (Delignette-Muller et al. 2006); [2] (Pouillot et al. 2007); [3] (FDA/FSIS 2003); [4] (Augustin and Carlier 2000); [5] (Ross et
al. 2009); [6] (Standaert et al. 2007); [7] (Guillier and Augustin 2006); [8] Ross (FAO/WHO 2004) modified by (Gimenez and
Dalgaard 2004); [9](Cornu et al. 2006); [10] (Devlieghere et al. 2001) modified by (Gimenez and Dalgaard 2004)



Results and Discussion

The results are shown in Table 1. These results do not answer the question “which model is
best” but they do show the impact of different predictive microbiology models for a specific
pathogen, process and set of parameters (here, storage time and temperature at the consumer’s
household and dose-response model).

The ability of the food being modeled is important for an Lm risk assessment. If no growth
occursin this product (or it is not modeled), no illnesses would be predicted at the initial level
of contamination (see alternative 1.). Indeed, in a contaminated product that permits growth,
consumer storage appears to be a critical step in determining overal risk (FDA/FSIS 2003;
FAO/WHO 2004, Pouillot et al. 2009). Thisis particularly true in scenarios that include high
refrigerator temperatures. The distribution of refrigerator temperatures used here was derived
from a representative sample in France. In this situation, growth modeling was a significant
impact on the final predicted number of illnesses.

The DMS model (Pouillot et al. 2007) has been used to evaluate microbial growth in a
varying temperature environment. It is based on a log-linear primary growth model without
lag and a square root model. The issue of this model does not significantly impact estimated
risk in this context (Alternative 2.). Consideration of strain to strain variability seems to be
more influential, resulting in a 29% increase in predicted risk as compared to a situation
where this variability is not considered (Alternative 3a.). In this example, consideration of
uncertainty in the growth parameter estimate seems to have alow impact (Alternative 4.), but
this uncertainty does not consider the model uncertainty.

In this case, the use of a lag time is questionable; it is considered only as an illustration
purpose. Lag time has been described as a major factor influencing overall growth.
Nevertheless, no clear model exists for considering the impact of preincubation condition or
the stress on lag. QMRA models sometimes assume that there is no lag as a safe assumption.
It has been recommended to use a constant or a variable number of RGT (Ross and
McMeekin 2003; Ross et al. 2009). Consideration of lag had a relatively low impact on the
fina estimated number of cases (Alternative 6. and 7.). It has also been suggested that the
behavior of individual bacterial cells should be modeled. To test this, we used a model from
Guillier and Augustin (2006) with a population relative lag time of 3.09 and one from
Standaert et al. (2007) that leads to a median population relative lag time of 3. Both models
have alow impact on the final risk, compared to a model using a population lag (Alternative
8.).

Estimating the influence of the secondary growth model is more difficult because i) various
models exist in the literature; ii) some models are specifically designed for a given product or
process, and may be not useful for QMRA. For CSS, the use of various secondary growth
models on temperature has a little impact (Alternative 10.). Nevertheless, other results (not
shown) suggest that there may be a large impact if other environmental parameters, such as
phenolic content, are considered.

The maximum achievable population density (MPD) seems the most influential factor among
those tested (Alternative 5.). The expected number of cases increases by a factor of 2.5 if the
distribution derived by Delignette-Muller et al. (2006) is used and the expected number of
cases increases by a factor of 4 if the FDA/FSIS (2003) assumption of a varying MPD with
temperature is used, al other parameters being equal. The importance of MPD is confirmed
by looking at the impact of the modeling bacterial competition using the Jameson effect. In
fact, consideration of the Jameson effect leads to a decrease in the maximum density of
Listeria for some model iterations. Maximum population density is rarely, if ever, studied in
the predictive microbiology literature, but is clearly an essential consideration in QMRA
modeling for Listeria with the current dose-response models.

Conclusions

To a large degree, these results are a consequence of the fact that the dose-response
calculation considers the number of bacteria on an arithmetic scale. As a consequence, i) the
expected number of listeriosis cases is poorly linked to the mean of the logyg concentration of



Lm but is strongly linked to the arithmetic mean of Lm, a measure which is seldom considered
in microbiology literature; ii) the most extreme concentrations have a large impact on the
predicted risk; iii) the situations that either limit or increases the occurrence of these high
numbers of bacteria (lower or higher MPN, bacterial competition) have the greatest influence
on predicted risk.

Currently, there is an important gap between predictive microbiology models and the models
used in microbia risk assessments. It is difficult for a risk assessor to find an applicable
predictive microbiology model in the abundant literature. It is important for risk assessors to
evaluate the impact of the choice of the model on the final output.
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Abstract

In this study, the Saltelli (2002) Sensitivity Apsis method was applied to an exposure
assessment model dfisteria monocytogenes cold smoked vacuum packed salmon. The
impact of the choice of the approach (populatiasratellular) of the primary and secondary
models as well as the effect of their associatetbfa on the final contamination level was
investigated. Results provided a ranking of all fhetors which revealed that the food water
activity, its storage temperature and duration he tomestic refrigerator were the most
important factors.

Key words
Sensitivity Analysis, Exposure Assessment, Modelifigteria monocytogenes

I ntroduction

Over the last years, quantitative microbial riskessment (QMRA) has become an important
tool for food safety, however criticized as an ewriely data hungry and time consuming
method (Havelaaet al, 2008). In fact, simple and deterministic appr@schre now put aside
and a large variety of complexities can be founthwiery extensive and stochastic models.
Indeed, it can be tempting to include every phemmnethat could be of relevance, but this
could lead to over-parameterized models (Zwieterd@99). Sensitivity Analysis (SA) can help
solve this issue by eliminating the less influeattbrs. SA is defined as the study of how the
output uncertainty of a model can be apportionedlifferent sources of uncertainty in the
model input (Saltelli, 2002). Several SA methodwvehdeen previously used in QMRA,
(ANOVA, Spearman regression coefficient...) (Frey &tiR 2002; Membré et al., 2008) but
these methods seem to be poorly adapted to congieix non linear models like those
encountered in QMRA. The Saltelli (2002) SA methasl,commonly recognized in the
statistical field ; its application to microbiolagil modeling issues will represent a major
breakthrough in QMRA as it will help modelers bettmderstand and evaluate quantitatively
the effects of the inputs on the output and consetlyiorientate data acquisition campaigns and
efforts to the most impacting factors. The aim taé tstudy was to apply this innovative SA
method to an exposure assessment model mbnocytogeneas Cold Smoked Vacuum Packed
Salmon (CSVPS) to identify inputs that substantiathpact the final concentration of the
pathogen at consumption.

M aterials and methods

Experimental design

The exposure assessment model is composed of adegganodel which calculates the effects
of the environmental conditions on the maximum dlowate and a primary model which
computes the final contaminatiox given the secondary model outpytn{), the initial
contamination levek, and the physiological state of the microorganistnsTwo approaches
were considered. The first and commonly used appr@a populational approach in which all
the contaminating cells are supposed to have time gduysiological statk and their growth is
modeled globally. The second approach is a cell@dpproach in which each cell is
characterized by a specific physiological statehich is obtained by an Extreme Value type Il
distribution EVIi(a,b) (Guillier & Augustin, 2006)



with b=p/03658 and a=E-D(1.16420.3659 whereD =exp(.004(log(E) - 0.447 and

E = exp(0.0103(lod{)")+0.0065(logK)*)-0.039(logK)®)+0.0586(logK)?)+1.1941(logK))+0.1549)
Their growth is thus modeled individually and tleaf contamination level is the sum of the
population density reached at consumption timedaheell of the initial inoculum.

The tested primary models were those of Rosso j1@fuation 1) and Baranyi and Roberts
(1994) (Baranyi & Roberts, 1994) (equation 2).

Inx, st<lag (1)
In x=+

Inxmx—ln[l+[%—lj.expepmx(t— K ))] ,t>lag

wherex(CFU/qg) is the bacterial concentration at the titfig, xo(CFU/g) the initial bacterial
concentration, X, CFU/g) the maximum bacterial concentratiqm.(h™®) the maximum
specific growth rat& the physiological state &f monocytogenesndlag the lag time(h).

InX =N X — In[1+ [% —1] exp(— ,umax(A(t))j with At) =t+ yl

IN[eXPE Lyt) + EXPEK) — eXPEK — )] (2)

0 max

A multiplicative with or without interaction moddAugustin et al.,, 2005) was used as a
secondary model to describe the effects of temper@t pH and water activitaw on may The
temperature and pH effects were modeled by cardipal models (Rosset al, 1995) while the
water activity effect was modeled either by a caatltype (Rosset al, 1995) or a square root
type model (Ratkowskgt al, 1982).

SF(aW) (3)
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with CM, (aw)
0 X< X
CM(X)= (X = X (X = Xin)" X <X<X
oot = o) ™ [(Kopn = Xiin) (X = X = (Ko = X K Xoa =1X)]
0 ' Xz Xmax
0 ’szmin 1 ,l//50.5 . X =X 3
SRawy =] X=X =loa-y) 05<w<1 - o) #(X) :[L]
r— Ko <X Xy Vi s( ) y ><1w < W Zzl—l a-40) X oot = X

whereXmin, Xopy @andXmaxare the cardinal values bf monocytogenegs,: is the optimal value
of the maximum specific growth raje..{(h™) when X=Xopt andn a shape parameten=2 for
temperature and=1 for pH and aw).

The parameters of these models were allowed to aeecgrding to the ranges identified by a
literature review and presented in table 1.

Table 1: Range of variations of the exposure apsm#smodel parameters

Micraobiological parameters Range Distribution chain parameters Range
K 0-8 Duration of transport and storage dTEP (h) 4 -96

X (UFC/Q) 1-20 Temperature of transport and storage TTEP (°C) 2-7
log%nax (I0og UFC/g) 6.00 — 8.00 Duration of storage in cold rooms dC (h) 0-48
Mopt (h-1) 0.60-1.30 Temperature of storage in cold rooms TC (°C) 1-7
CSVPS pH 5.30-6.30 Duration of storage in the shelves dM (h) 2-288
CSVPS aw 0.93-0.99 Temperature of storage in the shelves TM (°C) 2-9
Tmin (°C) -25-0.1 Duration of the journey back home dV (h) 0.1-25
Topt (°C) 36.5-39.5 Temperature of the journey back home TV (°C) 6-20
Tmax (°C) 40.0 - 45.0 Duration of the storage in the refrigerator dR (h) 0-336
pHmin 4.00 - 4.40 Temperature of the storage in the refrigerator TR)( 2-12
aWmin 0.91-0.94 Duration of unrefrigerated storage before consumptidD (h) 0-16

Temperature of unrefrigerated storage before coqtion TD (°C) 10 — 25

Sensitivity Analysis indices

This SA method is based on variance decompositwbgl, 2001) and computes first order
indices §) which represent the main effect contribution a€le input factor to the variance of
the output, and total effect indiceSt) which account for the total contribution to thetmut
variance due to the first order effec®) @nd to their non linear interactions. Severalhods

are available to compute these indices (Gétaad, 2000). In the present study the SA was based
on the Saltelli (2002) method because it is 50%apbethan other published works in terms of
required number of simulations (Saltelli, 2002).rédes a brief description of the method. Two



matrixesA andB of N lines (typicallyN=10" to 5.1¢) andF columns E= number of factors of
interest) are filled with numbers provided by aihdtypercube Sampling (McKagt al, 1979)
with respect to the range of variation of eachdacthe approach (populational or cellular), the
choice of the primary or secondary model were atsosidered as factors. A third mati®
containing all the columns & but the columri which is replaced by th& column of matrixA

is finally generated and the exposure assessmedeliigorun on each row of the three matrixes
to provide three vectorsA YB andYG. The indices are then calculated with the follayin

formula (Saltelli, 2002).
(N> verve)-1

[wn)z varve)-g,
= ((1/ N)ZLYAU)YAu)J_ f02 ((l/ N)ZZ\‘:lYAU)YAU) )_ f02

with

1 N
fo =" YAV
N u=1

St=1-
1a

9o =— D YAVYBY
N u=1

Results and discussion

The results of the SA are presented in table 2 evtiex factors were ranked according to their
total effect indices{t). These indices are especially powerful in caseasf additive and non
linear model, particularly when used with their teti@ap confidence bounds estimates (Archer
et al, 1997). The exposure assessment model used isttldg proved to be non additive and
non linear. In fact, the sum of the first orderiged &) which account for the individual
contribution of each factor into the variance & tutput is less than 1 (0.72) which means that
the variance of the output cannot be only explaimgthe sum of the individual effects of each
factor but is also attributed to the effects oéractions.

Table 2. Estimates of the first ord&)(and total effect$t) indices of the SA and their
bootstrap confidence intervals

Factors Sy S Factors St S

CSVPS aw 0.50[0.47,0.54] 0.30[0.29,0.32] Tmax 0.02 [-0.02,0.07] 0.00 [0.00,0.01]
TR 0.21[0.17,0.25] 0.08 [0.07,0.09] logXmax 0.02 [-0.02,0.07] 0.00 [0.00,0.00]
dR 0.18[0.13,0.22] 0.07 [0.06,0.08] TD 0.02 [-0.02,0.06] 0,00 [0.00,0.01]
K 0.13[0.09,0.18] 0.06 [0.06,0.07] TTEP 0.02 [-0.03,0.06] 0.00 [0.00,0.01]
Hopt 0.08 [0.04,0.13] 0.03[0.03,0.04] pHmin 0.02 [-0.03,0.06] 0.00 [0.00,0.00]
@Wmin 0.08[0.03,0.12] 0.01[0.00,0.01] TC 0.02 [-0.03,0.06] 0.00 [0.00,0.00]
™ 0.08[0.03,0.12] 0.02 [0.02,0.03] Approach 0.02 [-0.03,0.06] 0.00 [0.00,0.00]
dM 0.07[0.03,0.12] 0.02[0.01,0.03] dTEP 0.02 [-0.03,0.06] 0.00 [0.00,0.00]
Tmin 0.07 [0.02,0.11] 0.02[0.02,0.03] dC 0.02 [-0.03,0.06] 0.00 [0.00,0.00]
Xo 0.06 [0.02,0.10] 0.04 [0.04,0.05] Primary model 0.02 [-0.03,0.06] 0.00[0.00,0.00]
CSVPS pH 0.05[0.01,0.09] 0.02[0.01,0.02] dVv 0.01 [-0.03,0.06] 0.00 [0.00,0.00]
Topt 0.03 [-0.01,0.08] 0.01[0.01,0.01] Secondary model 0.01 [-0.03,0.06] 0.00 [0.00,0.00]
dD 0.03 [-0.02,0.07] 0.00[0.00,0.01] TV 0.01 [-0.03,0.06] 0.00 [0.00,0.00]

This is confirmed by the relatively important diéace observed between tBeand theS for

all the factors. For example for the CSVPS aw, difference between thgt (0.5) and thes
(0.3) flags an important role of interactions foat factor in the model final response.

The confidence intervals computed by bootstrap weesl to identify the factors which indices
are significantly different from 0 as the most urght factors. Figure 1 shows that the subset of
these important factors is different in case thgettansformation is applied or not to the model
response before the SA is performed. When appllivegSA directly to the concentrations
(CFU/g) ofL. monocytogenefigure la), the parametef.. appears to be the most important
factor Gt=0.59) while this factor is not identified in theitset of important factors when
applying the SA to the log CFU/g (Figure 1b). Thihg ranking of the factors strongly depends
on the chosen model response. In the field of imaxtobiology, results are often expressed in
log CFU/g to avoid scale effects, we therefore damar analysis on that particular response
(Figure 2b) and used the ranking presented in tabléhe three most important factors are the
CSVPS aw and the temperature and duration of thmesdtc refrigerator storage. The
importance of the consumer link in the cold chaiaswpreviously reported and this study
quantitatively confirms this observation, wherdas salmon aw has never been identified as a
major factor influencing the growth &f monocytogeneism CSVPS. This result may be due to
the large range of variation that was used to assesfluence.
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Figure 1. Indices S (dashed bars) and St; (black bars) obtained for the Sensitivity Analysis when
applied to (a) Y or (b) log10(Y).

The factorsiey, Tmin @ndX, also identified as important factors in this studiere previously
ranked among important factors impacting the respaf similar models (Pouillot, 2006). But
surprisingly, neither the approach choice (popaoretl or cellular) nor the primary or secondary
model choice, impacted the studied model respofseally, the SA showed that the
physiological state of the cell§, which is scarcely used in QMRA, was twice more intgoat
than x,. This leads to fail safe but incorrect predicticared we therefore think that a better
characterization of such a factor is worth condwgcto improve model predictions in QMRA.

Conclusion

This method proved to be very efficient and rekliiveasy to interpret. In a further study, the
impact of the range of variation of the factors|wike evaluated before performing an
Uncertainty Analysis which will make it possibleitentify the impact of the input uncertainty
on the model response.
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Developing a predictive model for quantifying the risk associated
with in-factory Listeria monocytogenes recontamination and to
identify suitable management options to reduce it.
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Abstract

Listeria monocytogenes is a serious hazard to consider during ice-cream manufacture. The
aim of this study was to develop a predictive model to quantify the probability of end-product
recontamination in ice cream factories, and then assess the impact of various management
options to reduce the risk.

Recontamination sources identified as priority for investigation were air, drains and floors in
the production area; transmission vectors were water droplets in air and food contact surfaces.
Based upon factory equipment design and process operations, the model structure was built.
Data to inform inputs were collected from a representative factory and were supplemented by
literature information. Results were realistic enough to provide confidence to the Quality
Assurance team that the model could be used to rank the impact of various scenarios and to
suggest options to reduce the probability of recontamination.

A major mechanism to trigger recontamination events was localised intermittent cleaning, i.e.
low pressure hose cleaning used between 'deep clean' procedures. Conversely, large
improvements in quality of typical air filtration and air recycling conditions, produced
negligible improvement in the probability of recontamination due to L. monocytogenes from
air.

Introduction

Listeria monocytogenes is a pathogen that can cause serious food-borne illness, particularly in
the very young and old, unborn children and immunocompromised groups. The risk of
listeriosis from ice cream consumption has been clearly identified as 'the product is eaten
worldwide, with a high consumption rate, particularly for some immunocompromised
persons' (WHO 2004).

The pathogen is typically removed during pasteurisation, and raw material checks should
eliminate the hazard from direct introduction during manufacture. However, the micro-
organism is commonly found in cold environments such as those often prevailing in liquid
dairy food processing operations. From such environments, the pathogen can recontaminate
the final product after pasteurisation.

Understanding the underlying mechanisms and principles of recontamination during
manufacture or shelf-life has attracted comparatively little attention from food technologists
and risk modellers when compared to other aspects of controlling microbial contamination of
products; such as heat inactivation, or inactivating or inhibitory formulations. However,
recontamination is a major issue to be controlled (Reij et al., 2004) and considerable costs are
involved in assuring control of recontamination through product and process designs, and
operationally through adherence to 'good hygienic practices' and HACCP programmes. With
the exception of some design criteria, the relative and absolute effectiveness of many
practices and approaches in controlling microbial recontamination, and L. monocytogenes
recontamination specifically, are unknown.

Therefore, there is a need for greater understanding of the main mechanisms through which
products are recontaminated and, by modelling these routes, more effective and practical
management strategies can be devised to reduce and manage the risks.



Developing the recontamination model

Several mathematical models have been developed to quantify the risk of recontamination
during food processing, which could be used in microbiological risk assessment studies to
estimate the recontamination frequency and assess the relative importance of the various
scenarios. In summary, they can be classified as three types: generic (can be used as a
framework or starting point for model building), route-specific (based on various routes of
recontamination, i.e. via the air or surface), and site-specific (focus on certain food processing
flow under industrial conditions). As examples of these categories, the following can be
noted:

- A general framework of modelling proposed by Schaffner (2004), which is a generic
approach to quantify the risk of Listeria cross-contamination. The model tracked L.
monocytogenes concentration and prevalence from raw material or environment to finished
product.

- An air-food recontamination route model devised to quantify the risk of recontamination in
food processing environment (den Aantrekker et al, 2003). Although the air-food
recontamination route was not developed and applied, contamination via the air was described
based upon the density and settling velocity of particles.

- A model developed by Ivanek er al. (2004), which was used to estimate the effect of cross-
contamination transmission among employee’s hands, food products, food contact surfaces
and the environment. A compartmental mathematical model of L. monocytogenes cross-
contamination was developed for the slicing stage (finished product area) of smoked ready-to-
eat fish production. It defined and quantified L. monocytogenes cross-contamination
dynamics in a processing plant and allowed the estimation of the prevalence of contaminated
fish in a lot as a result of cross-contamination. The most significant input parameters were
identified by sensitivity analysis, followed by risk reduction suggestions.

The modelling approach adopted in this study for recontamination was site-specific and thus
similar to the one suggested by Ivanek et al. (2004). Firstly, an in-situ factory analysis was
performed at a representative ice-cream factory, focusing on the High Care Area (HCA) in
this manufacturing operation which is the area before the packaging of end-product. A
conveyor was used as the main example of surfaces in contact with food. Only low-pressure
water hosing was considered here as the negative impact of high-pressure water hosing on
recontamination risks was already well known.

Five scenarios of recontamination were investigated in detail in this study (Figure 1):

® Air contamination (one scenario) with Listeria monocytogenes circulating within the
air volume of the production hall, falling on the conveyor or directly onto the product;
this used inputs from den Aantrekker ez al. (2003) as well as information gathered in
the representative factory (e.g. production line flow, air volume exchange, HCA
volume, filtration efficacy, conveyor speed);

e Droplets from drain or from floor (two separate scenarios) splashed directly to
conveyor or directly to the product; high Listeria concentrations in drain (10° cfu/ml)
and moderate in floor (10° cfu/ml) were assumed; mapping of drains in HCA,
frequency of hosing and the distances between drains and conveyors were obtained
directly from in-situ inspection; literature information (Burfoot et al., 2003) was used
to provide realistic values for inputs such as size of droplets and percentage of
transfer of bacteria to droplets;

e Droplets in atmosphere, produced through floor and drain hosing (two separate
scenarios) are then deposited onto conveyor and directly onto product; these two
scenarios included inputs from the relevant factory and from literature (den
Aantrekker et al., 2003; Burfoot et al., 2003).

A dynamic model was built for the five recontamination scenarios. Predictions expressed as
probability of recontamination (number of end-products containing at least one bacterium



divided by number of end-products during the same period of time) were compared with data
collected in the same factory.

777777777777777777777777777 Air

i filtration
—_—
i system

conveyor

Drain or floor cleaning
Droplet generation

Figure 1: Schematic representation of the three main sources of contamination (drain or floor

cleaning and air) studied in detail in this quantitative risk assessment study.

Results and Discussion

From the five detailed scenario analyses related to routes of recontamination (via air, direct
from drain or floor cleaning, indirect from drain or floor cleaning), the followings insights
have been obtained:

the distance between floors or drains and the conveyor can make a huge difference in
terms of risk due to droplet generation as a consequence of hosing and exposure of
the conveyor to droplets. Figure 2 illustrates the scenario with floor to conveyor
distance when hosing the floor. From this it can be seen that the direct route source-
to-conveyor leads to a risk that is three fold higher when the distance is 1 m as
compared to 10 m. In other words, hosing water, even on floors where low Listeria
contamination levels and/or prevalence may be expected, close to pieces of
equipment on which the food is carried, must be avoided to minimise risks;

the time that either the floor or the drain is hosed (Figure 3 illustrates the scenario
with floor) does not impact massively on the recontamination risk; however, it should
be borne in mind that in this study the prevalence of the Listeria recontamination in
the product is estimated, not its concentration;

in most of the scenarios explored, the air recontamination route was not found to be a
major issue. This is mainly due to the fact that the concentration of L. monocytogenes
in air (at least in the absence of droplet splashing) was taken to be small (based upon
1-year data analysis). An air filtration efficiency of 90% was considered as a realistic
value in the representative factory and, in this case, increasing the filtration efficiency
from 90% to 99% does not significantly decrease the recontamination risk (Figure 4).

4.0 1
—e— Direct from drain

,‘z’ 3.0 —a— Direct from floor
T, —a— Indirect from drain
% 2.0 1 Indirect from floor
E’ —%— Via air (no droplet)

1.0 1 —e— Sum of Scenarios

0.0 = % ‘ x ‘ ; ; ‘

1 2 3 4 5 6 7 8 9 10

Distance [hosing floor to conveyor] (m)

Figure 2: Effect of hosing distance on recontamination risk. Relative risk equal to 1 has been defined
with distance [hosing floor to conveyor] of 10m, time of floor hosing of 2 min and air filtration system

efficiency of 99%.
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Figure 3: Effect of hosing time on recontamination risk. Same relative risk definition as in
Figure 2.
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Figure 4: Effect of air filtration efficiency on recontamination risk. Same relative risk
definition as in Figure 2.

In conclusion, one important mechanism of recontamination from potentially contaminated
sources to final products is the result of specific cleaning operations such as hose cleaning.
Indeed, hose cleaning, even at low water pressure, plays a crucial role in bringing bacteria
from drains and floors to vectors such as air and conveyor-belts that directly can be in contact
with final products. The model developed in this study was used to provide an informed and
more quantitative definition for a "dry-floor policy" as it gave adequate evidence regarding
the advantages of its implementation, despite the associated infrastructure costs.

The possibility to apply or further tailor the model to other ice cream factories, and to include
physical recontamination routes, is now being investigated.
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Abstract

Information on pathogen-behavior in food is needed by risk managers in making sound food
safety decisions. Ideally, this information would be obtained through controlled inoculation
studies using the agent/food combination of concern during the actual processing flow of the
food in its actual environment. This approach is seldom safe or practical, since it involves use
of actual pathogens in the food processing environment. Alternatively, laboratory-based
agent/food inoculation challenge studies can be conducted that simulate actual processing
conditions. This method has been frequently used and is well accepted by risk managers. It
is important to note however that processors that choose to use this approach must ensure that
conditions in their process, such as food formulation and temperature, are at least as
inhibitory to pathogen growth as in the laboratory study. Another way to obtain this
information is to analyze processing conditions using computer generated predictive models
of pathogen behavior. There is an ever increasing acceptance of this approach in food safety
risk analysis decision making and there are many existing models and tools. A difficulty for
risk managers however, is that they must be familiar with the benefits and limitations of
appropriate models and tools which are available. Additionally, there must be adequate
understanding of how to apply/direct a specific model or tool to obtain meaningful
predictions. A predictive modeling resource that offers simplicity, flexibility, and an easy-to-
understand means of communicating results is needed.

Our model, the Time and Temperature Pathogen Predictor (T2P2), will be easy to use, and
will provide accurate-to-fail-safe predictions of pathogen behavior in relevant food matrices
and laboratory media to provide sound scientific advice for the implementation of mitigation
strategies and for use in other food safety risk analysis decision making.

Key Words: predictive modeling, food safety risk analysis, risk assessment, HACCP

Introduction

Since 2000, all wholesale meat processors in the United States have been required to use the
hazard analysis critical control point (HACCP) system for ensuring food safety (USDA 1996).
HACCP is also becoming increasingly utilized in other industry segments to include food
processing, food service, and even retail. Under the HACCP system, processors must conduct
a hazard analysis for each of their products and then develop and implement an HACCP plan
for the control of identified hazards that are reasonably likely to occur. To control identified
hazards critical limits must be established at critical control points to ensure the elimination
(or reduction to safe levels) of the identified hazard. One way of establishing critical limits is



by using predictive modeling tools. These tools are also useful in conducting a thorough
hazard analysis and evaluating system deviations (corrective actions). Today, many
predictive modeling tools exist to help processors, regulators and academics evaluate
microbial responses (growth, survival, and inactivation). The mathematical methodology
used to describe these microbial environmental responses has evolved and many methods,
some of which are quite complex, have been described. The United States Department of
Agriculture (USDA) — Agricultural Research Service’s Pathogen Modeling Program (PMP) is
the most recognized predictive microbiology tool in the United States. A similar tool is the
Institute of Food Research’s (Norwich, UK) ComBase Growth Predictor. However both of
these tools can be difficult to use and the results are not easy to interpret. A tool developed
recently at the University of Wisconsin-Madison, Temperature History Evaluation for Raw
Meats (THERM; in a series of papers, Burnham 2007a, 2007b, & 2006 and Ingham 2009,
2008, & 2007), addressed some of the limitations associated with these and other tools, but it
has limited environmental condition and food matrix applicability. With the ever increasing
availability of predictive modeling resources it has become necessary to establish a common
resource which utilizes the predictive power of existing tools and minimizes limitations.

The objective of this work is to develop a web-based predictive modeling resource, the T2P2,
which makes use of existing predictive modeling tools and provides related training materials
which will provide information for use in food safety risk analysis decision making.

T2P2 will utilize the existing online THERM application, transfer the tool to the software
Analytica, develop a web interface for the tool, and expand upon the functionality of the tool
in terms of 1) the scope of calculations performed, 2) the level of user interaction with the
tool, and 3) enhanced reporting from use of the tool. The tool will provide the user with
information regarding the overall performance of the food handling system, thereby providing
a scientific basis upon which to make decisions regarding the acceptability of the food
produced in terms of the risk posed from bacterial pathogens of concern.

Materials and Methods

The work will be undertaken in two phases. In Phase | we will develop a prototype for T2P2
(referred to as the “T2P2-prototype™ in the remainder of this abstract). This will be a
functioning T2P2-prototype including Analytica based growth and inactivation models, a
web-based user interface that will perform calculations, and a basic reporting system. The
aim of the T2P2-prototype will be to provide a basis for the development of the key
functionalities of the tool and to illustrate the features (and uses) of the final tool. The T2P2-
prototype is not intended to be distributed for general use and will not reflect the full
functionality of the final tool. In Phase Il the T2P2-prototype developed in Phase I will be
expanded and enhanced to provide full functionality.

Mathematical Functionality

The aim is to develop a common mathematical framework for all food-hazard combinations
that may be used in the tool, combining lag phase, growth, and inactivation across the stages
and time-temperature relationships described in the treatment chain. The mathematics of the
THERM tool will be included and additional predictive models will be added from PMP to
broaden the scope of food-hazard combinations that can be considered. In the final model we
will include the capability to model lag phase, growth, and inactivation for Bacillus cereus,
Escherichia coli O157:H7, Listeria monocytogenes, Shigella, Staphylococcus aureus and
Salmonella serovars. These pathogens have been selected for the initial list as they either are
already included in THERM or are considered in models available through PMP. The T2P2-
prototype will incorporate at least 3 of these hazards to fully illustrate the functionality of the
tool (including at least one that is migrated from PMP). In addition, given the association of



these hazards with foodborne illness, there is a high likelihood that required information not
found in THERM or PMP can be found in the scientific literature.

Reporting Requirements

The user will be provided with the option to view and/or save a report. This report will
include:

o Description of the user inputs, for example the food and hazard(s) selected, the stages
included in the treatment chain, and the lot ID. The times and temperatures across the
treatment chain will be shown as a graph rather than as a table.

¢ Result of the model run and a selection of graphs (presented in the results window) as
an example of the types of graphs that can be included.

e Appendices or references to other documents as deemed appropriate (e.g. references
to models and data used, etc.). Full appendices/references will not be included in the
T2P2-prototype but instead an example of what this would look like will be included.

e Key assumptions and caveats will be provided when “generic” behavior models have
been used (e.g. behavior in broth) as opposed to food specific models.

Users will also be provided with access to a description of the data, parameters, and models
used in the model predictions and have the option to include these in the report.

Results and Discussion

The T2P2-prototype (Phase 1), will demonstrate the types of features and functions that the
final online tool will have and the potential uses of such a tool. The user will take the
following steps to interact with the tool (Figure 1): 1) select the food of interest, 2) select the
hazard(s) of interest, and 3) define the treatment chain (with respect to time, temperature, and
processing stage). T2P2 will generate a report of the prediction (.pdf format), with an option
to view or save the report. A user defined results screen will then be displayed and contain at
a minimum:

e A summary of the data, including a graph of the time-temperature relationship of
the treatment chain

e The overall predicted population change in the hazard (expressed in log;g CFU)
as a result of the defined treatment chain

e A graph of the cumulative hazard population change over the course of the
treatment chain

e Atable of the time, temperature and cumulative population change over the
course of the treatment chain.

In phase I, the final T2P2 website will include a detailed User’s Guide and a Quick-Start
Guide. These documents will take the user step-by-step through the process of using the tool,
and will include industry-relevant examples demonstrating the use of the tool. The user will
be able to download these documents from the T2P2 website. Additionally, extensive
context-specific help and training modules will be available to the user on the website. The
training modules will provide hands-on experience and demonstrate the power of the tool
through defined temperature treatment scenarios of specific food/hazard combinations.



Figure 1. Examples of sign-in screen (panel A), user interaction screen (panel B), and results screen (panel
C) proposed for the T2P2-prototype.
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Conclusion

Once complete, the easy-to-use T2P2 will provide accurate-to-fail-safe predictions of
pathogen behavior in relevant food matrices and laboratory media to give sound scientific
advice for the implementation of mitigation strategies and for use in other food safety risk
analysis decision making.
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Introduction

Growth limits for temperature, pH or water activity are major characteristics of foodborne
pathogenic bacteria and primary determinants of food safety hazards. Although important
those growth/no growth limits are obviously not adapted to predictions of the increases in
populations of the foodborne pathogens in foods. Risk characterization is partly based on the
assessment of the concentrations reached in a food before consumption. Risk management
options will favour conditions keeping bacterial concentrations below a critical level. Those
predictions are of particular importance for the foodborne pathogenic bacterium Bacillus
cereus, causing two types of foodborne poisonings, an emetic syndrome and a diarrheic
syndrome, representing a significant part of outbreaks of foodborne poisonings in many
countries, and widely distributed in food materials (Anonymous, 2005; Granum, 2007).
Several theoretical approaches have been proposed to predict microbial growth in foods.
Among those Cardinal Parameter Models offer the advantage to use parameters having a
biological significance. These cardinal parameters are Tmin, Topt, Tmax, PHmins PHopts 8w mins 8w
opt fOr the prediction of the maximum specific growth rate pm. as a function of temperature
pH and a, respectively, with X, and Xq.x representing the value of X; below and above
which no growth occurs, and X, the value at which Py is equal to po, (Ross and Dalgaard,
2004).

These parameters must account for genetic variability. The B. cereus sensu lato phylogenetic
structure was recently resolved in seven major phylogenetic groups (I-VI1) using both genetic
and phenotypic criteria (Table 1) (Guinebretiere et al., 2008). These groups showed clear
differences in their ability to grow at low or high temperatures and considering B. cereus
globally is meaningless. Whether it is similar for growth at various pH and various low a,, —
high NaCl concentrations is not known. The aim of this work was the determination of the
cardinal temperature, pH and a, of representative strains of those B. cereus phylogenetic
groups and to study the relation with their growth limits established in growth/no growth
tests.



Table 1: The seven Bacillus cereus phylogenetic groups (Guinebretiere et al., 2008) and their
main characters.

Group  Association to currently defined species  Association to Domain of Heat
cases of food growth resistance
poisonings temperatures  of spores’

I B. pseudomycoides No 10°C-40°C ?

I B. cereus I, B. thuringiensis 11 Yes 7°C—-40°C  ++

Il Emetic strains, B. cereus Ill, B. Yes 15°C-45°C  +++

thuringiensis I11, B. anthracis

v B. cereus IV, B. thuringiensis 1V Yes 10°C - 45 ++

°C
Vv B. cereus V, B. thuringiensis V Yes 8°C—-40°C  ++
VI B. weihenstephanensis, B. mycoides, B. No 5°C-37°C +
thuringiensis VI
VIl ‘B. cytotoxicus’ Yes 20°C-50°C +++

'Ranking established from (Afchain et al., 2008; Carlin et al., 2006).

Materials and Methods

A collection of 42 strains representative of the seven phylogenetic groups of B. cereus sensu
lato was selected for that work. Growth/no growth limits at a range of pH and a,, near growth
limits were determined for all strains in BHI at pH 5.0, 4.8, 4.6 and 4.3 or in BHI
supplemented with 5%, 7%, 8%, and 10% (wt/vol) NaCl. Growth was followed for up to 14
days at 30°C. Cardinal temperatures, pHs and a,s were determined for two strains of groups
I1-VI1I. Filament growth of group | strains was not suitable for OD growth curves and cardinal
parameters of those strains were consequently not determined. A method now commonly used
in predictive microbiology method and based on optical density measurement was applied
(Membré et al., 2002). Briefly the ODgg Of series of binary dilution of each B. cereus strain
were followed in (i) in BHIYG at the selected pH or aw — NaCl concentration were incubated
at 30°C, or (ii) in BHIYG incubated at the selected temperature. Time to a specific ODgq
(usually initial ODggo + 0.05) were plotted against the natural Log of the dilution to determine
the Umax OF each strain in each growth condition. The pm.x Values were then plotted as a
function of pH, temperature or aw to determine the cardinal parameters according to the
model of (Rosso et al., 1995).

Results

Growth limits of B. cereus sensu lato phylogenetic groups

The phylogenetic groups show some marked differences in their NaCl or pH growth limits
(Table 2 and Table 3). All group VII strains were able to grow at 10% NaCl. All groups I1-V
strains were able to grow at 7% NaCl, while none of the group I and VI were. All group VII
(and group I1) strains were also able to grow at pH 4.6, while only one Group VI strain out of
6 was able to grow at pH 4.6.



Table 2: Effect of water activity (NaCl concentration) on growth of B. cereus sensu lato
genetic groups

Genetic % strains’ growing in BHI at a NaCl concentration (a,,) of:
group
0.5% 5% (0.965) 6% (0.960) 7% (0.952) 8% (0.945) 10%
(0.996) (0.929)
VII 100 100 100 100 100 100
i 100 100 100 100 100 75
v 100 100 100 100 100 33
I 100 100 100 100 67 0
\Y 100 100 100 100 33 0
VI 100 100 83 0 0 0
I 100 67 0 0 0 0

1 4-8 strains tested in each genetic group

Table 3: Effect of pH on growth of B. cereus sensu lato genetic groups

Genetic % strains’ growing in BHI at a pH of:
group
7.4 5 4.8 4.6 4.3
I 100 100 100 100 17
VII 100 100 100 100 25
i 100 100 100 88 13
I 100 100 100 83 0
v 100 100 100 67 0
\% 100 100 100 33 0
VI 100 100 67 17 0

1 4-8 strains tested in each genetic group

Cardinal parameters of B. cereus sensu lato phylogenetic groups

The cardinal temperatures are in agreement with the growth limits previously recorded for the
phylogenetic groups (Guinebretiere et al., 2008). The psychrotrophic Group Il and VI have
the lowest T, and their lower tolerance to temperature higher than 37°C is also expressed by
lower Tax Values (Table 4). The “moderately thermophilic’group VII has also the highest
Tmin and Trax and its Ty is also higher than the T, of the other strains. Cardinal parameters
of the mesophilic groups Ill and IV have intermediate values. Differences in pHy, are less
marked than differences in temperature. The highest pHyi, was that of group VI strains, which
were also the least adapted to low pH according to their pH growth limits (Table 3). Group VI
had the lowest a, min, Which is consistent with its lower ability to grow at increasing NaCl

concentrations.

Table 4: Cardinal parameters of B. cereus sensu lato genetic groups™.

Genetic group® Trin (°C) Top (°C) Trax (°C) PH min aw min (% NaCl)
T 22 35.6 416 4.65 0.950 (7 —7.5)
11 8.0 38.4 48 473 0.942 (8.5)
AV 7.5 37.9 47.4 4.63 0,949 (7 -7.5)
v 5.5 36.1 43.1 472 0,049 (7 - 7.5)
VI 4.1 31.3 42.4 4.88 0.972 (3.5 - 4)
VIl 11.6 442 58 4.7 0.953 (7)

1pH0m, PHmax, 8w opt aNd &y max Were not shown because of poor significance in a food context
and/or low differences between groups
*Two strains tested in each group



Discussion

This work establishes a link between microbial genetics and predictive microbiology. This is
of major interest for microbial risk assessment. In addition to the differences observed
between groups in ability to grow at low temperature, pH or ay, or in their resistance to heat,
B. cereus strains in each genetic groups likely differ in their virulence and therefore in their
potential to cause foodborne poisonings (Guinebretiere et al., 2008). For instance the emetic
syndrome is specifically associated to Group Il strains. Psychrotrophic strains of group VI
have never been associated to outbreaks of foodborne poisonings, which is not the case with
psychrotrophic strains of group Il. Most strains of group VII have been associated to severe
outbreaks of foodborne poisonings. Prediction of the growth potential of each B. cereus
genetic group will be easier to perform with the availability of their cardinal parameters. The
technical effort to determine the genetic group of a new isolate represents either (i) one PCR
and two growth tests (at 43°C, and 10°C or 7°C) in standard conditions, or a (ii) 16S rDNA
sequencing or panC gene sequencing and a comparison to the sequences of the reference
strains. A tool is available at www.tools.symprevius.org/Bcereus/ for the identification using
the panC sequence of the relation of bacterial strains to one of the B. cereus phylogenetic
groups. To our opinion this is a minor effort considering the importance of accounting for B.
cereus genetic diversity in microbial risk assessment.
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Introduction

Escherichia coli O157:H7 is a major pathogen capable of surviving harsh environmental
conditions and refrigeration temperatures. Although it was originally associated with ground
beef, the organism has more recently caused a series of outbreaks involving leafy greens
including lettuce. The E. coli was found in the final bagged product of fresh-cut processed
greens but originated somewhere along the food chain (USFDA, 2006). However, there is a
lack of knowledge as to how the pathogen was transmitted through different steps and
processes, though it seems that field contamination followed by cross-contamination could be
a typical scenario.

Risk assessment can be applied to determine those points in food chain impacting on
pathogen incidence, e.g. effect of inactivation treatments on concentration and prevalence
(Lammerding and Fazil, 2000). The present study aims at performing a quantitative risk
assessment to evaluate E. coli O157:H7 cross contamination in a processing line for fresh-cut
lettuce, estimating contamination levels at factory and identifying critical control points
(CCPs) in processing.

Material and Methods

Transfer data for E. coli O157:H7 were obtained in our laboratory simulating cross-
contamination at different steps in a processing line for fresh-cut lettuce (shredding, belt,
flume and shaker) (Buchholz et al., 2008). Transfer coefficients were modelled by fitting
probability distributions describing the variability and uncertainty. Based on transfer
coefficients distributions, a model were constructed in Excel which simulated the
contamination processes from contaminated lettuce to non prevalent lettuces because of cross-
contamination at processing line. In addition, the impact of different sanitation regimes,
disinfection processes (i.e., irradiation and chlorination treatments), sampling plans at
different steps in the processing line (e.g., shredder, shaker table, and conveyor) on the
prevalence and concentration of E. coli O157:H7 in the bags of product could also be
evaluated using the model. In order to obtain comparable data among different simulations,
model process parameters were fixed to: 22 batches processed per day (at 3 batches/h); Batch
size: 1000 kg; Bag size: 100 g; Number of bags per batch: 10,000.

The model considered uncertainty sources such as when contaminated lettuces entered the
factory and initial contamination levels. The probabilistic model assumed that the
contaminated batch could enter the processing line in any point during production being an
uncertainty source in the model. The model simulated 3 different contamination levels for this
contaminated batch: Low level (S1): 0.01 cfu/g; Medium level (S2): 1 cfu/g; High level (S3):
100 cfu/g.

Furthermore, the pathogen survival on surfaces was modelled to more accurately simulate
transfer from contaminated equipments to non-contaminated lettuce. For this, experimental
data from our laboratory were used (non-published data).

Simulations of the model were performed using @Risk Palisade© Software (consisting of
10,000 variability iterations and 10 uncertainty realizations) with the end result providing an
estimate of E. coli O157:H7 populations in commercially bagged product.



Results

Probability distributions for E. coli O157:H7 transfer and model validation

The most suitable distributions to describe transfer data were Beta and Log normal
distributions (Table 1). Results in Table 1 show that higher transfer occurred from produce to
processing water and from equipment to lettuces.

Table 1. Main statistics of transfer data set and fitted probability distribution

Transfer (%) at low level Maximum Minimum Mean Distribution

Lettuce-Shredder 0.02
Lettuce-Flume 0.02
Lettuce-Shaker 0.02
Lettuce-Conveyor 0.24
Lettuce-Water 10.46
Equipment-Lettuce 18.83

0.00 0.02  Log-Normal
0.00 0.01  Log-Normal
0.00 0.01  Log-Normal
0.00 0.10  Log-Normal
0.00 8.79 Beta

9.90 15.33 Log-Normal

The cross-contamination model was satisfactorily validated based on the prediction index
called SEP (Standard Error of Prediction), which ranged 0.00-35%.

Simulated model

Figure 1 shows uncertainty on the total
percentage of E. coli O157:H7 transferred
from initially contaminated lettuce to non-
contaminated lettuce in the processing line
for Scenario 2 (S2= 1 cfu/g). These values
ranged between 0% and 0.32 %. The value
0 % was because the contaminated batch
entering to processing line was the last one
before finishing production. Similar total
transfer percentages could be observed for
S1 and S3. These results indicate that cross
contamination occurred at very low levels.
However, the increase of prevalence
derived from cross-contamination
(percentage of cross-contaminated bags)
showed higher values. Thus, for example,
for S2, the uncertainty range on the
increase of prevalence (from cross
contamination) was between 0 and
13.89% (30566 bags), with a mean value
of 3.59% (7902 bags). The ANOVA
analysis performed on simulated data
revealed that the initial level in the
contaminated batch (S1; S2 and S3) did
not influence significantly (=0.4) the
concentration levels in bags derived from
cross- contamination (Figure 2). In turn,
for prevalence, There were significant
differences (p = 0.000) at the different
levels simulated (S1; S2 and S3).

Figure 3 reveals that the increase of
number of contaminated bags by E. coli
0157:H7 through cross-contamination
decreased logarithmically along the
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Uncertainty realizations
Figure 1. Percentage of transferred cells of E. coli
0157:H7 from contaminated lettuce to non-
contaminated lettuce during production (after 22
batches) for 10 uncertainty realizations.
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Figure 2. Example of the simulated distribution of E.
coli O157:H7 in bags in Scenario 3 (S3=100 cfu/g).



production for the 3 simulated scenarios. In S1 (S1=0.01 cfu/g) cross-contamination occurred
only during the first hour (3 batches/h), immediately after the originally contaminated batch
entered the processing line, showing a dramatic drop of prevalence up to 0 %. However, even
at this low level, bags were cross-contaminated sporadically, resulting in very low
concentration (mean: < 2 cfu/bag) and prevalence levels (<1 %). At medium contamination
level (S2), cross-contamination remained high for the first two batches (10,000 cross-
contaminated bags/batch), then the number of cross-contaminated bags dropped significantly,
in the following batch, to 100 cross-contaminated bags/batch, followed by a much more
gradual decline up to 10 cross-contaminated bags in the last batch (Figure 3). With the S3
scenario (100 cfu/g) there was a gradual decline in the number of cross-contaminated bags
along the whole production sequence from 10,000 to 1,000 cross-contaminated bags per
batch, indicating that higher initial contamination numbers are more likely to persist in
subsequent batches if not decontamination steps are used.

Effect of Control Measures

In the present model, the effect of different intervention scenarios was evaluated:
decontamination by irradiation, and by chlorination and then application of a sampling plan to
detect and remove contaminated batches after processing. Chlorination has long been used in
the produce industry, but has not been completely effective. Recently the FDA (Food and
Drug Administration) approved the
use of gamma irradiation on
vegetables allowing irradiation levels 10000
up to 4KGy. However, sensory
characteristics in irradiated vegetables
can be affected at irradiation levels
above 0.5KGy (Niemira, 2008,
Niemira et al., 2002, Foley et al.
2002), and so only lower irradiation
levels could be used practically. In the 1 ‘ ‘ ‘ ‘
model, by applying  0.5KGy 0 5 10 15 20 25
(borderline for sensory acceptance), in
S3, resulted in a prevalence average of
0.03%. For S2, the prevalence was
reduced by up to an average value of
0.0005%. For S1, applying an
irradiation treatment of 0.5KGy on the final product resulted in all bags being non-
contaminated, i.e., eliminating fully contamination in both the originally contaminated lettuce
entering to processing line and cross-contaminated lettuce occurred during production.
However, when lower values (<0.5KGy) were simulated, E. coli contamination could be still
found in a very small number of bags (<0.15%). As to be expected, at medium levels (S2)
and high levels, irradiation at 0.5KGy was not completely effective (about 0.002% and 0.03%
contaminated bags respectively). When we simulated decontamination with chlorine at 200
ppm, even if chlorinated water was maintained at 200ppm throughout the washing stages
(S1=0.01%; S2=; 14%; S3=4.23%). Besides, at low and high levels (S1 and S3),
chlorination (200 ppm) was not as effective in reducing cross-contamination as at medium
levels (S2), i.e., chlorination reduced S2 prevalence levels by about 2200 % compared with
900 % and 340 % for S1 and S3 levels, respectively. However, when combination of
chlorination (200ppm) and irradiation (0.5KGy) were used sequentially for lettuce
contaminated at high level (S3), the simulated concentration was < 2 cfu/bag, and prevalence
ranged between 0.01 and 0.14 % (mean, 0.06 %). For medium level (S2), the combination of
both resulted in only one cross-contaminated bag after 10 uncertainty realizations of the
model. This very low value could be considered to be 0% practically. Therefore, combining
both decontamination steps can be an effective intervention to reduce completely cross-
contamination effect at medium contamination levels (S2).

$1=0.01 cfu/g ——— S2= 1cfu/g ----- S3=100cfu/g

1000

N contaminaed bags
=
o
o
1

Number of batch
Figure 3. Simulated number of cross-contaminated bags

along the production (22 batches) when one contaminated
batch enters the processing line.



Table 2. Prevalence of cross-contamination bags at the different simulated scenarios

Scenario Prevalence (% bags)
Baseline Chlorination (200 ppm) Irradiation (0.5KGy)  Detection (n=5;c=0)
S1 0.09 (0.23)* 0.01 (0.05) 0.00 (0.00) 0.09 (0.23)
S2 3.05(4.37) 0.14 (0.23) 0.002 (0.0004) 3.05 (4.37)
S3 13.39(25.09) 4.23(7.55) 0.03 (0.09) 9.2 (20.52)

* mean (95th percentile)

The last intervention is having a sampling plan of n=5 and c= 0 (sample size = 25g) to allow
testing and rejection of positive batches of final product. According to the model, the
prevalence would be reduced by up to 9.2% (average) for S3, if the detected contaminated
batches were detected and destroyed. Performing a sampling plan (n=5) together with
chlorination treatment led to a significant prevalence reduction only in S3, in which
prevalence reached a mean value of 1.53%. Similarly, sampling plan had a positive effect
when applied after a irradiation treatment at 0.1KGy, resulting in a mean prevalence of 0.8 %;
however, at higher irradiation levels, sampling did not have significant effect on prevalence.
On the other hand, the sampling plan (n=5; c=0) was not effective when the product was
contaminated at low (S1) and medium levels (2).

Unfortunately, we do not know what the concentration of E. coli O157:H7 is when it enters
the processing line, but we believe it can be as high as the S3 level on rare occasions, €. g,
animal feces on several lettuce plants. Even if lower levels are more typical, once E. coli
0157:H7 enters in a processing line, cross contamination can occur. Control measures, such
as chlorination, irradiation and frequent E. coli testing can significantly reduce the likelihood
of cross-contamination, especially if they are all considered together. At low contamination
levels, the decontamination steps here simulated were especially effective reducing cross-
contamination. Furthermore, results demonstrated that irradiation was a more effective
decontamination step in reducing prevalence than chlorination for the simulated conditions.
Nevertheless, there is always small probability that E. coli O157:H7 can contaminate a bag
leaving the processing facility for distribution and sale.
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Abstract

Thermal processing is today probably the most well established and rationalized process of
food preservation and is widely adopted by food business operators throughout the world.
Thermal processing procedures are predominantly governed by safe harbors, historically set
generally recognized time/temperature combinations or reduction targets to provide “safe”
food. Most of currently used thermal processes are significantly ‘fail-safe’. This can lead to
greater quality deterioration than necessary. The key issue of a thermal process is to find the
right balance between rendering foods safe and stable, along with respecting technical
constraints to ensure tasty and healthy food. There has recently been an increasing
development of food products which have undergone milder heat processing. The heat
treatment is still designed to reduce the numbers of pathogenic and spoilage organisms, but is
used in combination with other factors (hurdles) to manage safety and stability over a
designated shelf life.

Keywords

Food Safety Objectives, heat inactivation, microbial reduction, equivalence, microbial risk
characterization, food safety management.

Introduction

Rationale in heat treatment of foods is recent in human history. Back in 1810, Nicolas Appert
made the set up of his experiments on heat processing, which became the basis of the canning
process. Peter Durand, took the process one step further and developed a method of sealing
food into unbreakable tin containers (Goldblith, 1971). The rationale at this time was to
process food in absence of oxygen. Louis Pasteur then put an end to the dogma of
spontaneous generation by demonstrating that the spoilage of food and the process of rotting
were due to the microbial activity rather than simply the presence of oxygen. In the late 19th
century Samuel C. Prescott and William Lyman Underwood (Prescott & Underwood, 1897)
in the United States gave canning a further scientific context by identifying bacterial spores as
the main source of alteration of canned food.

Materials and methods

International Life Sciences Institute (ILSI)-Europe is a global network of scientists devoted to
enhancing the scientific basis for public health decision-making. ILSI-Europe has initiated a
new activity on risk assessment approaches to setting thermal processes in food
manufacturing.



Results and discussion

Bacillus botulinus (then the name for Clostridium botulinum) was isolated in 1896 by Emile
van Ermengem from a blood sausage implicated in an outbreak. Spores of mesophilic strains
of C. botulinum were identified to be the most heat resistant form of the pathogenic organisms
in low acid ambient stable products. (Bigelow, 1921) and (Esty & Meyer, 1922) proposed
exponential destruction to model destruction by heat treatment of C. botulinum. The concept
of a sterilizing value (F-value) was developed by Ball (1927) and is usually expressed in
minutes at 121.1°C (250°F) to destroy an organism. Starting from the original work by Esty
and Meyer (1922), Townsend et al. (1938) and finally Stumbo (1965), the FO 3 minimum
botulinum cook was established and is used widely today for low-acid canned foods. Time to
achieve a 12 log reduction for C. botulinum spores when using a decimal reduction time at
121.1°C of 0.21 minutes is equivalent to 2.52 minutes or an F value of 2.52. In the above
calculation of the F value the population of C. botulinum was considered to be contained in an
undefined unit volume or mass, which may be 1 mL, 1 gram or the volume of a container.
This 12D cook thus is based on the statement that a probability of survival of not more than 1
in 10™ containers (or another unit) is regarded as acceptable. It therefore takes into account a
certain element of risk assessment, with the conclusion that a probability of 1 in 10* is an
acceptable level of risk.

Considering an initial load of 100 spores per container and D121.1 of 0.21 minutes for the
most resistant spores of C. botulinum, the F value required to achieve a 10™ final number of
surviving spores is 0.21 (2+12) = 2.94 minutes. Based on these requirements the F
(sterilization value) of 2.94 is again rounded up to 3 minutes, hence the FO 3 minutes process.
The approach taken in North America is defined by the Food and Drugs Agency (FDA) and
equates to the same FO 3 botulinum cook recommendation (http://www.fda.gov/ora/
inspect_ref/itg/itg7.html). The FDA example of a 12 log reduction process gives reference to
an initial population of 10,000 spores in a can of food. If a 12 D process is given, the initial
10,000 spores per can (10* spores) would be reduced to a theoretical 10 living spores per
can, or one living spore per 10° cans of product. This is actually a lower level of public health
safety, but in reality is still secure. The FDA example is likely to have been chosen to
illustrate the principles of a 12 D reduction and the caution that must be taken if the initial
spore loading is high (i.e. 10,000 spores in a can of food).

The FO 3 process is based on thermal resistance of C. botulinum. However, many sterilization
treatments are designed to achieve a considerable higher process than FO 3 in order to
inactivate spoilage organisms, some of which exhibit a higher heat resistance.

Heat processing in the dairy industry

Pasteurization was initially patented for the conservation of wine in France by Pasteur in the
middle of the 19" century. Due to the versatile nature of the dairy process, pasteurization of
raw milk became the best solution to achieve a longer shelf life and better safety of dairy
products. The work of Kilbourne (Kilbourne, 1912, Kilbourne, 1913) highlighted the balance
between food safety and technological constraints. From a microbiological point of view,
Mycobacterium tuberculosis was the first identified heat-resistant pathogen of concern
associated with milk (Hammer 1948). Minimal pasteurization time/temperature combinations
were established in the US in 1956 to assure destruction of Coxiella burnetti, which was then
found to be more heat resistant than M. tuberculosis. The highest level of C. burnetti in milk
of infected cows from samples collected was determined to be 10,000 infective guinea pig
doses (minimum number of C. burnetii required to infect a guinea pig by intraperitoneal
inoculation of 2 mL). The goal for minimal pasteurization conditions was to provide an
additional 10-fold margin of safety and seek a destruction of 100,000 infective guinea pig
doses (equivalent to a 5D reduction; (Enright et al., 1957)).

Since the recognition of Listeria monocytogenes as a foodborne pathogen in the 1980s, the
organism has become the main focus of the dairy industry. As a result, extensive
investigations have been conducted on the heat resistance of L. monocytogenes. The current



consensus is that the D value at 72°C does not exceed 15 seconds in foods. This means that
minimal heating of food, at the coldest spot, for 2 minutes at 72°C would result in a degree of
lethality at least equaling 8D (Mossel & Struijk, 1991).

Ultra-heat-treated (UHT) milk was developed to meet the demand for room temperature
stable dairy products. UHT compromises a heat treatment of no less than 135°C for at least 1
second (but usually between 135-150°C for 1-8 s) (Scheldeman et al., 2006). In UHT-
processed milk obtained by treatment in continuous flow and subsequent packaging in
presterilized containers, all micro-organisms including spores are presumably killed.

Both pasteurization and UHT heat processes induces proteolysis and thermocoagulation of
proteins. In order to achieve extended storage of raw milk prior to further processing, a
minimal heat treatment — thermisation — is applied (heating to a temperature of between 57°C
and 68°C for at least 15 seconds). Combined with ultrafiltration, thermisation of milk has
been proposed as an alternative to pasteurization (Benard et al., 1981), although providing a
lower guarantee of safety. Thermisation helps finding another balance between food safety
and technological parameters, with less denaturation of milk constituents.

The meat processing industry

Salmonella spp. is identified by the USDA risk assessment as the pathogen of concern for
meat and poultry with an objective of 7 D reduction of Salmonella in Ready-to-Eat (RTE)
poultry products and a 6.5D reduction of Salmonella in RTE beef products. The rationale is
based on the establishment of a worst case population of Salmonella spp. by animal species
and the probability of survival of Salmonella spp. in 100 g of finished product after the
specific lethality processes was calculated.

The assumptions behind these standards are now being debated. Prerequisite programs (PRP)
and HACCP rules have resulted in an improvement of global hygiene in food processing
industries. Developing a standard that uses a safety margin based on a highly conservative
worst-case scenario may lead to the production of over processed products of inferior quality
and may place an undue burden on the processor, without significantly increasing public
health safety.

In its 2007 report on safe cooking of burgers, the United Kingdom Advisory Committee on
the Microbiological Safety of Food confirmed that a heat process of 70°C for 2 minutes
would be sufficient to give at least 6 log reductions of pathogens of concern, namely E. coli
0157:H7, Salmonella spp. and L. monocytogenes.

Cooked chill foods

The requirements to ensure the safety of cooked chilled foods also referred to as REfrigerated
Processed (or Pasteurized) Food with Extended Durability (REPFEDs) were described
(Mossel & Struijk, 1991). Non-proteolytic psychrotrophic C. botulinum strains are the
principal microbiological safety concern, in relation to spore-forming bacteria in the
manufacture of cooked chilled foods. In 1992, ACMSF gave the recommendation in the
report on «Vacuum Packaging and Associated Processes» that a heat treatment should
provide a reduction of non-proteolytic C. botulinum by 10° or a so called 6D Process.

The potential for growth and toxin formation by non-proteolytic C. botulinum in short shelf
life commercial chilled food has been recently assessed. Examination of the literature
indicates that given the correct circumstances, non-proteolytic C. botulinum can in theory
form toxin in less than 10 days at less than 8°C. However, commercial short shelf life chilled
foods have not been associated with foodborne botulism when stored correctly. The safety of
some chilled foods can be attributed to the presence of one or more “unquantified controlling
factors”, e.g. raw material quality, heat process, high hygiene level during manufacture, good
chill chain (Peck, 2006).

Conclusions:

Nowadays, when setting thermal process criteria, a quantitative risk assessment approach to
reach a safe level in the final product is conducted by the food business operators to



demonstrate the safety of its product when implementing effective process control —
associated with defined performance criteria.

Established heat treatment procedures address safety issues, but take also technological, as
well as economical issues in consideration. The origins of the choices made at that time are
sometimes lost. Time/temperature combinations widely accepted today were historically set
taking into account at the time often limited available knowledge on the microbial hazard, its
expected levels and its thermal resistance. This has been illustrated above for the canning
process and pasteurization of milk which are major milestones in the history of thermal
processing in food preservation. They represent the inheritance we still rely on to develop
performance standards for alternative thermal processes. Science based safety assessment is
available presently, with ability to include the more widely available information on supply
chain management and biological variability in comparison to the time these safe harbors
were set. Better risk characterization helps to define modified heat treatment scenarios,
enables evaluation of appropriate target levels, and eliminates the need of setting thermal
processes based upon worst case situation. The hurdle concept of food chain safety
management provides now an acceptable degree of protection to the consumer, where the heat
process is not anymore the only/main critical point.
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Abstract

In the context of risk assessment approaches for setting the thermal processes in food
manufacturing (see Part 1 — introduction and framework), mathematical modeling is a tool to
interpret experimental data and to provide predictions on microbial inactivation.

Firstly, three examples from literature are provided to show how the scientific community has
applied risk assessment (completely or partially) to setting thermal process targets (log
reduction) in food manufacturing.

Secondly, generic guidelines for application of mathematical models for estimating the heat-
treatment condition (temperature and time) which deliver the log reduction targeted are
presented. In order to use models for prediction purposes often the more simple models can
be quite easily applied, since generally applicable estimates can be used, like for example a z-
value of 10°C for spores. For more complex primary and secondary models often parameters
are not readily available. In specific cases, however, for which specific models are shown to
be significantly better, these models are necessary to obtain sufficient accuracy. To guarantee
the possibility of making predictions for a wide range of conditions, often new datasets need
to be measured. In time databases can develop, such as exist currently for D and z, however
still much work needs to be done to make more complex models practically workable in
general conditions.

To illustrate these ideas various levels of complexity: i): a global approach making use of
classical D, z values (a so-called safe harbor); ii): an approach based on database exploitation;
ii1): an approach based on user-specific experimental data, will be discussed.

Introduction

In the context of risk assessment approaches for setting the thermal processes in food
manufacturing, quantification of microbial inactivation in one or several of the food
processing steps is an important issue. This is reflected in the R term in the ICMSF equation
(ICMSF, 2002). Mathematical modeling is a tool to interpret experimental data on microbial
inactivation, or, in other words, to extract the information present in experimental data and to
translate this information into a tangible format. As such, modeling approaches enable to
quantify the value of the ZR term.

The objective of this paper (Part 2) is to review how quantitative methodology encompassing
various modeling approaches can be used in the new tools of microbial risk assessment and
food safety management metrics proposed by the ICMSF to assess microbial food safety
risks. It will be illustrated with some examples how the quantitative methodology can best be
elaborated to support more effectively targeted thermal process establishment.



Results and discussion
Moving from safe harbors, using a risk assessment approach means to work with equivalence:
an equivalent level of safety can be reached by applying a severe heat treatment in
combination with a relatively high initial level and / or potential growth, and a less severe
heat treatment where growth can be prevented or low initial levels can be assured. The
severity of the heat treatment can thus be balanced against the level of control in the other
parts of the process, or even the level of control in preceding or subsequent steps in the food
processing chain.
In such an approach, determination of initial levels, reductions to be achieved, potential
growth that can occur, etc. must be based on solid information. Such data can be obtained
from literature, databases, predictive models, surveys and experiments. The strongest
determinations combine information from several of these sources. Microbiological analysis
of raw materials, in process or finished product may be used to verify that the process is
operating as needed to achieve the required Performance Objective.
This log reduction setting, using a risk assessment approach will be illustrated through the
following examples:

1. 4.4 log reduction of E. coli O157 in frozen raw ground beef patties (ICMSF, 2002)

2. 5 log reduction of L. monocytogenes in shrimp (Walls, 2005)

3. Salmonella in pasteurized frozen foods (Membré et al., 2007)

To quantify the required heat-treatment conditions, i.e. the temperature and the time required
to deliver the expected level of reduction, predictive models are necessary. In the following,
we focus on generic guidelines for application of mathematical models for prediction
purposes. In this context, we assume that the (possibly time-varying) temperature profile for a
specific thermal processing step is available, either via representative monitoring devices, or
via the outcome of dedicated heat transfer models. Furthermore, we assume that this
temperature profile is approximated via (possibly very small) time intervals with constant
temperature (static temperature). This second assumption is not essential, as we could use
dynamic models, but we add this assumption for the ease of illustration.

It should be realized that often the more simple models can be quite easily applied, since
generally applicable estimates can be used, like for example a z-value of 10°C for spores. For
many organisms D,.r and z values can be estimated (van Asselt and Zwietering, 2006),
meaning that quite easily one can make estimates on inactivation at various temperatures as
function of time by combining the classical log-linear inactivation kinetics in combination
with a Bigelow type model. If also parameters like z,y and z,,, are known, these effects can be
included. For more complex primary and secondary models often generally accepted
parameters are not readily available, making it difficult to use these models in predictions. For
some cases, however, for which specific models are shown to be significantly better, these
models are necessary to obtain sufficient accuracy. To guarantee the possibility of making
predictions for a wide range of conditions, often new datasets need to be measured. In time
databases can develop, such as exist currently for D and z (ICMSF, 1996, Van Asselt and
Zwietering, 2006), however, still much work needs to be done to make more complex models
practically workable in general conditions.

These general statements can be exemplified as follows.

First level of complexity: a safe harbor approach

The simplest approach is to combine classical log-linear inactivation kinetics, with a Bigelow
type model, describing the effect of temperature T on the decimal reduction time D.
Furthermore, globally accepted parameter values such as a Dyg-value of 0.21 min at 121.1°C
and z-value of 10°C for C. botulinum (A&B) are chosen. This procedure delivers responses to
many questions (canning of peas, canning of ham, ...) and has proven to be at least not
resulting in dangerous situations, thereby constituting a safe harbor approach. Another




example is the first record in Table 1, referring to the current consensus safe harbor for L.
monocytogenes in RTE-foods (D-value not exceeding 15 seconds at 72°C).

It should be remarked that by following this approach, we are actually focusing on the most
important variables influencing microbial inactivation, i.e., vegetative or spore type and
temperature. Other influences like pH and water activity of the food product, species and
strain variability and process variability are not taken into account, except for by deliberately
selecting fail-safe values. It has been shown that these other effects are generally negligible in
comparison with the variability on published D-values.

Second level of complexity: an approach based on database exploitation

Based on a large database of D values (van Asselt and Zwietering, 2006) one can get a more
solid basis for valid parameter values in various products/product groups. Table 3, record 2a,
summarizes the information on L. monocytogenes in various food products with a 95%
prediction interval for the D value of 0.274 min at 72°C (940 data). This confirms the validity
of the safe harbor. If the data specific for dairy (280) are used a smaller value of 0.104 min is
obtained, and specifically for milk (226 data) 0.091 min. Such more specific information
gives better targeted values, and for a specific product group a better estimate, and in this case
a clearly smaller value than the safe harbor. This of course can be done quite well for Listeria
and milk (as it contains 226 data), or fish, meat, vegetables since ample data are available, but
for a product group like butter it becomes very questionable, since fewer data are available,
and all form only one reference (one lab, only two strains), or potato slices (3 data, only one
lab, only one strain).

This level of complexity does allow to use the stated, more specific parameter values in
combination with the classical log-linear inactivation kinetics and the Bigelow type model.

In this respect, also ComBase (www.combase.cc and Baranyi and Tamplin, 2004), is a very
interesting database as inactivation data, reported either as raw data or as a lumped D-value,
can conveniently be searched for a specific food product/pathogen combination. If sufficient
information at different temperatures is present, a z value may also be extractable, but this is
not always possible.

Alternatively, this level of complexity can also include a somewhat more advanced model.
Imagine that for L. monocytogenes, for example the Weibull model with its parameters b and
0 in its re-parameterisation from Mafart et al. (2002), is valid. We can take the D value for use
as 8, but what is b for a certain food product? It could be that in future we will have databases
gathering rules of thumb concerning this b-value for certain conditions, but until we need for
every product to do an experiment to determine the b-value, the model is not yet practically
applicable for general prediction purposes (Table 3, record 2b).

Third level of complexity: an approach based on user-specific experimental data

If user-specific experimental data are available for a specific question of course these data can
be used. Tools such as the freeware GlnaFit (Geeraerd et al., 2005) allow the user to identify
suitable primary models for user-specific experimental data. Where relevant, it may be
interesting to combine this information with information from databases. It is likely that a
more complex primary model is selected: imagine that this is —again- the Weibull model with
its parameters b and 8. As a result, we will have an estimate for the Weibull parameter b (for
which no generally accepted value or rule of thumb exists, as stated for the second level of
complexity) and for values of the Weibull parameter 6 (Table 3, record 3). As b is typically a
temperature independent parameter for a specific strain/food product, there is generally no
need to develop a secondary model for this parameter. Concerning the parameter 9, if data are
available for several values of temperature, pH, water activity, ... it is possible that, for
example, an extended Bigelow-type model such as the one proposed by Gaillard et al. (1998)
provides a good quality of fit (replacing D by the & parameter of the Weibull model).

The developed models give rise to the following two possibilities going beyond safe harbor
approaches. Firstly, when a (possibly time-varying) temperature profile for a specific
processing step is available, which was one of the assumptions in this section, the developed




models will give an accurate quantification of the number of log reductions attained via this
processing step. Secondly, if, on the contrary, a specific number of log reductions to be
attained is provided, by linking with the other terms in the ICMSF equation delivering
equivalent performance as a whole, the developed models enable to calculate accurately the
time needed at a specific treatment temperature or, conversely, the temperature needed for a
specified treatment duration. As the safe harbors constitute a fail-safe approach, the treatment
time or temperature needed is expected to be shorter (respectively lower) when using this
third level of complexity, giving the opportunity to optimize heat treatment designs.

Table 1: Three different levels of complexity to be distinguished when quantifying the microbial
inactivation through modeling approaches — illustration on L. monocytogenes

Level of complexity — | Dy¢[min]? Tt [°C] | Z[°C] b[-]

key word

1 — Safe harbor 0.25 72 7 Not needed

2a — Extended database | 0.274 (all products) 72 7 Not needed

for D and z 0.104 (dairy) 6.4
0.091 (milk) 6.2

2b — Extended database | 0.091 (milk) 72 6.2 Needed, but databases

for D, z,and b for b not available yet

3 — Case-specific All model parameters needed are extracted from specifically designed and
conducted experiments

* 95% upper bands for D(72) value for all products (except those containing high levels of salt)

Conclusions

Risk assessment is an appropriate framework to go beyond safe harbors; to do so, three routes

might be explored (on their own or in combination):

1. combining in an accurate way the performance of a certain, specified thermal treatment
with performances in other stages of the food production chain;

2. reducing the uncertainty on predictions, and therefore decreasing the need for being
conservative;

3. calculating accurately the time needed at a specified treatment temperature or the
temperature needed for a specified treatment duration using more complicated models to
attain a stated performance level.

Nevertheless, if exploring none of these routes is possible, applying safe harbors to set heat-

treatment is still really valuable: they are widely (even generally worldwide) known, accepted

and largely used at operational level; in addition, they can be readily used by anyone to design

a heat-treatment process without the need of extensive information about the food

characteristics or prior knowledge on the initial microbial level.
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Abstract

A model was developed for the inactivation of Hepatitis A Virus (HAV) in berries with
different pH values. Nonlinear inactivation curves in acidified raspberries were modelled
using an integrated model, with a single equation nesting secondary models of temperature
and pH in the primary model. Model predictions were then confronted to experimental results
obtained in another laboratory on other berries with different pH values. Excellent predictions
were obtained in most cases, while failed predictions provided safe results, with the model
predicting higher residual virus titres than what was observed.
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Introduction

Frozen berries produced in eastern Europe have been found responsible for infections linked
to enteric viruses when used in unprocessed foods (Niu et al., 1992; Ramsay and Upton,
1989). Thermal treatment of these fruits is used as a decontamination method, but it has to be
adapted to product characteristics; indeed, factors such as sugar or pH may have an impact on
the viral sensitivity to thermal treatments (Debooseére et al., 2004; Scholz et al., 1989).

This study aims at modelling the behaviour of Hepatitis A Virus (HAV) in acidified red
berries as a function of thermal treatment and pH.

Materials and methods

Strains and media

HM175/18f strain of HAV (VR-1402) and the foetal rhesus monkey kidney cell line (FRhK-
4) were obtained from the American Type Culture Collection. These cells were used
throughout the study for the propagation of HAV to prepare inoculums and to measure HAV
infectivity. Methods of cultivation, maintenance of cells and preparation of virus pools have
been described previously (Cromeans et al., 1987; Flehmig, 1980; Lemon et al., 1985).
Quantitative measurement of the infectivity of HAV was done by plaque assay in 6-well cell-
culture multiplates (Costar, VWR International, Fontenay-sous-Bois, France), following a
method described previously (Deboosére et al., 2004). Raspberries supplied by food industrial
partners (Vergers de Boiron; Kerry Ravifruit) were ground to obtain a purée that was used as
a reference matrix for the modelling step, and citric acid was added to obtain final pH values
of 3.3, 3.0, or 2.5. Regarding validation of model predictions, other ground fruits were used
with their natural pH: strawberries (pH 3.35), raspberries (pH 3.05) and bilberries (pH 2.87).

Thermal treatment

Each food matrix was artificially contaminated with HAV to obtain concentrations of 10° to
10 PFU.mL™; 0.5 gram of preparations were then distributed in glass tubes, 100 mm long
and 0.5 mm thick (Fisher Bioblock Scientific) and left at room temperature for 3 hours, as an
aggregation step. Heat treatments were performed by simultaneous immersion of the tubes in
a glycerol bath set at the desired temperature (65, 70 or 75°C) for a determined period of time.
A thermocouple connected to a data acquisition unit (Agilent Technologies, Actifa, France)



was inserted into an uncontaminated aliquot of preparation to monitor the internal
temperature throughout the heat treatment. Individual aliquots were removed at periodic time
intervals and placed immediately in an ice bath for rapid cooling. The treated media samples
were 50-fold diluted in DMEM before virus titration. Each experiment was replicated 3 times.
The desired temperature was reached in 2 to 3 minutes; however, since virus inactivation took
place during this step, it was assumed that the target temperature was reached immediately.

Inactivation model

A primary model used to describe viral inactivation kinetics was adapted from a bacterial
inactivation model proposed by Albert and Mafart (2005):

Logu(N) = Loglo[(No—Nres)10_(t/5)p+Nres] (1)

where N is the infectious virus titre, t is time, N, represents the initial titre (at time 0), N 18
the residual titre at the end of the treatment, & is the time for first decimal reduction for the
population not included in N, and p is a shape parameter for concavity or convexity of the
curve.

The reduction, or abatement, in virus titre obtained at the end of the treatment was described
using A = Logo(Np) — Logio(Nyes)-

The impacts of temperature and pH on & and A were described using the following secondary
models:

- .\ _ I-T~ _ pH-pH-~
L0g1o(5) = L0g10(5 ) > Zon 2)
_ a._ T-T: _ pH-pH:
A=A Yr Yor )

where 6* (respectively A*) represents the value of & (respectively A) in an arbitrary reference
condition T* (65°C) and pH* (3.3), Zt (respectively Yr) is the temperature increase necessary
for a 1-unit reduction of Logo(8) (respectively A), and Z,y (respectively Y,u) is the pH
increase necessary for a 1-unit reduction of Log;((d) (respectively A).

It was assumed that the shape parameter p did not depend on temperature and pH, as has been
observed previously for bacteria (Couvert et al., 2005; van Boekel, 2002).

A complete model combining the primary and secondary models was actually used to
evaluate the parameters on the full dataset: the values of 8 and N, in Equation 1 were
substituted by their expressions from Equations 2 and 3. N, values were forced at Nwo). Titres
under the detection threshold were set at the detection threshold (safe assumption). A one-step
fitting procedure was thus performed and parameters describing HAV inactivation in
raspberries were obtained: p, 8*, Zr, Zpn, A*, Y1, Y.

Results and discussion

Parameters estimation

Using the combined primary and secondary models from Equations 1-3, the parameters were
estimated from HAV inactivation in acidified raspberry data. Using this combined approach,
the estimated values are expected to be more objective and robust, and the variability in
kinetic data is taken into account (Pouillot ez al., 2003). Estimates are indicated in Table 1.
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Figure 1: Inactivation kinetics of HAV in raspberries at 65°C - pH 3.0 (A), 70°C - pH 2.5 (B),
75°C - pH 3.3 (C), and 65°C - pH 3.3 (D), experimental data (symbols) and model (line).
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Figure 2: Inactivation kinetics of HAV in raspberries (pH 3.05) at 65°C (A), in raspberries
(pH 3.05) at 75°C (B), in strawberries (pH 3.35) at 65°C (C), and in bilberries (pH 2.87) at
75°C (D); experimental data (symbols, 3 repetitions) and model prediction (line).



Table 1: Parameters estimates from acidified raspberry data.

Parameter Estimated value 95% confidence interval
p 3.31 2.56 ;4.23
Logio(8%) 0.83 0.80; 0.85
Zr 24.13 22.19;26.12
Zon -4.67 -5.74 ; -3.86
A* 2.25 1.78 ;2.75
Yr -6.67 -9.78 ; -5.16
You 0.97 0.70 ; 1.68

From these experiments, it appeared that a reduced pH led to a faster thermal inactivation in
the tested range. The final reduction in viral titre (parameter A) is greater for higher
temperatures and lower pH. Examples of inactivation kinetics and model curves are shown in
Figure 1.

It is worth noting that, since a global primary and secondary model was used, no individual fit
was conducted on any given condition. Therefore, the model describes a global behaviour
rather than a sum of individual behaviours, which explains why a “perfect fit” is not observed.

Model validation

Predictions with the model were confronted to new experimental data, obtained on other fruits
in another laboratory. Examples of these comparisons are presented in Figure 2.

The model used with parameters estimated on acidified raspberries (Table 1) gave excellent
predictions of HAV behaviour in the various fruits for most cases. Failed predictions provided
safe results, with higher predicted N,.s values than what was observed.

Conclusions

A model for thermal inactivation of HAV in berries with different pH values was successfully
developed and validated. Yet, the phase of temperature increase was neglected, assuming that
the preparations reached the target temperature immediately, while it took 2 to 3 minutes.
This simplifying assumption will be addressed in future studies.
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Abstract

The objective of this work is to investigate the effect of pre-acid shock on the induced heat
resistance of E. coli K12 MGI1655 at lethal temperatures. The bacterial cells were acid
shocked after exposure in acidified BHI broth, achieved after adaptation of the pH with
addition of different acids each time (acetic acid, lactic acid, hydrochloric acid).The duration
of the pre-acid shock is approximately 30 minutes. Generally, it is observed that rapid pre-
acid shock can lead to resistance of E. coli to heat. The induced resistance is dependent on the
type of acid used and on the quantity added, since different levels of acidification (different
pH values of the broth) lead to a different level of heat resistance.
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Introduction

Micro-organisms reveal stress adaptation, which actually is the increase of a micro-
organism’s resistance to environmental conditions (like temperature, acidity, presence of
chemical agents etc.) which would normally be lethal, and this by pre-exposure to a similar or
a different kind of stress. The ability of stress adapted micro-organisms to resist when they
are exposed to a different environmental stress is known as cross protection (Juneja and
Novak 2003).

It is widely known that acids and temperature are stress factors for bacterial cultures. The type
of acid, used during acid stress may affect the level of stress and/or cell injury. Strong acids —
such as HCI- lead to trafficking of the dissociated [H'] in the cell via the membrane leading to
an increase of the internal pH of the cell to levels that can be toxic or lethal. The weak acids —
such as acetic and lactic- enter bacterial cells in their undissociated form and they partly
dissociate in the cytoplasm (Foster 2004). Weak acids are less stressful for the cells compared
to a strong acid.

The aim of this research is to investigate the influence of rapid pre-acid shock —with different
types of acids each time- on the heat resistance of E.coli at lethal temperatures.



Materials and Methods

Inoculum preparation

E. coli K12 MG1655 stock culture was stored at -80°C in Brain Heart Infusion (BHI) broth
(Oxoid Limited, Basingstoke, UK) with 25% (v/v) glycerol (Acros Organics, NJ, USA). For
the preparation of the inoculum a loopful of the stock culture was transferred in 20 mL of BHI
broth and was incubated at 37°C on a rotary shaker (175 rpm) for 9.5 h. 20 uL of the cell
suspension was transferred to 20 mL of fresh BHI broth and was incubated at 37°C for 15 h.
Early stationary phase cultures were harvested by centrifugation (1699 g, 2 min, 20°C) and
portions of the cell suspensions were washed in acidified BHI.

Pre-acid shock

The pH value of normal BHI broth is approximately 7.5 acidified BHI of pH 5, 5.5 and 6 was
prepared with addition of different acids each time, in fresh BHI broth. The acids added
were hydrochloric acid 30% (v/v) (Acros Organics, NJ, USA), acetic acid 50% (v/v) (Acros
Organics, NJ, USA) and lactic acid 50% (v/v) (Acros Organics, NJ, USA). The harvested
cells gained from the step described in paragraph 2.1, remained in the acidified BHI for
approximately 30 minutes.

Thermal Inactivation of E. coli at static temperatures

Static inactivation experiments took place in sterile glass capillary tubes in which a volume of
60 uL cell suspension of the pre-acidified inoculum was pipetted. Tubes were then sealed by
a gas flame and immersed in a water bath (GR150-S12, Grant Instruments Ltd, Shepreth,
UK), at static temperatures of 54°C and 58°C. At regular times one capillary was removed
from the water bath, placed in an ice-water bath and analysed within approximately 45 min.
Decimal serial dilutions of the samples were prepared in a BHI solution and surface plated on
BHI agar (1.2% (w/v) ) using a Spiral Plater (Eddy Jet IUL Instruments, Barcelona, Spain).
Plates were incubated for 24 h at 37°C and colony forming units were enumerated. Each
experiment was repeated in duplicate.

Data analysis

The experimental data (cell density data) were [n-transformed and plotted as a function of
time. The inactivation model of Geeraerd et al. (2000) (Equation 1) was fitted to the data.

exp(kmax ’ Sl)

1
ok S)-D-expb )

N=N0 ‘exp(_kmax t)

with N [cfu mL"] the cell population, N(0) [cfu mL"'] the initial cell population, k., [min™"]
the maximum specific inactivation rate, ¢ [min] the time and St [min] is the shoulder period.
In one case a tail was observed and for that condition an extended form of equation (1), which
incorporates the tail as well was fitted to the data.

For the modelling of the data the GinaFiT (Version 1.5) software tool, a freeware Add-in for
Microsoft® Excel was used (Geeraerd et al., 2005). Graphical illustrations were generated in
MatLab® Version 7.4 (The Mathworks, Inc., Natick, USA).



Results and discussion

The experimental data followed a log-linear trend with a preceding shoulder and/or a
preceding tail, depending on the conditions.

Experimental data were described after parameter identification using the inactivation model
of Geeraerd et al. (2000). Induced thermotolerance of E. coli is defined as a prolongation of
the shoulder and/or a reduction of the inactivation rate and/or a formation of a tail.

Acetic acid

For addition of acetic acid in the BHI broth, at 54°C for pH 6 and 5.5 an extension of the
shoulder and a reduction of the inactivation rate is observed, compared to normal BHI broth.
The level of the induced resistance is approximately the same for these pH values —the
prolongation of the shoulder and the reduction of the inactivation rate are similar- (Figure 1).
For pH 5 no shoulder is observed, the inactivation starts rapidly but the inactivation rate is
similar to the rate observed for pH 6 and 5.5. At 58°C for pH 6 and 5.5 an extension of the
shoulder and a reduction of the inactivation rate, compared to normal BHI broth was
observed. For pH 5 only a decrease of the inactivation rate was apparent (Figure 1).

Lactic acid

For addition of lactic acid in the BHI broth, at 54°C no significant difference in the duration
of the shoulder nor the inactivation rate was observed, compared to normal BHI broth for pH
5, 5.5 and 6 (Figure 1). It seems that lactic acid has no effect on the induction of heat
resistance of E. coli when added in BHI broth, for pH at the range 5-6. At 58°C there is a
similar decrease on the inactivation rate compared to normal BHI for pH 5, 5.5 and 6 but no
prolongation of the shoulder is observed (Figure 1). At this temperature, lactic acid seems to
trigger the cell leading to an induction of resistance and the level of the induced resistance is
significantly the same for pH 5, 5.5 and 6.

HCl acid

For addition of HCI acid in the BHI broth, at 54°C a reduction of the inactivation rate is
observed compared to normal BHI broth. This reduction is similar for pH 5, 5.5 and 6 (Figure
1). At 58°C for all studied pH values of the broth a decrease of the inactivation rate was
observed, compared to normal BHI broth. For pH 6 also a prolongation of the shoulder is
observed and there is an occurrence of a tail (Figure 1). The presence of the tail is the result of
a stress resistant population. The formation of this resistant population —which is not present
in non acidified conditions- is possible that occurs due to the pre-acid shock, which increases
the bacterial resistance to heat. This change in the shape of magnitude of the heat inactivation
curve after acid stress was also observed by Black et. al. (2009): a tail occurred during heat
inactivation at 58°C after growth of E. coli K12 cells in acidified medium with pH levels of
6.2 and 6.5, adapted by phosphate buffer.

Conclusions

As a general conclusion, it is observed that rapid pre-acid shock can lead to resistance of E.
coli to heat. The induced resistance is dependent on the type of acid used and on the quantity
added, since different levels of acidification (different pH values of the broth) lead to a
different level of heat resistance.

This work aims to provide additional knowledge on the reaction of bacterial cultures to heat
after rapid pre-acid shock and, therefore, it contributes to an improved understanding of the
level of the induced resistance of bacteria to heat when pre-exposed to different types of
acids shortly before heat inactivation.
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Figure 1: Thermal inactivation curves of E. coli and fits of Geeraerd et al. (2000) inactivation
model at 54°C and 58°C for acetic, lactic and HCI acid: (*) normal BHI broth, (A) pH 6, (+)
pH 5.5, and (o) pH 5.

Acknowledgements

This work was supported by grant DB/08/006/BM and OT/03/30 and by BOF EF/05/006 Center-of-Excellence
Optimization in Engineering of the Research Council of the Katholieke Universireit Leuven and the Belgian
Program on Interuniversity Poles of Attraction, initiated by the Belgian Federal Science Policy Office.

References

Foster, J.W., (2004) Escherichia coli acid resistance: Tales of an amateur acidophile, Nature reviews 2, 898-907.
Black, D. G., Harte, F., Davidson, P.M. (2009) Escherichia coli Thermal Inactivation Relative to Physiological
State. Journal of Food Protection 72, 399-402.

Geeraerd, A.H., Herremans, C.H. and Van Impe, J.F. (2000) Structural model requirements to describe microbial
inactivation during a mild heat treatment. International. Journal of Food Microbiology 59, 185-209.

Geeraerd, A.H., Valdramidis, V. P., Van Impe, J.F. (2005) GinaFiT, a freeware tool to assess non-log-linear
microbial survivor curves. International. Journal of Food Microbiology 102, 95-105.

Juneja, V.K. and Novak, J.S. (2003) Adaptation of Foodborne Pathogens to Stress from Exposure to Physical
Intervention Strategies. In: Yousef, A.E. and Juneja, V.K. (eds.) Microbial Stress Adaptation and Food Safety,
p-159-211, CRC Press, Boca Raton.



Modeling the combined effect of osmotic dehydration, nisin and
modified atmosphere packaging on the shelf life of chilled gilthead
seabream fillets

T.N. Tsironi, P.S. Taoukis

National Technical University of Athens, School of Chemical Engineering, Laboratory of Food Chemistry and
Technology, Iroon Polytechniou 5, 15780 Athens, Greece (ftsironi@chemeng.ntua.gr)

Abstract

The objective of the study was the kinetic modeling of temperature, modified atmosphere
packaging (MAP) and osmotic pre-treatment with the addition of nisin as antimicrobial agent
on the shelf life of chilled fish. Gilthead seabream fillets were treated at 15°C in osmotic
solution, 50:5maltodextrin(DE47):NaCl/100g with nisin (1000 IU/g fish in the osmotic
solution), for 45 min. Untreated and treated slices were either packed in air or MA packed
(50% CO,-50% air) and stored at controlled isothermal conditions (0-15°C). Quality
assessment and kinetic modeling was based on microbial growth, chemical indices (TVB-N,
TMA-N, lipid-oxidation) and sensory scoring. The developed models were validated under
dynamic conditions. Pre-treated samples were found to have improved quality stability during
subsequent refrigerated storage, in terms of microbial growth, chemical changes and
organoleptic degradation, resulting in a significant shelf life extension at all storage
temperatures. MAP gave additional shelf-life increase of treated fillets. Osmotic pre-treatment
with the addition of nisin in combination with MAP was the most effective treatment for the
preservation of gilthead seabream fillets.

Keywords
Osmotic dehydration, modified atmosphere, nisin, chilled fish, kinetic modeling, shelf life

Introduction

Partial dehydration of food products by an osmotic process has received increased attention as
a pre-treatment to further processing to improve nutritional, sensorial and functional
properties of food. During the osmotic dehydration, water flows from the product into the
osmotic solution, while osmotic solutes are transferred from the solution into the product
(Raoult-Wack, 1994). By reducing the water activity of the food matrix, microbial growth is
reduced or inhibited. Combined processes with OD could synergistically further increase
shelf-life. The use of antimicrobial agents can effectively reduce the rate of spoilage and
extend shelf-life of perishable foods. Nisin is a bacteriocin produced by Lactococcus lactis
and it has a much broader spectrum than most other bacteriocins, being active against a wide
range of Gram-positive bacteria (Thomas and Delves-Broughton, 2005). Modified
atmosphere packaging (MAP) can effectively reduce the rate of spoilage and extend shelf life
of perishable fish (Torrieri et al., 2006). CO, hinders the growth of the respiratory organisms
like Pseudomonas spp. and Shewanella putrefaciens and their counts in most cases do not
exceed 10°-10° cfu/g (Gram and Huss, 1996).

Gilthead seabream (Sparus aurata) is a Mediterranean fish of high commercial value due to
its desirable characteristics (aroma, taste, white flesh). Products like chilled fillets from
marine cultured Mediterranean fish have high commercial potential if their shelf life can be
extended through packaging or minimal processing.

The objective was the kinetic modeling of temperature, MAP and OD with the addition of
nisin as antimicrobial agent dependence on the shelf life loss rate of chilled fish fillets.

Materials and methods

Fresh gilthead seabream (Sparus aurata) fillets directly obtained in ice from the filleting line
of a mariculture unit were cut into rectangular slices (3x3x1cm®, 10+1g) and treated at 15°C



in osmotic solution, 50:5maltodextrin(DE47):NaCl/100g with or without nisin (1000 1U/g fish
in the osmotic solution) for 45 min. Untreated and treated slices were either packed in air or
MA packed at (50% CO,-50% air) (Boss NT42N, Bad Homburg, Germany) and stored at
controlled isothermal conditions (0, 5, 10 and 5°C). Gas headspace analysis took place with
the CheckMate 9900 O,/CO, device (PBI Dansensor, Ringsted, Denmark).

Total viable count, Pseudomonas spp., lactobacilli, Brochothrix thermosphacta,
Enterobacteriaceae, Shewanella putrefaciens and yeasts and molds were measured with
appropriate sampling and plating techniques. The microbial growth was modeled using the
Baranyi Growth Model (Baranyi and Roberts, 1995) and kinetic parameters such as the rate
(k) of the microbial growth were estimated.

2-Thiobarbituric acid reactive substances (TBARS) assay, to evaluate lipid oxidation, was
performed according to the method of Loovas (Loovas, 1992). Total volatile basic nitrogen
(TVB-N) and trimethylamine nitrogen (TMA-N) analyses were conducted on a single TCA
extraction by distillation in a Kjeldhal rapid distillation unit (Blchi 321 Distillation unit,
Flawwil, Switzerland) and titration with sulphuric acid (Pivarnik et al., 2001).

Sensory evaluation allowed the correlation of microbial population and chemical indices with
organoleptically perceived spoilage. 8 trained panellists were asked to score appearance,
colour, odour, taste and texture of fish. Rating was assigned separately for each parameter on
a 1 to 9 descriptive hedonic scale (9 being the highest quality score and 1 the lowest). A score
of 5 of overall sensory acceptability was taken as the average score for minimum
acceptability.

Quality indices were kinetically modeled and temperature dependence of quality loss rates
was modeled by the Arrhenius equation. The models developed from the isothermal
experiments were validated at dynamic conditions (variable temperature profile with a
Teff=9°C).

Results and discussion

The osmotic pre-treatment caused a significant moisture loss from the fish flesh. After
osmotic pre-treatment for 45 min at 15°C the fish flesh had 68% moisture, 2.3% solid gain
and 0.95 water activity. The addition of nisin in the osmotic solution did not affect the mass
transfer from and to the fish flesh.

Growth curves of microbial flora in untreated and osmotically pre-treated with and without
nisin gilthead seabream fillets packed in air or under MAP were fitted to the Baranyi
equation, as shown representatively in Figures 1a-f, and the growth Kinetic parameters at each
condition were determined. Pseudomonas spp. dominated the spoilage microflora of
aerobically packed fillets. This was in agreement with other authors who reported that
Pseudomonas spp. can be the dominant spoilage microorganism in aerobic storage of fresh,
chilled fish (Gram and Huss, 1996; Koutsoumanis and Nychas, 2000; Tsironi et al., 2009).
Lactic acid bacteria defined spoilage at the MAP conditions. Similar results referring to the
growth of lactic acid bacteria in fish stored under MA or vacuum have been reported in
relevant reviews (Gram and Huss 1996, Sivertsvik et al., 2002).

The microbial count reduction after the osmotic pre-treatment was 0.3-1.0 log cfu/g,
depending on the bacteria species. The osmotic pre-treatment led to significantly lower
microbial growth rates at all storage temperatures. Lowering the water activity to a value of
0.95, has a pronounced effect, especially on the growth rate of Pseudomonas spp. (Neumeyer
et al., 1997). Under this context, osmotic treatment can extend the shelf life of gilthead
seabream fillets, reducing the initial load and delaying microorganisms’ growth.
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Figure 1. Development of microflora on gilthead seabream slices: untreated, stored
aerobically (== Control); packed in modified atmosphere of 50% CO, (m MAP); osmotically
pretreated stored aerobically (A OD); osmotically pretreated stored in MAP (¢ MAP-OD).
(a) TVC at 5°C (b) TVC at 10°C, (c) Pseudomonas sp. at 5°C, (d) Pseudomonas sp. at 10°C,

(€) LAB at 5 °C and (f) LAB at 10°C.
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Microbial growth was significantly inhibited in MAP samples at all storage temperatures
compared to aerobically stored samples. It is evident that the growth rates of Pseudomonas
spp. decreased significantly when MAP was used. B.thermosphacta and S.putrefaciens
growth was significantly inhibited by MAP but not to the extent observed for Pseudomonas
sp. The use of nisin in the osmotic solution was introduced as a means to further eliminate the
growth of LAB (Gram-positive organisms) that defined spoilage at MAP conditions.
Osmotically pre-treated samples with nisin stored under modified atmosphere led to the
slowest bacterial growth.

The aerobically stored untreated samples showed increased TBARs value (1.20 mg
malonaldehyde/kg) at 13 days of storage at 5°C, while osmotic pre-treated samples reached
this value after 15 days. The use of nisin showed no difference in TBARSs values, compared to
the pre-treated samples. TVB-N values increased with storage time following apparent first
order kinetics. Untreated samples packed in air showed significantly higher TVB-N values
than osmotically pre-treated and modified atmosphere packed samples. Slow production of
TMA-N was observed when sufficient O, for aerobic respiration was included in the package.
The lowest values were observed in osmotically pre-treated with nisin samples packed under
MA. The indices that could more consistently be correlated to storage time and temperature of
the products were microbial growth (Pseudomonas spp. for aerobically packed and LAB for
MAP samples) and the chemical index TVBN, showing high correlation with sensory scores,
as indicated by their similar temperature dependence (65-75 kJ/mol). The processing of



gilthead seabream fillets with osmotic dehydration with nisin led to a significant shelf life
extension as compared to untreated fillets (Table 1).

The specific growth rates of spoilage microorganisms and the rates of change of chemical
indices and sensory scoring derived from the models was compared to those observed by
experiments under dynamic conditions. The models gave satisfactory results with the
predictions, with the relative errors being well below the 20% limit of applicability.

Table 1. Shelf life t. (d) of gilthead seabream slices: untreated, stored aerobically (Control);
packed in MA 50% CO, (MAP); osmotically pre-treated and stored aerobically (OD);
osmotically pre-treated and MAP (MAP-OD); osmotically pre-treated with nisin packed
aerobically (ODn) and in modified atmosphere of 50% CO, (MAP-ODn) and stored at 5°C

ts. (d) based on microbial growth  ts, (d) based on ts. (d) based on
(Pseudomonas sp.<10%fu/g for  sensory evaluation TVB-N value

aerobically stored and (score for overall ~ (TVB-N<22 mg

LAB<10%cfu/g for MAP fish) acceptability<5) 100g™)
Control 7+1.3 7+0.7 50.2
oD 9+0.9 9+0.4 9+1.1
MAP 14+1.4 15+2.6 13+£0.5
MAP-OD 22+1.7 22+2.9 2127
ODn 17+2.5 17+2.7 16+1.1
MAP-ODn 26x2.4 23+£1.7 25+3.4

Conclusions

The objective of the present study was to evaluate the combined effect of osmotic dehydration
with and without nisin and modified atmosphere packaging on the quality characteristics of
gilthead seabream. The results of the study show the potential of using osmotic pre-treatment
in combination with nisin as antimicrobial agent and MAP to extend the shelf-life and
improve the commercial value of fresh chilled fish products. Models that correlate well with
sensory evaluation or spoilage can be a reliable tool for predicting the shelf life of minimally
treated and MA packed gilthead seabream fillets during refrigerated storage.
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Abstract

The use of predictive models in the food industry as a quick, easy and inexpensive way of
establishing the stability of product formulations and assessment of likely shelf life is
increasing. The development of reliable, fully validated models is therefore of great benefit to
the food industry. Campden BRI has produced many models that cover a wide range of
spoilage organisms and product commaodities.
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Introduction

Over the past few years the food industry has started to use predictive microbiological models
to help in many areas of food manufacture, such as new product development, evaluation of
recipe changes and determination of appropriate shelf-life and storage conditions. The type of
model required will depend on the food category under consideration.

For perishable, short-shelf-life food products, kinetic growth models that are able to give
reliable estimations of lag time and growth rate are most appropriate. In such products, a
certain amount of growth of spoilage organisms can be tolerated provided the levels do not
exceed any microbiological criteria that have been set. Use of predictive models can ensure
that the product formulation or storage conditions chosen will be appropriate to control the
growth, so that these criteria are achieved.

For ambient stable products such as acid preserved foods or drinks and fruit based products, it
is not the rate of growth which is important but more the ability for growth to be initiated. In
these long shelf-life products, the formulation conditions must be designed to prevent any
growth throughout life, as once growth begins it is inevitable that the product will spoil. A
different modelling approach based on growth/no growth or likelihood of growth occurring is
needed for these foods. These models can be used to predict whether spoilage is likely to
occur rapidly (within 0-4 weeks), slowly (within 1-6 months) or not at all.

Development of dynamic kinetic growth models for a range of spoilage groups
(Pseudomonas, Enterobacteriaceae, lactic acid bacteria, Bacillus) and for specific products
such as fish and meat where a mixed spoilage consortium comprising several genera of
organisms are present would be of great benefit for the food industry. Making these models to
be dynamic allows fluctuating temperature conditions to be considered. This allows more
realistic predictions to be obtained, as it ensures that the temperature profile represents the
conditions that products will encounter during distribution and sale. Development of models
that allow the likelihood of spoilage of long life ambient products to be predicted can save the
food industry valuable time in product development and can save the industry money by
reducing both microbial testing costs and product spoilage and hence wastage.

Two of the models produced by Campden BRI, the Enterobacteriaceae model and acid
preserved foods spoilage model, will be discussed in further detail.

Materials and Methods

Suitable microbiological broth media were chosen depending upon the model to be produced
and the microorganisms to be used, for example Tryptone Soya Broth (TSB, Oxoid CM 0129)
for Enterobacteriaceae modelling or de Mann Rogosa Sharpe Broth (MRSB, Lab M, lab 94)
for modelling cocktails of spoilage yeasts, moulds and lactics. The relevant amount of salt or
sugar was then added to the base medium to give the required concentration. The pH of the




broth was adjusted using hydrochloric acid or sodium hydroxide and preservatives were
added where relevant.

Once prepared, these broths were inoculated with a cocktail of organisms grown to late
exponential phase. The microorganisms used were appropriate to the spoilage group or
product type under consideration. For the Enterobacteriaceae model the following organisms
were used: Proteus mirabilis (CRA 615), Klebsiella pneumoniae (CRA 1483), Citrobacter
freundii (CRA 3777), Enterobacter cloacae (CRA 4933) and Hafnia alvei (CRA 4936).The
organisms were inoculated at a level of 102-10° cfu/ml and these were enumerated over time
using standard microbiological procedures. This data was modelled using the Baranyi
parameterisation of the four-parameter Gompertz model and a quadratic response surface
model in a single global fitting approach. The single fitting approach does not require
complete curves to be generated, which means that it is more data efficient.

For spoilage organisms of relevance to cold filled acidified foods the following organisms
were used: yeasts: Pichia membranefaciens (VYAPi 01-02) and Zygosaccharomyces bailli
(VYASa 07-01), moulds: Monascus ruber (VMEuMo 01-02), Penicillium roqueforti
(VMMope 16-07) and Penicillium verrucosum (VMMope 20-07) and lactic acid bacteria:
Lactobacillus buchneri (VBLLa 18-01). In this case, the organisms were inoculated at a level
of approximately 10° cfu/ml, and the time for the broths to show turbidity as a sign of growth
was assessed. A different type of modelling technique was used to develop the models for the
acidified foods as no growth curves were generated (Everis and Betts, 1999). Due to the
increased number of parameters involved, i.e. pH, aw, salt, sorbate and benzoate, the possible
number of combinations required was large. A matrix of 1306 conditions was used to produce
the cold fill spoilage model and the time to growth data was fitted using a Classification and
Regression Trees approach (CART). This CART model is purely descriptive, working with
classes or categories rather than with actual times to growth. So, for the purpose of fitting a
CART model, times to growth were categorised as : under 15 days, under 1 month, under 3
months, under 5 months and over 5 months, i.e. no growth. The application of this technique
is carried out by a computer program and the output is a logical classification tree. Each
branch of the tree corresponds to a test and a decision as to whether a certain factor is above
or below a critical value, calculated by the program. The tree provides a complete description
of the classification scheme. The program places restrictions on the number of branches and
end-point nodes so that the tree becomes manageable. It is then a question of applying the set
of rules defining the tree to a new set of data, to see whether the rules still hold.

All Campden BRI spoilage models are fully food validated. Relevant foodstuffs were
inoculated with the organisms used in the production of the model and were stored at the
appropriate temperatures. Either the level of organisms present or the turbidity and changes in
physical appearance were then noted. The data generated from these studies were then
compared to the broth data.

Results and Discussion

For the Enterobacteriaceae kinetic growth model there was a good fit to the data, with a
residual square (R?2) value of 80% and a root mean square value (rms) residual error of 0.86
logie(count). There was good agreement between fitted and observed logio (counts) and this is
illustrated graphically in Figure 1 for the 1.0% salt conditions (Everis and Betts, 2008).

This CART model fitted the cold fill spoilage data well, with 84% of the data predicted
correctly overall. It was better at predicting where growth occurred, predicting 98% of them
correctly whereas only 78% of the no growth situations were correctly modelled. (Table 1).
The full list of spoilage models available at Campden BRI for industrial applications is given
in Table 2




Figure 1. Growth curves at salt = 1.0%
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Table 1: Results for cold fill spoilage organisms in terms of predictions of growth/no growth

in 270 days
Trial result No. of trials Predicted Not predicted
Growth 347 339 (97.7%) 8 (2.3%)
No growth 998 790 (79%) 208 (21%)
Days 1to 14 15t0 30 31to 60 61 to 270 No growth
No. of broths 190 60 54 43 998
exhibiting growth
No. predicted 158 (83%) 40 (67%) 29 (54%) 38 (88%) 790 (79%)
correctly
No. incorrectly 32 (17%) 20 (33%) 25 (46%) 5 (12%) 208 (21%)
predicted
Conclusions

The spoilage models described here cover a wide range of spoilage organisms, groups of
organisms and product types. They are suitable for use with a wide range of product types
including chilled foods, meats, fish, drinks, ambient stable acidified foods and fresh produce.
These models are widely used to aid the food industry with developing stable product
formulations, assessing potential shelf life and in trouble shooting when there are deviations
with parameters such as pH, salt or temperature of storage.
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Table 2: Spoilage models available in FORECAST

Model Temrzggture l(\(l)/aoilq) Equivalent a,, pH Other Conditions
Kinetic models:
Pseudomonas 0-15 0.0-40 1.00-0.977 55-7.0 Fluctuatingtemperature, pH,
salt
Bacillus spp. 5-25 05-10 0.997 - 4.0-7.0 Fluctuating temperature, pH,
0.935 salt
Enterobacteriaceae 0-27 05-10 0.997 - 4.0-7.0 Fluctuating temperature, pH,
0.935 salt
Yeasts 0-22 05-10 0.997 - 2.6 —-6.0 Fluctuating temperature, pH,
(chilled foods) 0.935 salt
Lactic acid bacteria 2-30 05-10 0.997 - 3.0-6.0 Fluctuating temperature
0.935
Meat spoilage 2-22 0-6 1.00-0964 4.6-7.0 0 — 240 KNO, (ppm)
Fluctuating temperature, pH,
salt
Fish spoilage 2-22 0-6 1.00-0.964 4.5-8.0 Fluctuatingtemperature, pH,
salt
Fresh produce TVC 2-25 - - -
Fresh produce 2-25 - - -
Enterobacteriaceae
Fresh produce lactic 2-25 - - -
acid bacteria
Fresh produce 2-25 - - -
Pseudomonas
Time to growth models
Yeasts 0-22 - 20-7.0 0 - 60 % Sucrose (w/v)
(fruit/drinks) 0 — 20% Ethanol (v/v)
Potassium sorbate 0 — 1000
(Ppm)
Bacillus 8-45 0.5-10  0.997 - 4.0-7.0
0.935
Cold fill spoilage 25 05-18 0.85-1.00 28-50 Benzoate
(yeasts, moulds, Sorbate
lactics) 0-2000 (in total)
Cold fill pathogens 25 05-16 087-100 39-5.0 Benzoate
(E.coli, S.aureus Sorbate
Salmonella) 0-2000 (in total)
Hot fill spoilage 25 05-18 086-100 37-52 Benzoate
B. polymyxa Sorbate
B.coagulans 0-2000 (in total)
B. cereus
C. tyrobutyricum
C. pasteurianum
C. butyricum
Thermal death model
Enterobacteriaceae 52 to 64 0-8 1.00-0.95 4.0-7.0 Predicts D value
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Abstract

The aim of this study was to evaluate (B@) biological Time Temperature Integrator (TTl)eas
quality and safety indicator for three examplegeifigerated food: ground beef and chicken
slices under modified atmosphere and cold smokedura packed salmon. Storage trials and
challenge tests were thus performed under statipeeatures to model the behaviors of three
pathogensQalmonellaListeria monocytogenemndStaphylococcus aurepyand the indigenous
flora in the studied foods. In parallel, specifi€lTprototypes were developed for each of the
three products. The TTIs color evolution underistahd dynamic temperatures was monitored
and modeled. Using the collected data, exposuresssgent models were set and used under
several storage conditions to assess the diswitmif the concentrations of the indigenous food
flora and the distributions of the increase in pla¢ghogens population at the end of the product
shelf life or at the end point of the TTI. Thesstdbutions were compared to check if the TTI
response was appropriate for monitoring the qualiy safety of the studied products.
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Biological TTI, Refrigerated Products, Exposure déssnent, Listeria monocytogenes
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Introduction

Nowadays, refrigerated products are widely consumedre still considered as sensitive foods.
In fact, the temperature at which they are hanfledmajor factor determining their quality and
safety as it influences the rate of the growth athpgens or alteration microorganisms
(McMeekinet al, 2008). Several traceability tools have been pigsty proposed to keep track
of the time temperature history to which perishgmleducts are exposed (Kerey al, 2006)
among which Time Temperature Indicators (TTIs)apmromising alternative. These are simple
and user friendly devices which are put on the fpadkagingo indicatewhenthe food is
spoiled by measurable and irreversible time temperdependenthangesysuallyexpressedly
mechanicatleformationsgolor development or color change (Taoukis and kabt989).

In the present work, a biological TTI (€ommercialized by the French company CRYOLOG
was studied. (e8)is shaped like a green flower in which a selestegin of lactic acid bacteria
(C. piscicolg is trapped. In case of inappropriate storage itiong, C. piscicolaproduces lactic
acid causing a continuous pH decrease in the THiume leading to a color change of the TTI
chromatic indicator. The green flower thus beconeglsto indicate that the product is no longer
fit for consumption. The aim of this study was t@keate (eJ) as a quality and safety indicator
through an exposure assessment model appliedde twamples of refrigerated food: ground
beef and chicken slices packed under modified gthwre and cold smoked vacuum-packed
salmon.

Materials and methods

The evolution of the indigenolmcterian several batches of the studied food was mordtore
iso-thermal conditions ranging from 2 to 30°C (Tl then modeled by a primary model
without lag (Baranyi and Roberts, 1994) and a ssjuant type secondary model (Ratkowsky
al.,, 1982).The evolutions oL. monocytogenesalmonellaandS. aureusnvere modeled by a
primary model with a lag time (Baranyi and Robet&94) and a cardinal type secondary model
(Rossoet al, 1995).When appropriate, the evolution of the maximum patien density with



temperature was modeled by a linear modéle microbial growth parameters were thus
assessedalidated and implement@&dthe exposure assessment model.

Table 1. Food experimental design

Nbof T (°C) Food characteristics
Foods Physico-
batches Microbiological chemical
Salmon
Storage trials 4 2,4,8,12, 25 Mesophilic and Psychrotrophic Aerobic Floaatic Acid Bacteria, Thermotolerant Coliforms pH : 723 measur
Challenge tests 2 2,4,8,12,25 L. monocytogenestrains INRA 100, INRA 101, INRA 103, TQA 200 streddgy starvation aw: 754 measures
1 8,12 L. monocytogenestrain INRA 100 stressed by a disinfectant
1 8,12 L. monocytogenestrain TQA 200 stressed by a “salmon process” stress
Ground beef
Storage trials 4 2,4,8,12 Mesophilic Aerobic Flora, Lactic Acid Bacteriefimotolerant Coliform&EnterobacteriaceaeE. coli pH : 161 measures
Challenge tests 3 2,4,8,12 L. monocytogenestrain INRA 100 stressed by starvation aw : 235 measures
CO,: 133 measures
Chicken dlices
Storage trials 3 4,8,15,20,25 Mesophilic Aerobic Flora, Lactic Acid Bactefiaermotolerant Coliform&nterobacteriaceaeE. coli pH : 846 measures
Challenge tests 3 8,15,20,25,30 L. monocytogenestrain INRA 100 stressed by starvation aw : 276 measures
4 8,15,20,25,30 Salmonellastrains SOR 302 and AER 300 stressed by starvation CQO, : 282 measures
1 15, 25 Salmonellastrain AER 300 stressed by a disinfectant
4 8,15,20,25,30 S. aureusstrains S47 and S44 stressed by starvation
1 15, 25 S. aureusstrain S44 stressed by a disinfectant

The temperature dependence of the color changkeolTls was investigated by monitoring
their a and b coordinates and modeled isothermally (Table 2)tfwee batches for each TTI
setting using the following equations based orethigle of coloh = tan™(b/a):

h, -
N (R + e::p R+ ut) 1) i =ﬂih[R+ 'n(exp(_R)_%D (2)
whereh is the angle of color at the tinb@), h; andhy its initial and final values, respectively and
R a constant that relates the specific rate of athange i) and the time of response of the TTI
(t) according to equation (), was further modeled by a square root type modaik@wskyet
al., 1982) to predict its evolution with temperatufighe estimates of the parameters were
validated under non iso-thermal conditions (TaQlard the TTI model was used to predict the
time of response of the TTI for any temperaturdilgroMonte Carlo simulations were finally
performed using either the pathogen or the indigemicroflora parameters on several storage
profiles to predict the level of microbial spoilagethe increase in the pathogen population to
which a consumer may be exposed by eating a foisl @ase by date or at the TTI end point.

Table 2. TTI experimental design

Food shelf life (S) Reference Profile for TTI Setting Isothermal temperatures (°C)  Dynamic temperature profiles
Salmon: 28 days. 28 days at 4°C. 1/3(S) at 2°C and 2/3(S) at 15°C.
Ground beef: 9 days. 3 days at 4°C 6, days at 8°C. 2, 4,8, 15, 20, 30. L/3(S) at 4°C and 2/3(S) at 8°C.

(
1/3(S) at 15°C and 2/3(S) at 4°C.
Chicken slices: 16 days. 5.3 days at 4°C, 10.7 days at 8°C. 1/3(S) at 2°C 8h at 15°C and then 4°C.

Results and discussion

The results of the alteration exposure assessmedelnapplied to ground beef packed under
modified atmosphere are presented in Figure 1. cdreespondent TTI prototype was set to
reach its end point after 3 days at 4°C and 6 dagSC (Table 2) which represents the shelf life
validation protocol for the ground beef samplesdusethis study. In the reference conditions
(Fig 1.a) the TTIl meets this specification as iamfpes to red exactly after 9 days, and the
cumulative probability distributions obtained & é&nd point or at the end of the shelf hfe
unsurprisingly identical. These are considerededsrence curves, obtained in ideal storage
conditions, to which the cumulative probability tdisutions obtained in real storage profiles
will be compared. When the cold chain is globaigpected (Fig 1.b) the concentration of the
indigenous microflora at the time of response efTi | is very close to that obtained at the end
of the product shelf life and is estimated to B¢ CFU g in 50% of the simulations which is
slightly smaller than the concentration obtainedhia reference condition (7.6 log CFU)gin
case of bad storage (Fig 1.c), the TTI responseaished after 6.6 days and there is an important
difference between the concentrations obtained® 6f the cases at the end of the 9 days shelf
life (8 log CFU @) and at the TTI end point (5.9 log CFO)gThus, the use of the TTI makes
the consumer eat the product earlier and contishute50% of the cases, to a 2 log CFU g
reduction in the concentration of the indigenousroflora at consumption.
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Figure 1. Cumulative probability distributions d@ietconcentration of the indigenous microflora
obtained for (a) reference (b) good and (c) badchg®conditions in ground beef at the end point
of the TTI (solid lines) and at the end of the protdshelf life (dashed lines).

Figure 2 depicts the results of the exposure assmdsmodel ofL. monocytogenem cold
smoked salmon. The end point of the TTI used f@s product was based on its shelf life
validation protocol of 28 days at 4°C. Figure 2teows that the TTlI complies with the
specifications as the shelf life and TTI curvesreference are identical. The cumulative
probability distributions obtained in real storggefiles show a clear reduction in the increase
in the L. monocytogenepopulation when applying the TTI. In fact, the Tdiktributions are
systematically shifted to the left compared touke by date distributions. For example, in case
of a bad storage, in 50% of the cases, the incii@abeL. monocytogengsopulation at the use
by date was estimated to 6.4 log CFU (§ig 2.c) while only a 2.7 log CFUgincrease was
observed for the TTI distribution. Thus, in casedingle cell contamination of a 100 g slice of
cold smoked almon, in 50% of the cases, the inergathel.. monocytogengsopulation at the
end of the shelf life would lead to a 25 000 CFU apntamination level, well above the
authorized level of 100.. monocytogeneg™. If the TTls were used the product would have
been consumed earlier which means that in 50% eofctses it would have only reached a 5
CFU ¢' contamination level.
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Figure 2. Cumulative probability distributions btincrease in thie. monocytogengsopulation obtained
for (a) reference (b) good and (c) bad storage itiond in cold smoked salmon at the end point ef th
TTI (solid lines) and at the end of the productiklife (dashed lines).

Similar results were obtained for monocytogeneSalmonellaandS. aureusn chicken slices.
Figure 3 shows that the increases in the pathogpulations obtained either in good or in bad
storage conditions when using the TTIs were alwsayaller than those obtained at the end of
the shelf life (Fig 3.b and 3.c).

The TTI distributions fot.. monocytogeneig 3.b and 3.c) were very similar (0.1 log CFU g
difference) to those obtained for the referenceaditmms (Fig 3.a) which proves that consuming
the chicken slices at the TTI end point, whatet®itime temperature history, is equivalent to
consuming a product that was properly stored dutm@ntire shelf life with regards to the
monocytogenelsazard.

However, 1 and 2 log differences in tBe aureusand Salmonellapopulation increases were
respectively obtained between the reference staragéitions (Fig 3.a) and the realistic storage
conditions (Fig 3.b and 3.c) at the TTI end point.
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Figure 3. Cumulative probability distributions dfetincrease in the population lof monocytogenef),
Salmonella(ll) and S. aureuqlll) obtained for (a) reference (b) good and lf&@d storage conditions in
cooked chicken slices at the end point of the Folid lines) and at the product shelf life (dashees).

These differences can be explained by the behatidwe TTI micro-organism which is closer to
the L. monocytogenebehavior but rather different from those $&lmonellaand S. aureus
Despite that, the TTI also reduced the consumeo®xge to these pathogens, especially in bad
storage conditions. Indeed, when considering fangleS. aureusa 2.2 log CFU § increase
was observed at the end of the shelf life in 50%hef cases while only a 1.2 log CFU g
increase was obtained when using the TTI. The sasdt was observed f&@almonella Thus,

in case of bad storage conditions and in 50% ofctees, under the scenario of a single cell
contaminating a 100 g portion of chicken slice§aimonellacells would have been found in
the product at the end point of the TTI while S2lmonellacells would have developed at the
end of the shelf life in the 100 g chicken slicestion.

These results show that, in case of a bad stonadjénab0% of the cases, the TTls help reduce
the exposure t8. aureudy a factor 10, t&almonellaby a factor 8 and th. monocytogendsy

a factor 4.

Conclusion

Given the results of this study, correctly set Tdas be considered as valuable tools to monitor
the food quality and safety of refrigerated produss$ they significantly reduced the consumer
exposure to the studied pathogens and alteratioroorganisms in the considered refrigerated
foods.
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Abstract

Predictive models are often focusing on safety aspects such as growth of pathogens, toxin and
mycotoxin production. Next to food safety, an additional important field of interest for the
food industry is the prediction of microbial stability. There is the possibility that growth of
spoilage microorganisms will lead to enormous economical losses. Nowadays, also new
challenges appear for food producers as consumers and authorities adopt a more critical
attitude towards food. Trends in lowering salt, sugar and fat content in different food products
are observed. In this way the hurdles which assure the microbial stability of these products
will approach their limits. Growth/no growth models can be very advantageous for product
innovations and particularly those focusing on certain food products. In this article, two
different product-specific growth/no growth models for yeast will be presented. The first
model describes the growth probability of Z. bailii in sauces at different temperatures and the
second model focuses on the growth chances of Z. rouxii in intermediate moisture foods. Both
models are also incorporated in software programs to improve the transfer of scientific
knowledge to industrial practice.

Introduction

As the consumers, retail and authorities are more focussing on healthier foods (lower fat,
sugar and salt content), the food industry is confronted with new challenges. By reducing
these ingredients different hurdles to inhibit growth of micro-organisms are fading away. For
a lot of products this might lead to microbial instability. Product innovations combined with
determination of microbial stability can be very time-consuming, labour intensive and
expensive, particularly for products with a prolonged shelf-life. Therefore, the food industry
is the steering force in the development of predictive (growth/no growth) models specific for
their products. This will give the food business operators well-founded and practical
guidelines during the process of product innovation. It will give the opportunity to estimate in
advance the influence of changing ingredients and product characteristics on the microbial
stability. Growth/no growth models were developed for two product types, which are looked
upon as unhealthy because of their high sugar and fat content. The models for Z. bailii in
sauces incorporate a,, pH and acetic acid as variables (Dang et al., 2009). Chemical
preservatives were deliberately excluded out of the model as these are disputed by consumers
and authorities. The models were developed at two different temperatures, 22 en 30°C, and
different incubation times. The models for intermediate moisture foods (such as chocolate
fillings, cakes, marzipan, etc. ) focused on the effect of pH, a,, ethanol and absence/presence
of acetic acid.

Material and Methods

Medium preparation

Media were prepared based on Sabouraud (SAB, Oxoid) and adapted depending on the target
product. For the sauce model, glucose (G-8270, Sigma Aldrich, Steinheim, Germany) and
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fructose (F-0127, Sigma Aldrich) were added to SAB to have in total 15% (w/v) sugar (1:1
ratio). This was done to mimic the high sugar content of sweet-and-sour sauces. The intrinsic
factors were changed by adding NaCl (Vel 1723, VWR, Leuven, Belgium) (a, ranging from
0.93 to 0.97, 5 levels), acetic acid (UN2789, VWR) ranging from 0 to 2.5% (6 levels). The
pH was adjusted by adding HCI (5 N, VWR) and/or NaOH (5N, VWR) to levels between 3.0
and 5.0 (5 levels). Media were sterilized and stored at room temperature. More detailed
information about the medium preparation can be found in Dang et al. (2009).

For the model for intermediate moisture foods 50 % sugar (1:1 ratio glucose/fructose) was
added. Additionally glycerol (Sigma Aldrich) was added to lower the a,, ranging from 0.76 to
0.88 (4 levels). Ethanol (Merck, Darmstadt, Germany) was added to the media in
concentrations ranging from 0 to 4.5% (w/w) (4 levels). For the model with acetic acid 1%
was added to all media. Finally the pH was adjusted by adding HCI (5 N, VWR) and/or
NaOH (5N, VWR) to levels between 5.0 and 6.2 (4 levels).

Inoculation procedure and growth assessment

Both strains were stored at —75°C, inoculated in SAB and incubated 24h at 30°C for Z. bailii
and 48h at 30°C for Z. rouxii. Subcultures were taken in acidified SAB (pH 4.0) for Z. bailii
and normal SAB for Z. rouxii. Cultures were incubated again 24h or 48h at 30°C for Z. bailii
and Z. rouxii, respectively. Before inoculation, cells were washed with a saline solution (8.5
% NacCl), resuspended in one of the specific media and diluted in the same medium until the
appropriate inoculation level was reached (approx. 4 log CFU/mI). The cells were inoculated
in 96 well format microtiter plates (Roll s.a.s, Plove di Sacco, Italy) which were filled with
the different media. Wells were filled with 180 pL specific medium and inoculated with 20
uL of the appropriate culture. Growth at each condition was checked in at least 20 replicates.
Plates were incubated at their specific temperature (22 or 30°C for Z. bailii and 22°C for Z.
rouxii). To avoid evaporation of acetic acid and ethanol in the media for Z. rouxii which had
to be stored at room temperature for a long period of time) extra precautions were taken.
Firstly, the microtiterplates were covered by a Breath-easy film (Fiers NV, Kuurne, Belgium).
Secondly, silicone (Henkel, Belgium) was applied on the frame of the microtiterplate before
the lid was closed. To avoid changes in water activity the plates were stored at constant
relative humidity. To achieve this microtiterplates with the same a,, were stored in closed jars
which were for at least 1/10 filled with a glycerol solution of the same a,. Growth was
checked daily by optical density measurements, using a VERSAmax™ microtiter plate reader
at 600 nm. Growth was defined as ODs,mpie Which is consistently higher than three times the
standard deviation of ODyn (Vermeulen et al., 2007). Growth was assessed in each
individual well of the replicates to have a detailed percentage of growth for each combination
of intrinsic factors tested.

Model development
Data were in all cases described by an ordinary logistic regression model which consisted of a

polynomial (right-hand side) and logit p = In (%) (left-hand side) with p the probability
that growth occurred. The models were fitted using statistical software packages (SPSS, Inc.,
Chicago IL., USA)) using linear logistic regression.

For each model, goodness-of-fit statistics were considered: (i) —2 log L with L the likelihood
in its optimum, (ii) Akaike’s Information Criterion (AIC = -2 log L — number of parameters in
model), and (iii) Hosmer-Lemeshow statistic. The predictive power was measured by c (the
concordance index) which is equal to the area under the ROC-curve (Receiver Operating
Curve). It estimates the probability that the predictions and the outcomes are concordant. A
value ¢ = 0.5 means that the predictions are no better than random guessing and the higher the
value of c, the better the prediction (Agresti, 2002).

The predicted growth/no growth interfaces for p = 0.1, 0.5 and 0.9 for both models were
plotted in Matlab®7.3 (The Mathworks, Inc., Natick, MA, USA).



Development of software tool

To improve the transferability of the developed models towards the industry, an integrated,
user-friendly software tool was developed by using Matlab®7.3 Graphical User Interface
(The Mathworks, Inc., Natick, MA, USA).

Results and discussion

Three different models were developed to describe the growth probability of Z. bailii in
acidified sauces. The parameter estimates with their standard deviation and the performance
statistics of the model are given in Dang et al. (2009). Comparing the model at 22°C with the
one at 30°C revealed that at 30°C the growth zone was larger than at 22°C for acetic acid
concentrations higher than 1.5%. The growth rate was, however, faster at 30°C. It might be
that at these elevated temperature (30°C), the higher metabolism rate of the yeast made it
more susceptible to stressful conditions, resulting in a lower growth probability. At 22°C a
model was made for 45 days and one for 60 days incubation. As expected, more conditions
were classified as growth after a longer incubation time. The data after 60 days showed some
higher growth chances at conditions close to the growth/no growth boundary. However, the
no growth zone remained stable (more details see Dang et al. 2009).
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Figure 1: G/NG boundary of Z. bailii at 22°C (left column) and 30°C (right column) after 45-
day incubation period at 1.5% (v/v) (upper row) and 2.0% (v/v) acetic acid (lower row) with
(+) 100% growth, (0) no growth and (A) growth % e ]0,100[ indicated. Lines represent the
ordinary logistic regression model, with p =90% (—), p = 50% (---) and p = 10% (....).

For intermediate moisture foods two models were developed after 60 days incubation at 22°C.
One model describes the G/NG interface at conditions without acetic acid while the other
model includes 1% acetic acid at all conditions. The parameter estimates with their standard
deviation and the performance statistics of the model are given in Table 1. Results showed
that in media without acetic acid, pH had almost no influence on the growth/no boundary in
the examined region (Fig 2a). This implicates that in these conditions only a very low a,,
and/or high ethanol concentration was sufficient to inhibit growth. If 1% acetic acid was
added to the media a significant pH effect was observed (Fig. 2b).



Table 1: Parameter estimates with their standard errors and performance statistics for the

models at 22°C and 30°C.
Parameter
Statistics/predictive Without acetic acid Acetic acid
power
Constant -142.5 + 37.6 1010.6 + 211.9
Aw 252.6 £ 58.5 -1339.9 + 288.2
pH -0.74 +0.86 -245.6 + 45.3
Ethanol -13.1+23 83.46 £ 16.1
aw’ N.S.2 -167.0 £ 29.0
ay - pH N.S. 349.6+61.4
ay, - Ethanol -36.1+16.0 -50.8+12.7
pH - Ethanol 14+05 -94+13.
-2InL 50.388 225.408
AIC 56.388 239.408
Hosmer-Lemeshow 0.235 1.197
P-value = 0.999 P-value = 0.997
c-value 0.999 0.996
% concordant 99.6 97.3

a Not significant (P = 0.001)

0.88+
0.861
0.84+
- 0.82¢ %
= oal 77
0.78} 7
0.76 ////
0.74+ 7

O R R " R S S S—
Ethanol % (w/w) Ethanol % (w/w)

Figure 2: G/NG boundary of Z. rouxii at pH 5.0 (black) and pH 6.2 (red) after 60 at 0% acetic
acid (left) and 1% acetic acid (right). Lines represent the ordinary logistic regression model,

with p =90% (—), p = 50% (---) and p = 10% (.....).

Conclusion

Sauces as well as intermediate moisture foods are products, which will questioned more and
more because of their high fat and sugar content. Besides these products can contain chemical
preservatives. As lowering these factors to improve the nutritional quality of the products can
compromise their microbial stability, combination technology will be unavoidable. Therefore,
the industry is constantly searching for a way to quantify the effects of combination of stress
factors for their products. Growth/no growth models are excellent instruments to fulfil this
want. Besides the models are easily to use by food business operators during the process of
product innovation when incorporated in user-friendly software, as was done during this
research.
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Abstract

The Seafood Spoilage and Safety Predictor (SSSP) software has been expanded by adding a
new Listeria monocytogenes growth and growth boundary model that include the effect of
temperature, NaCl/a,, pH, CO,, smoke intensity, nitrite, organic acids (acetic acid/diacetate,
benzoic acid, citric acid, lactic acid, sorbic acid) and the interaction between all these
environmental parameters. The new SSSP v. 3.1 freeware predicts growth of L.
monocytogenes for a wide range of environmental conditions including constant and variable
storage temperatures. Importantly, the new software predicts both the growth boundary and
no-growth conditions with a defined distance to the growth boundary. This is important e.g.
when predictions are used for development or modification of food formulations to prevent
growth of L. monocytogenes. SSSP v. 3.1 can be used in 15 different languages to facilitate
communication between the many parties interested in using predictions to manage food
chains. The freeware is available from http://sssp.dtuaqua.dk.

Keywords: Application software, growth/no-growth predictions, psi(y)-value, ready-to-eat
foods.

Introduction

Software with predictive microbiology models is important to support decisions on safety and
quality of food (Dalgaard et al. 2002; McMeekin et al. 2006; Tamplin et al. 2009). For
Listeria monocytogenes, predictive modelling is specifically recognized in EU regulations to
demonstrate control of its growth in ready-to-eat food (EC 2073/2005, EC 1441/2007).
Several application software with L. monocytogenes growth models are available (Tamplin et
al. 2009). However, complex predictive models are needed to accurately predict responses in
processed and ready-to-eat food where several environmental parameters influence growth of
L. monocytogenes (Mejlholm et al. 2009b). For practical applications of such complex
mathematical models user-friendly software is needed but freeware to predict growth and the
growth boundary of L. monocytogenes in food with organic acids including benzoic and
sorbic acids is not available. The objective of the present study was to expand the existing
Seafood Spoilage and Safety Predictor (SSSP) software with a flexible mathematical model
that allow growth and the growth boundary of L. monocytogenes to be predicted for various
foods and for a wide range of environmental conditions.

Materials and methods

SSSP v. 3.0 from December 2008 includes 14 different models to predict shelf-life and safety
of seafood. This and previous versions of SSSP has been popular and are used world wide by
more than 4000 people/institutions from 105 different countries. In 2009 SSSP has been
expanded by adding an extensive L. monocytogenes growth and growth boundary model that
includes the effect of temperature, NaCl/a,, pH, CO,, smoke intensity, nitrite, organic acids
(acetic acid/diacetate, benzoic acid, citric acid, lactic acid, sorbic acid) and the interaction
between all these environmental parameters. The new L. monocytogenes growth and growth
boundary model was previously developed for shrimps and then both extensively and
successfully validated for various seafood and meat products (Mejlholm and Dalgaard, 2009;
Mejlholm et al. 2009b). The Logistic equation is used as primary growth model together with



a cardinal parameter model to predict the effect of storage conditions and product
characteristics on growth and on the growth boundary of L. monocytogenes. Growth boundary
predictions are obtained by using the Le Marc approach for interaction between
environmental parameters (Le Marc et al. 2002). The new SSSP v. 3.1 software predicts the
growth boundary of L. monocytogenes (with psi(y)-value of 1.0) depending on combinations
of product characteristics and storage conditions. Furthermore, the new software can predict
boundaries for other y-values. This is important to identify environmental conditions that
prevent growth of L. monocytogenes and at the same time take into account the inherent
variability in product characteristics and storage conditions (Mejlholm and Dalgaard, 2009;
Mejlholm et al. 2009a).

Microsoft Visual C# .Net and Studio .Net were used to program SSSP v. 3.1.
C# supports XML which was used for data handling within SSSP v. 3.1. XML also facilitated
the development of a multi-language application. SSSP v. 3.1 has been translated into 15
different languages.

Results and discussion

SSSP v. 3.1 uses 2D and 3D graphs to illustrate the effect of combinations of environmental
parameters on the growth boundary of L. monocytogenes (y-value of 1.0) as well as on other
boundaries corresponding to y-values between 0.5 and 2.5 (Fig. 1 and 2). 3D graphs are
useful to provide an overview of the environmental conditions that prevent growth of L.
monocytogenes (Fig. 1). To facilitate extraction of more precise information from 3D graphs
SSSP users can select specific points on these graphs and the software then provides
corresponding coordinates in a dedicated results bar. This can be useful e.g. in the initial
phase of developing or modifying food formulations to prevent growth of L. monocytogenes.

Figure 1: Predicted growth boundary for L.
monocytogenes as influenced by different
combinations of temperature and
concentrations of benzoic and sorbic acids.
Predictions were obtained for pH 6.0, with
4.0% water phase salt and 7000 ppm lactic
acid in the water phase.

Small variations in product characteristics away from the growth boundary can result in
unacceptable growth of L. monocytogenes. However, data from a very large validation study
with seafood and meat products has shown that no-growth conditions corresponding to an -
value of 2.0 is sufficient to prevent growth of L. monocytogenes even when the inherent
variability in the environmental conditions of these products are taken into account (Mejlholm
et al. 2009b). To illustrate the effect of the y-value Figure 2 below shows predicted
combinations of temperature and concentrations of diacetate and lactic acid corresponding,
respectively, to y-values of 1.0 (growth boundaries) and 2.0 (boundaries within the no-
growth space of the environmental conditions).
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Figure 2: Predicted combinations of temperature, diacetate and lactic acid corresponding to: A) the
growth boundary of L. monocytogenes with y =1.0 and B) no-growth conditions with y-value of 2.0.
This graph also shows the range of environmental conditions covered by SSSP v. 3.1.

According to EU regulations, concentrations of L. monocytogenes must remain below 100
cells/g within the shelf-life of ready-to eat foods (EC 2073/2005; EC 1441/2007). To meet
this requirement SSSP v. 3.1 can predict appropriate combinations of storage conditions,
product characteristics and safe shelf-life. Importantly, the effect of both constant and variable
storage temperatures can be predicted. Figure 3 below shows the effect of a simple and fictive



temperature profile. However, SSSP v. 3.1 includes a flexible module to import product
temperature profiles as collected by various types of data loggers.

To benefit the global food sector SSSP v. 3.1 has been translated into Chinese,
Croatian, Danish, Dutch, English, Finnish, French, German, Greek, Italian, Spanish, Persian,
Polish, Portuguese and Vietnamese by users of the freeware. This facilitates communication
between the many parties interested in food chains. In fact, food chains (including raw
materials, ingredients, processing, packaging and distribution to consumers) very often span
wide geographical regions and various language zones. When SSSP v. 3.1 is used to
determine e.g. the effect of temperature profiles during processing or distribution this
information can conveniently be send to relevant food chain participants in a language that is
understood not only by quality assurance personnel but also by those actually carrying out the
practical processing and distribution of products.
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Figure 3: Effect of a simple temperature profile with variations between 5°C and 15°C on the predicted
growth of L. monocytogenes. Predictions were obtained for pH 6.0 and with 3.0% NaCl, 1000 ppm
benzoate/benzoic acid and 400 ppm sorbate/sorbic acid the water phase of the product.

Conclusions

SSSP v. 3.1 from 2009 is available for download from http://sssp.dtuaqua.dk. This new
version of the freeware can be used in 15 different languages and includes a growth and
growth boundary model to predict growth responses of L. monocytogenes for a wide range of
environmental conditions. SSSP v. 3.1 can be used both for seafood and meat products to
evaluate and document L. monocytogenes growth responses.
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Abstract

The european regulation provides for the possibility for the Member States to derogate from
the 7°C core temperature for transport of warm raw pork carcasses from the slaughterhouse to
a cutting plant. In France, raw pork carcasses must attain the temperature of 12°C in the core
of carcass before transport and the duration of transport cannot be longer than two hours. This
work aims at establishing alternative transport conditions based on two different performance
criteria. Alternative conditions were assessed by the calculation of the growth potentials of
different micro-organisms (Aeromonas hydrophila, Escherichia coli, Listeria monocytogenes,
Salmonella, and Yersinia enterocolitica). For micro-organisms several secondary models
proposed by the Pathogen Modeling Program, the Combase Modelling Toolbox, Sym’Previus
and other published models were tested. Growth occurring at the surface and in the core of the
carcasses were considered. It was shown, according to performance criteria and assumptions
made, that a large easing of the transport conditions of the actual regulation cannot be
proposed.

Keywords : cooling; hygiene package; time-temperature equivalent

Introduction

At the end of the slaughter process, the temperature of pig carcasses is approximately 30°C at
the surface and 38-40°C in the core. These temperatures are very conducive to the growth of
most bacteria that contaminate carcasses. Consequently, post-mortem chilling processes are
aimed at bringing down the temperature of the carcass as rapidly as possible, in order to
primarily protect the microbiological quality of the meat and also, but with less emphasis on
maintaining sensory and technological quality of meat.

Regulation 853/2004 of the European Parliament and of the Council of 29 April 2004 laying
down specific hygiene rules for food of animal origin, sets out the modalities for livestock
slaughter and the preparation of carcasses. Food business operators must ensure that meat
must attain the core temperature of 7°C before transport. However, the regulation provides for
the possibility for the Member States to derogate from the 7°C core temperature for transport
of warm raw pork carcasses from the slaughterhouse to a cutting plant, with the purpose of
obtaining fresh cut or deboned meat. In France, the competent authority actually enforces that
meat must attain the temperature of 12°C in the core of carcass before transport, and remain at
that temperature during a two-hour transport. A substantial number of meat processors, find it
difficult to operate to this standard and ask for an easing of the exemption.

The aim of this work is to provide information that will assist the competent authority for
establishing alternative transport conditions.

Materials and Methods

Micro-organisms, growth models and assumptions

The growths of Aeromonas hydrophila, E. coli, Listeria monocytogenes, Salmonella, and
Yersinia enterocolitica were considered. Predictive microbiology software packages,
Pathogen Modeling Program (http://pmp.arserrc.gov/PMPOnline.aspx), Combase Predictor
(www.combase.cc), MLA Refrigeration Index Calculator



(http://www.foodsafetycentre.com.au/refrigerationindex.php) and Sym’Previus
(www.symprevius.org) were used to assess the growth of selected bacteria.

Lag time was not take into account. It was considered that carcass temperature remains
constant during transport in refrigerated lorries. The pH value was fixed at 6.2 which
correspond to initial pH of meat before cooling. Water activity (a,,) was set at 0.995, the value
usually considered for fresh meat.

Performance criteria for establishing alternative transport conditions

Two criteria were used to set alternative duration and temperature of warm raw pork
transport. The first was the one proposed by the scientific committee of the Belgian federal
agency for food chain safety (Federal agency for the safety of food chain, 2008). They
determined a performance criterion: less than a doubling of the bacterial population must be
achieved during the transport of warm pork carcasses. The second criterion tested in this
paper states that the alternative temperature conditions and transport times must generate
microbial growths equivalent or lower than those predicted at the temperature and for the time
defined in the actual exemption (12°C — 2 hours).

Results and discussion

In this study three of the main high risk hazards involved in foodborne infections caused by
pork meat, Y. enterocolitica, Salmonella and L. monocytogenes were considered (Fosse et al.,
2008). E. coli has the advantage of having a minimum growth temperature close to 7°C (Ross
et al., 2003), which is a usual target temperature to be reached while cooling carcasses. A.
hydrophila, which is potentially present in pork meat, has been selected due to its
psychrotrophic nature. When several models where avalaible the model giving the safest
transport conditions was kept.

Even if the presence of bacteria in the core of meat is a possible phenomenon (Gill, 1979),
particularly with Salmonella, surface is the main place where contamination is likely to arise
and therefore is worth being considered.

Relationship between surface and core temperature

A relationship has been established (Figure 1) between temperatures taken at the surface and
in the core of hams of 24 cooling carcasses (Anonymous, 2008). That relationship maked it
possible to determine the temperature at the surface. The calculated value was used to assess
the bacterial growth on the meat surface.
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Figure 1: Surface temperatures (Ts) versus core temperatures (T¢) of hams at the time of
loading (*). Major axis (—) : Ts=0.4866 Tc+3.99.



Alternative transport conditions according to performance criterion 1

Large differences are observed between bacteria to achieve the performance criterion of a
maximum of one generation during refrigerated transport (Figure 2). As Belgian federal
agency for food chain safety (2008) observed, the growth of A. hydrophila was found to have
the lowest generation time both in deep meat and on surface.
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Figure 2: Maximum transport time depending on the core temperature of carcasses leading to
a doubling on the surface (A) or in deep meat (B) of A. hydrophila (s+-), L. monocytogenes
(--) Salmonella (s++), E. coli (+-) and Y. enterocolitica (—).

Alternative transport conditions to verify equivalence of risk

To achieve the objective of risk equivalence with actual exemption, growth potentials for
alternative transport conditions must not be higher than those corresponding to the actual
regulation. Maximum transport times depending on the core temperature of the carcasses at
the time of loading were calculated to achieve this criterion. Those maximum transport times
are given in Figure 3. Logically, the increase of core temperature at loading implies a
reduction of transport times below two hours. Contrary to the previous performance criterion,
maximum transport durations are not limited by the fastest growing bacteria, but by E. coli
and Salmonella. These bacteria have not the highest growth rates but the higest relative
changes when temperature increases. Considering growth in deep meat would lead to shorter
duration of transport than growth on surface.
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Figure 3: Maximum transport duration depending on the core temperature of carcasses
leading to growths on the surface (A) or in deep meat (B) of A. hydrophila (++-), L.
monocytogenes (- -), Salmonella (s++), E. coli (+-) and Y. enterocolitica (—) equivalent to
those with transport with a core temperature of 12°C for two hours.



It must be stressed that the different growth simulations are safe simulations. First, because
temperature of meat was considered to be stable during transport in refrigerated lorries. A
recent study (Anonymous, 2008) showed a decrease of surface temperature kinetics during
transport in refrigerated lorries. The lag times were considered to be nil, even when it is likely
that the bacteria contaminating the carcasses are in a physiological condition that requires
adaptation before exponential growth (Ingham et al., 2007). Most of the models tested have
been established in liquid culture media and not in meat. The growth model used for
Salmonella is an aerobic model, even though what is considered is growth in deep meat.
Lastly, water activity has been considered to be optimal even at the surface, when partial
drying is possible (Savell et al., 2005).

An analysis of the bibliography dealing with the evolution of bacterial population during
cooling confirms that that bacterial growths are certainly not as high as predicted. For
exemple, on the basis of a statistical survey of the data from eight studies, Gonzales Barron et
al. (2008) have shown that the prevalence of pork carcasses that are contaminated before
refrigeration was 2.4 times greater than after cooling. That reduction of prevalence was
observed regardless of the mode of cooling.

Conclusions

In the current state of knowledge, a large easing of the actual exemption cannot be proposed.
Meanwhile, opportunities for customized chilling programs still exist. For this an approach
similar to Australian Quarantine Inspection Service (2005) or the Meat Industry Research
Institute and New Zealand Food Safety Authority (2004) should be adopted. They established
process hygiene indexes based on temperature function integration techniques for assessing
hygienic adequacy of cooling procedures. The establishment of such a criteria would provide
a convenient way of determining the significance of the transport of warm carcasses in
refrigerated lorries.
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Abstract

The effect of abattoir slaughter operations on the prevalence and counts of Escherichia coli
0157:H7 (E. coli O157:H7) was modelled by means of a second-order Monte Carlo
simulation method. Contamination of beef trimmings may result in human exposure to E. coli
0157:H7 as beef trimmings are processing into saleable products, such as beef burgers, for
human consumption. The risk assessment model was developed in Microsoft Excel using the
@RISK add-in (version 4, Palisade, New York). Distributions were used to model the
slaughter operations that may influence the prevalence and counts of E. coli O157:H7 on beef
carcasses. The operations modelled included de-hiding, evisceration, carcass washing,
chilling and boning out/trimming. Data used in the model was based on a combination of
results from extensive survey work and existing scientific literature. The mean simulated
prevalence of E. coli O157:H7 in trimmings was 2.36% and the calculated mean counts on
contaminated trimmings was approx. —2.69 logi, CFU/g. These simulated values were within
the range estimated by survey results. A sensitivity analysis revealed the inputs having
greatest effect on the prevalence and counts of E. coli O157:H7 on beef trimmings, these
included: test sensitivity (correlation coefficient -0.27), hide to carcass transfer factor
(correlation coefficient 0.26), and the initial hide prevalence (correlation coefficient 0.20).
The model enables a closer analysis of the factors which contribute to beef contamination and
resulting risks to consumers.

Keywords: Simulation, Escherichia coli, beef, cross contamination

Introduction

Verocytotoxigenic Escherichia coli (VTEC), in particular serogroup 0157, has emerged as a
pathogen of major public concern. High profile outbreaks have focused attention on outbreaks
connected to food products, in particular, minced beef and beef burgers (CDC, 1993; Duffy et
al, 2006a). Preliminary figures indicate that approximately 167 cases of VTEC occurred in
Ireland during 2007 (HPSC, 2007), while other suspected cases in 2008 are currently under
investigation. The current number of illnesses in Ireland represents a worrying trend. The E.
coli O157 bacterium is present in faeces and the intestines of healthy bovines and can
contaminate meat during the slaughter process (Chapman, 2000). Cross contamination can
occur at multiple stages during the slaughter process resulting in potential contamination of
meat destined for human consumption. The objective of this work was to develop a
guantitative exposure assessment to model the contamination of beef trimmings at Irish
abattoirs in an effort to identify critical points in the process and to assess the impact of
process stages on the prevalence and counts of E. coli O157:H7.

Materials and methods

The focus of the model was within the slaughterhouse. The prevalence and counts of E. coli
0157:H7 bacteria were modelled at various stages along the slaughter line. A flow diagram of
the process is given in Figure 1. The model was created in Microsoft Excel 2000 with the
add-on package @Risk (version 4.05, Palisade Corporation, New York, USA).
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Figure 1: Flow diagram of the stages involved in bovine slaughter and subsequent production
of beef trimmings. Ovals denote steps that may either increase or decrease contamination.
Rectangles denote steps with little or no increase in contamination.

Distributions can be used to represent the effect each process stage has on microbial numbers
by modelling intermediary processing stages (e.g. dehiding, evisceration, washing, chilling,
boning out). As a result changes in microbial counts on the carcass can be simulated as the
carcass moves through the plant. Model inputs were derived from Irish data where possible. A
number of studies specific to Irish abattoir conditions (Sheridan, Lynch and Harrington, 1992;
McEvoy et al., 2000, 2001, 2003, Carney et al., 2006; Duffy et al., 2005; O’Brien et al.,
2005) provided valuable input data; alternatively, international data and scientific literature
were consulted to improve the basis for the model where Irish specific data was not available.
In a probabilistic risk assessment, the term “second-order” is often used to describe the use of
probability distributions to represent variability and uncertainty in the input parameters (\Vose,
2000). Variability and uncertainty in the input parameters were incorporated in the
construction of a second-order model by means of probability distributions. Detailed analysis
of the inputs and calculations are too exhaustive to provide here but are provided in detail in
Cummins et al. (2008).

Results and discussion

The simulation was run with 10,000 iterations of the model using Latin Hypercube sampling.
The observed prevalence of contaminated trimmings (2.36%) is similar to the prevalence
reported for minced beef products i.e. 2.80% (Cagney et al., 2004), which highlights the
likely transfer of contaminated beef trimmings into the food chain in the form of comminuted
beef products. The mean values for the prevalence of contaminated trimmings from the
simulation and the commercial survey (Duffy 2006b) are also similar (Figure 2).
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Figure 2: Simulation Vs. survey results (including uncertainty analysis) for the prevalence of
E. coli O157:H7 on beef trimmings.



The simulated mean counts of E. coli O157:H7 on contaminated trimmings was -2.69 logs
CFU/g (Figure 3). Simulated counts include situations where the simulated value is less than
the detection limit of the direct plate method (i.e. < 0.70 log;, units). Therefore, this has the
effect of pulling the graph in Figure 3 to the left. The enumeration technique of direct plating
onto CT-SMAC as used by Cagney et al. (2006) is not sensitive at low concentrations. As a
result, in most samples (25/32 of the beef trimming samples) the pathogen was detectable by
enrichment only, suggesting that the pathogen numbers are low i.e. < 0.70 logyo units. This
substantiates the models low estimate for bacterial contamination on beef trimmings and
provides some confidence in model results.
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Figures 3: Simulated counts of E. coli 0157:H7 on contaminated beef trimmings.

Given the estimated small dose required to cause illness resulting from the ingestion of E. coli
O157:H77 these predictions may be a cause for concern. A sensitivity analysis (using
correlation coefficient) revealed the parameters having the greatest impact on model
predictions. The input having greatest impact on E. coli prevalence was the test sensitivity (-
0.27), followed closely by the hide carcass transfer factor (0.26) and the initial hide
prevalence (0.20). The initial count on the animal hide was the parameter having the greatest
impact on count predictions in the model. The contaminated surface area and decrease from
hide to carcass were also having an impact on model predictions. The analysis reveals the
need for further research to reduce cross contamination at the hide removal stage. The fact
that the initial microbial counts on animal hides and the initial prevalence on animal hides are
ranked highly in the sensitivity analyses highlights the importance of having animals as free
from microbial contamination as possible when presented for slaughter.

Conclusions

The model described in this paper predicted the prevalence and counts of E. coli O157:H7 in
Irish beef trimmings and compared the results to a commercial survey carried out in Ireland.
The model integrated predictive microbiology with quantitative risk assessment techniques.
The model distinguishes between model inputs that are not well characterised because of lack
of knowledge (uncertainty) and model inputs that are heterogeneous (variable). The model
results indicate there may be cause for concern if E. coli counts are not reduced at a later stage
in the processing process. Risk managers will be interested in the sensitivity analysis which
revealed the effects the input parameters are having on model predictions and where further
resources should be directed at reducing model uncertainty and improving model accuracy.
The model can provide an appropriate decision support tool aiding risk mitigation strategies
in the slaughter plant in an effort to protect human health. Model validation is an important
component of this exercise; given the comparability between model predictions and survey
results, the use of the input distributions seems justified. The model is an appropriate
decision-support tool representing current scientific knowledge with regard to the slaughter



process. The model highlights the need for further research in the area of process simulation
and microbial risk assessment.
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Abstract

There are a number of sigmoid equations and several models that have been used as
growth functions. Probably, Gompertz, Baranyi, Richards, logistic and three-phase
linear are the most preferred models among researchers. However, there is significant
disagreement on which is the best fitting primary growth model and the selection is
often based on convenience.

Microorganisms exposed to exactly the same favourable growth conditions, and with a
similar precultural history should be in similar optimal physiological state and should
behave in a similar way, so they should show the same growth parameters, growth rate
and lag time.

The objective of this research was to check the performance of different mathematical
models in predicting growth parameters, both by absorbance and plate count methods.
For this purpose, growth curves of three different microorganisms (Bacillus cereus,
Listeria monocytogenes and Escherichia coli) grown under the same conditions, but
with several different initial concentrations each, were analyzed.

When measuring the microbial growth of each microorganism by optical density,
almost all models provided quite high goodness of fit (r* > 0.97) for all growth curves.
The growth rate remained approx. constant for all growth curves of each
microorganism, when considering one growth model, but differences were found among
models. Richards and logistic models failed to fit properly all the survival curves
selected in a first stage and were disregarded. Three-phase linear model provide the
lowest variation for growth rate values for all three microorganisms, closely followed
by Baranyi model.

When measuring the microbial growth of each microorganism by plate count, again
three-phase linear was the model to provide less variability for growth rates of
microorganisms growing in the same conditions. So, in spite of being the model which
provided worst goodness of fit (lowest correlation coefficient and highest residual mean
square error values), it was considered the growth model which best performed.

Keywords: microorganisms, growth models, predictive modelling, growth curves

Introduction

There are a number of sigmoid equations and several models that have been used as
growth functions. All they differ in ‘ease of use’ and number of parameters in the
equation. Some authors have recently compared the behaviour of different growth
models, from different viewpoints (Zwietering et al. 1990; Buchanan et al. 1997;
Dalgaard and Koutsoumanis, 2001; Baty and Delignette-Muller, 2004; Lopez et al.
2004; Perni et al. 2005). These studies have reached to different conclusions. Hence,
there is significant disagreement in literature on which is the best fitting model for
predictive microbiology. Probably, Gompertz, Baranyi, Richards, logistic and three-



phase linear are the most preferred models among researchers. Anyhow, the selection of
a model in predictive food microbiology is often subjective and based on convenience.
The objective of this research was to check the performance of different mathematical
models in predicting growth parameters, both by absorbance and plate count methods.
For this purpose, growth curves of three different microorganisms (Bacillus cereus,
Listeria monocytogenes and Escherichia coli) grown under the same conditions, but
with different initial concentrations each, were analyzed.

Material and methods

Microorganisms

B. cereus INRA-AVTZ415 was kindly provided by the Institut National de la
Recherche Agronomique (INRA, Avignon, France). L. monocytogenes and E. coli type
strains (CECT 4031 and CECT 515, respectively) were provided by the Spanish Type
Culture Collection (CECT).

Optical density growth curves

100-well microtitre plates were filled with 400 pL of the growth media (BHI for B.
cereus, TSB+YE for L. monocytogenes and pH 5 TSB+YE for E. coli), inoculated with
the microorganisms and incubated in a Bioscreen C analyzer. Incubation temperatures
were 30°C for B. cereus and 37°C for L. monocytogenes and E. coli. At 20 min intervals,
the optical density (OD) of the samples using a wideband filter (420-580 nm) was
measured. A total of 345 individual growth curves were generated by absorbance
measurements.

Plate count growth curves

50 mL flasks of the growth media were inoculated with the microorganisms and
incubated with agitation at 500 rpm. Growth media and incubation temperatures were
the same than for optical density growth curves. At preset time intervals, samples were
taken, properly diluted in buffered peptone water and incubated in BHI agar for 24 h at
30°C for B. cereus, and in TSA+YE for 24 h at 37°C for L. monocytogenes and E. coli.

Mathematical models

Analyses of the growth curves were performed using five primary growth models.
These growth models were based either on linear (derived from the Monod model) or
non-linear (Gompertz, Logistic, Richards and Baranyi) equations and re-parameterized
to reflect microbial growth parameters as derived by Zwietering et al. (1990).

Curve fitting of three-phase linear, Gompertz, logistic and Richards models were done
using the curve fitting tool of Matlab 7.0. The curve fitting of the Baranyi’s equation
was done using DMFit 2.0 program and the model of Baranyi and Roberts (1994) as
kindly provided by Dr. Jozsef Baranyi. Analysis of variance, medians and quartiles for
box and whisker plots were calculated using StatGraphics.

Results and discussion

The slopes of all the optical density growth curves corresponding to one microorganism were
parallel in the exponential growth phase, that is, the growth rates were similar, as it should
correspond to different cultures of the same microorganism growing exactly in the same
conditions. Three-phase linear, Gompertz and Baranyi models provided values that could be
expected for growth parameters of the three growth curves selected of E. coli However,
Richards and logistic models were not able to fit properly these typical growth curves
apparently easy to model, i.e. they gave abnormal values for growth parameters, and
were disregarded.



Each model had a trend in providing higher or lower values, three-phase linear giving
consistently the lowest values, followed by Baranyi and Gompertz models, in this order,
for both the growth rate and the lag phase. In a previous comparison of these three
models, Buchanan et al. (1997) already noticed and explained this effect on the basis of
the nature of each model. Hence, depending on the predictive model chosen, values for
growth rates and lag times will be consistently higher or lower and it is difficult to
discern which model performs more adequately on the basis of the values provided for
these parameters.

In this context, our viewpoint is that the best performing model would be that giving
similar values for the growth parameters of different cultures of one microbial strain
growing under exactly the same conditions and with the same precultural history. With
this purpose, an extensive analysis of growth curves was performed with the three
selected growth models. Only growth rate was considered for this study, since this
parameter should be similar for all growth curves of the same microbial strain, even
when starting from different initial inocula levels. A total of 345 growth curves were
analysed.

With growth rate values obtained for all E. coli, B. cereus and L. monocytogenes growth
curves with three-phase linear, Gompertz and Baranyi growth models, analyses of
variance were performed for each microorganism. These analyses of variance showed
that initial concentration did not influence growth rate, and that significant differences
were found among growth rate values given by the different models, as already pointed
out.

Table 1: Average + standard deviation of growth rate values (OD units/h) obtained with three-
phase linear, Gompertz and Baranyi growth models for all the growth curves of Bacillus cereus
INRA-AVTZ 415 at 30°C in BHI, Listeria monocytogenes CECT 4031 at 37°C in TSB+YE
and Escherichia coli CECT 515 at 37°C in pH5 TSB+YE.

Growth model B. cereus L. monocytogenes E. coli
Three-phase linear 0.226 + 0.062 0.170 + 0.022 0.104 £ 0.011
Gompertz 0.364 £ 0.627 0.296 £ 0.941 0.123 £ 0.011
Baranyi 0.261 + 0.085 0.164 + 0.042 0.105 £+ 0.018

Table 1 shows average and standard deviation for growth rate of all three
microorganisms and all three models, and Figure 1 shows box and whiskers plots for the
three microorganisms. These plots are based on the median and withstand perturbations
caused by outliers better than plots based on the average. These results clearly show that
Gompertz model has a high degree of variation in the growth rate values provided,
being three-phase linear and Baranyi the models that best performed. Three-phase linear
model provided slightly less variation than Baranyi, so it should be the model of
election.
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Figure 1: Box and whisker plots for growth rate values of Bacillus cereus INRA-AVTZ 415 at
30°C in BHI (A), Listeria monocytogenes CECT 4031 at 37°C in TSB+YE (B) and Escherichia
coli CECT 515 at 37°C in pH5 TSB+YE (C).



In order to double check the results obtained, several plate-count growth curves of these
same microorganisms were modelled with the three growth models. Similar results to
those obtained with absorbance data were obtained when modelling the data from plate
count growth curves.

Table 2 shows average and standard deviation for growth rate of all three
microorganisms as obtained by three-phase linear, Gompertz and Baranyi models.
Again, three-phase linear was the model which worse goodness of fit provided, with r?
values as low as 0.92 and RMSE values as high as 0.49. But again, when comparing the
similarities in the growth rate values (Table 2), three-phase linear was the model to give
less variation (lower standard deviation) for the different growth curves.

Table 2: Average + standard deviation of growth rate values (log cycles/h) obtained with three-

phase linear, Gompertz and Baranyi growth models for all the growth curves of Bacillus cereus

INRA-AVTZ 415 at 30°C in BHI, Listeria monocytogenes CECT 4031 at 37°C in TSB+YE and
Escherichia coli CECT 515 at 37°C in pH5 TSB+YE.

Growth model B. cereus L. monocytogenes E. coli
Three-phase linear 1.146 + 0.035 0.447 +0.035 0.538 £ 0.032
Gompertz 1.420 £ 0.164 0.510 £ 0.029 0.616 + 0.066
Baranyi 1.258 + 0.065 0.474 + 0.036 0.593 £ 0.085

Buchanan et al. (1997) reported that the three-phase linear model was more robust than
Gompertz or Baranyi models. Lopez et al. (2004) found, from a statistical viewpoint,
that three-phase linear was among those models showing best goodness of fit, at least
for plate counts. Our results show that three-phase linear is also the model which
provide less variability when analysing similar growth curves (closely followed by
Baranyi model), hence being the most accurate model, even when it provides worse
fitting to the data than most other primary growth models.

Conclusions

Three-phase linear model provide the lowest variation for growth rate values for all
three microorganisms, closely followed by Baranyi model. So, in spite of providing
worst goodness of fit, it was considered the growth model which best performed.
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Abstract

The effect of temperature (0-15°C) and water activity (0.94-0.97) on the growth of
Pseudomonas sp. in osmotically pretreated gilthead seabream fillets was studied and
kinetically modeled using an Arrhenius type equation. Gilthead seabream fillets were treated
at 37°C in osmotic solutions of 50:5 high dextrose equivalent maltodextrin
(DE47):NaCl/100 g for different treatment times (0-120 min), in order to achieve water
activity values between 0.94 and 0.97. Fish slices were aerobically packed in unsealed
pouches and stored isothermally (0-15°C). Pseudomonas sp. were enumerated using selective
media in appropriate time intervals to allow for efficient Kinetic analysis of microbial
deterioration. A mathematical model was developed, based on a modified Arrhenius-type
equation, for predicting the combined effect of temperature and water activity on the growth
rate of Pseudomonas sp. of osmotically pretreated gilthead seabream fillets. The nominal
minimum water activity (awmin) for growth of Pseudomonas sp. was determined to be 0.941.
The activation energy parameter of the model, 48+4 kJ/mol, gives the measure of the
dependence of Pseudomonas sp. growth on storage temperature. The applicability of the
developed model was validated at different treatment conditions and storage temperatures.

Keywords
Pseudomonas sp., predictive modelling, chilled fish, osmotic dehydration

Introduction

Fresh fish is an extremely perishable food as compared to other food commodities. Spoilage
of chilled fresh and minimally processed fish is attributed mainly to bacterial activity and it
manifests itself as changes in the sensory characteristics (Gram and Huss, 1996).
Pseudomonas sp. can be the dominant spoilage microorganism in aerobic storage of fresh,
chilled fish (Gram and Huss, 1996; Kyrana et al., 1997). Koutsoumanis and Nychas (2000)
proposed a spoilage model for aerobically stored gilthead seabream based on Pseudomonas
sp. growth.

Partial dehydration of food products by an osmotic process has received increased attention as
a pre-treatment to further processing to improve nutritional, sensorial and functional
properties of food. By reducing the water activity of the food matrix, microbial growth is
reduced or inhibited (Raoult-Wack, 1994). The preservative effect of osmotic pretreatment is
greater as the water activity of the final product decreases. Pseudomonas sp. growth was as a
good quality index for shelf life evaluation of aerobically stored osmotically pretreated
gilthead seabream (Sparus aurata) fillets (Tsironi et al., 2009). Lowering the water activity to
a value of 0.95, has a pronounced effect, especially on the growth rate of Pseudomonas sp.
(Neumeyer et al., 1997). Under this context, osmotic treatment can extend the shelf life of
gilthead seabream fillets, reducing the initial load and delaying microorganisms’ growth. By
developing a model that can predict the growth of Pseudomonas sp. in chilled fish, the rate of
spoilage can be predicted by monitoring the temperature and measuring the water activity.
Gilthead seabream is a Mediterranean fish of high commercial value due to its desirable
characteristics (aroma, taste, white flesh). Products like chilled fillets from marine cultured
Mediterranean fish have high commercial potential if their shelf life can be extended through
packaging or minimal processing. The objective of the study was to develop a predictive



model for the effect of temperature and water activity on the growth of Pseudomonas sp. in
osmotically pretreated gilthead seabream fillets.

Materials and methods

Fresh gilthead seabream (Sparus aurata) fillets directly obtained in ice from the filleting line
of a mariculture unit were cut into rectangular slices (3x3x1cm®, 10+1g) and treated at 37°C
in osmotic solution, 50:5maltodextrin(DE47):NaCl/100g for different times (0, 30, 60, 90 and
120 min), in order to achieve water activity values between 0.94-0.97. Untreated and treated
slices were aerobically packed in unsealed pouches and stored at controlled isothermal
conditions (0, 5, 10 and 5°C).

Pseudomonas sp. were enumerated on Cetrimide Agar (CFC, Merck, Darmstadt, Germany) in
appropriate time intervals to allow for efficient kinetic analysis of microbial deterioration.
The microbial growth was modeled using the Baranyi Growth Model (Baranyi and Roberts,
1995) and kinetic parameters such as the rate (k) of the microbial growth were estimated. The
growth rate constants of Pseudomonas sp. for the different water activity and temperature
conditions were fitted to an Arrhenius-type model, reparametrised to exhibit a minimum
water activity value (amin) for Pseudomonas sp. growth and an activation energy value (E,),
that indicates the temperature dependence of Pseudomonas sp. growth rates (Eqg. 1)

a,—a, E 1 1
k=k  .—%_—Wwmn o —af_- _ = 1
ref a —a Xp[R(T TJ] ()

W, w,min ref

where T is the absolute temperature (K), ay, is the water activity, E, is the activation energy
(kJ/mol), R is the universal gas constant, T is a reference temperature (4°C), awmin iS the
minimum water activity value for Pseudomonas sp. growth, a,, is the water activity of the
untreated samples and K is the Pseudomonas sp. growth rate at a,,, and T .

The model developed from the isothermal studies was validated at dynamic temperature
conditions. Pseudomonas sp. growth was measured at a variable temperature distribution, that
consisted of several cycles of three temperature steps: 2 h at 5°C, 2 h at 9°C and 2 h at 12°C,
with T.=8.8°C at different a,, values in the range studied.

Results and discussion

Pseudomonas sp. were found to dominate the spoilage of gilthead seabream fillets. The
results of the APl 20NE test (Bio-Mérieux, Marcy L’Etoile, France) revealed that P.
fluorescens and P.luteola were members of the microbial association as predominant bacteria
in aerobically stored osmotically pretreated gilthead seabream fillets, while other types of
gram-negative psychrotrophic bacteria, mainly Aeromonas sp., were also isolated. The
parameters and statistics of the classical Arrhenius model for the exponential growth rate
constants of Pseudomonas sp. at each studied water activity are illustrated in Table 1. Growth
rate appeared similarly dependent on temperature, as the E, values estimated were not
significantly different (P<0.05), therefore allowing the expression of the combined effect of
water activity and temperature in one equation (Eq.1).

Table 1. Parameters and statistics of the Arrhenius model for the growth rate constants of
Pseudomonas sp. in osmotically pretreated gilthead seabream fillets

2y E, (kJ/mol) Kerwe (0 R
0.969 50.2 0.373 0.990
0.963 52.6 0.277 0.991
0.950 55.2 0.151 0.954
0.944 50.3 0.013 0.940
0.940 58.9 0.009 0.969

Eqg. 1 described satisfactorily the dependence of Pseudomonas sp. growth rates on water
activity and temperature (Table 2). The results of the studies under constant temperature
conditions showed that the Arrhenius type model (Eq.1) describes successfully the growth of



Pseudomonas sp. on osmotically pretreated aerobically packed gilthead seabream fillets
within a range from 0 to 15°C and water activity between 0.94-0.97.

Table 2. Parameters and statistics of the Arrhenius-type model (Eqg.1) for the growth of
Pseudomonas sp. in osmotically pretreated gilthead seabream fillets

Parameter Value + 95% CI”
Kret () 0.382 + 0.020
Aw,min 0.941 + 0.001
E, (kJ/mol) 48.0 + 4.1
R? 0.986

“95% Cl, 95% confidence interval

In order to evaluate the suitability of the model to predict the Pseudomonas sp. growth under
nonisothermal conditions, the predicted growth rates derived from Eq.1 were compared to the
observed by experiments under dynamic conditions. The experimental and the predicted by
the model values are shown in Table 3. The % error is in all cases <11%, well below the 20%
limit used in the literature as criterion of applicability (Dalgaard et al., 1997), showing that
the model can predict satisfactorily the growth of Pseudomonas sp. on osmotically pretreated
gildhead seabream fillets under nonisothermal conditions and can be applied reliably in the
dynamic temperature conditions of the real chill chain.

Table 3. Predicted and experimental growth rate constants of Pseudomonas sp. in osmotically
pretreated gilthead seabream fillets, at different a,, and variable temperature conditions
(Te=8.8°C)

aw  Kped (@) Keg (07 %error
0.969 0.544 0.527 -3.4
0.963 0.428 0.432 1.1
0.950 0.175 0.157 -11.1
0.944  0.058 0.063 7.7

Conclusions

A mathematical model was developed, based on a modified Arrhenius-type equation, for
predicting the combined effect of temperature and water activity on the growth rate of
Pseudomonas sp. of osmotically pretreated gilthead seabream fillets. The results of the study
showed that the developed model can be a reliable tool for predicting the shelf life of
osmotically pretreated gilthead seabream fillets if the water activity and the temperature
conditions are known. Advantages over existing models are its simplicity to fit data and its
practical use.
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Abstract

This study describes an original interlaboratoig telative to food challenge-tests conducted
by eight French laboratories. The impact of seviaetbrs (linked to the type of foodstuff, to

biological parameters and to experimental conditias well as to the laboratory performing
the test) on the growth rate bfsteria monocytogenewas quantified. The major factors

influencing the growth rate variability were the &mufacturing origin of the product” and the

“localization of the inoculum in food”. Others facs had effects from moderate to high
according to the heterogeneity of the food maffixe factor “laboratory which managed the
challenge-test” was not statistically significantGood laboratories practices,

expertise/lknowledge of food challenge-tests metloggopermitted to control the laboratory

effect on the growth rate estimationlofmonocytogenes.

Keywords:. challenge-testlisteria monocytogenegrowth rate variability, interlaboratory
trial

I ntroduction

Direct evaluation of growth of artificially inocukd bacterial pathogens in foods using
challenge-tests is an interesting tool for managemifood safety. However, an issue is their
ability to describe the growth of a food pathogencbnditions similar as possible to a
naturally contaminated and routinely produced fodae laboratory performing a challenge-
test must define, according to its expertise anowkedge, different experimental choices.
Bacterial growth in food is known to be affectedrbginy factors (Koutsoumang al., 2004;
Tienungoon et al, 2000; Devlieghereet al, 2001). Models developed in predictive
microbiology quantify the effect of temperature, ,pkater activity or lactic acid
concentration (Zulianét al, 2007; Cornwet al, 2006; Le Maraet al, 2004). Other factors
like competition with simultaneous growth of th@dbflora are modelled by the use of a new
approach (Delignettet al, 2006). Sources of variability such as food cosmpan and
experimental conditions may have a strong impadherresult of the growth rate estimation