J. Baranyi and M. Tamplin, ComBase: A Common Database on Microbial Responses to Food Environments, J. Food Prot, vol.67, issue.9, pp.1834-1840, 2004.

M. Baziz, M. Boughanem, H. Prade, and G. Pasi, In: A fuzzy logic approach to information retrieval using a ontology-based representation of documents. in Fuzzy logic and the Semantic Web, pp.363-377, 2006.

P. Buche, C. Dervin, O. Haemmerlé, and R. Thomopoulos, Fuzzy querying of incomplete, imprecise, and heterogeneously structured data in the relational model using ontologies and rules, IEEE Transations on Fuzzy Systems, vol.13, issue.3, pp.373-383, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02682463

P. Buche, J. Dibie-barthélemy, O. Haemmerlé, and G. Hignette, Fuzzy semantic tagging and flexible querying of XML documents extracted from the Web, Journal of Intelligent Information System, vol.26, issue.1, pp.25-40, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01123449

O. Couvert, J. C. Augustin, P. Buche, F. Carlin, L. Coroller et al., Optimising food process and formulation through Sym'Previus, managing of the food safety, Proceedings of 5 th International Conference Predictive Modelling in Foods Dubois, vol.128, pp.174-180, 1988.

T. A. Mcmeekin, J. Baranyi, J. Bowman, P. Dalgaard, M. Kirk et al., Information systems in food safety management, Int.J. Food Microbiol, vol.112, pp.181-194, 2006.

M. Tamplin, J. Baranyi, and G. Paoli, Software programs to increase the utility of predictive microbiology information, Modelling Microbial responses in Foods, 2003.

R. Thomopoulos, P. Buche, and O. Haemmerlé, Fuzzy sets defined on a hierarchical domain, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.10, pp.1397-1410, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00112938

P. D. Wilson, T. F. Brocklehurst, S. Arino, D. Thuault, M. Jakobsen et al., Modelling microbial growth in structured foods: towards a unified approach, International Journal of Food Microbiology, vol.73, pp.27-32, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00294441

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

T. Deak and L. R. Beuchat, Handbook of food spoilage yeasts, pp.306-335, 1996.

V. Loureiro, Spoilage yeasts in foods and beverages: characterization and ecology for improved diagnosis and control, Food Research International, vol.33, pp.247-256, 2000.

L. Marc, Y. Huchet, V. Bourgeois, C. M. Guyonnet, J. P. Mafart et al., Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration, International Journal of Food Microbiology, vol.113, pp.1-15, 2002.

T. P. Robinson, M. J. Ocio, A. Kaloti, and B. M. Mackey, The effect of the growth environment on the lag phase of Listeria monocytogenes, International Journal of Food Microbiology, vol.44, pp.83-92, 1998.

L. A. Mellfont, T. A. Mcmeekin, and T. Ross, The effect of abrupt osmotic shifts on the lag phase duration of foodborne bacteria, International Journal of Food Microbiology, vol.83, pp.281-293, 2003.

I. A. Swinnen, K. Bernaerts, K. Gysemans, and J. F. Van-impe, Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study, International Journal of Food Microbiology, vol.100, pp.85-96, 2005.

L. Shabala, S. H. Lee, P. Cannesson, and T. Ross, Acid and NaCl limits of growth of Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics, Journal of Food Protection, vol.71, pp.1169-1177, 2008.

K. A. Presser, D. A. Ratkowsky, and T. Ross, Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration, Applied and Environmental Microbiology, vol.63, pp.2355-2360, 1997.

, Microbiological risk assessment series 10. World Health Organisation-Food and Agriculture Organisation of the United Nations, Geneva and Rome. Anonymous, Contamination microbienne des préparations lactées en poudres destinées aux nourrissons etpersonnes agées . Afssa, 2006.

M. D'arrigo, G. D. García-de-fernando, R. Velasco-de-diego, J. A. Ordóñez, S. M. George et al., Indirect measurement of the lag time distribution of single cells of Listeria innocua in food, Applied and Environmental Microbiology, vol.72, pp.2533-2538, 2006.

L. Guillier and A. , Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and growth conditions, International Journal of Food Microbiology, vol.111, pp.241-251, 2006.

L. Guillier and A. , Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions, International Journal of Food Microbiology, vol.111, p.114, 2006.

C. Iversen, N. Mullane, A. Lehner, B. Mc-cardell, B. D. Tall et al., Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and References Badri, Food Control, vol.20, pp.560-564, 2008.

J. C. Augustin, A. Brouillard-delattre, L. Rosso, and V. Carlier, Significance of inoculum size in the lag time of Listeria monocytogenes, Applied and Environmental Microbiology, vol.66, pp.1706-1710, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00294323

E. Bidlas, T. Du, and R. J. Lambert, An explanation for the effect of inoculum size on MIC and the growth/no growth interface, International Journal of Food Microbiology, vol.126, pp.140-152, 2008.

, The community summary report on food-borne outbreaks in the European Union in 2007, European Food Safety Authority, pp.1-271, 2009.

K. P. Koutsoumanis and J. N. Sofos, Effect of inoculum size on the combined temperature, pH and Aw limits for growth of Listeria monocytogenes, International Journal of Food Microbiology, vol.104, pp.83-91, 2005.

E. Nerbrink, E. Borch, H. Blom, and T. Nesbakken, A model based on absorbance data on the growth rate of Listeria monocyogenes and including the effects of pH, NaCl, Na-lactate and Na-acetate, International Journal of Food Microbiology, vol.47, pp.99-109, 1999.

C. Pin and J. Baranyi, Kinetics of single cells: observation and modeling of a stochastic process, Applied and Environmental Microbiology, vol.72, pp.2163-2169, 2006.

T. Ross and T. A. Mcmeekin, Predictive microbiology, International Journal of Food Microbiology, vol.23, pp.241-264, 1994.

M. A. Salter, D. A. Ratkowsky, T. Ross, and T. A. Mcmeekin, Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression, International Journal of Food Microbiology, vol.61, pp.159-167, 2001.

P. N. Skandamis, J. D. Stopforth, P. A. Kendall, K. E. Belk, J. A. Scanga et al., Modeling the effect of inoculum size and acid adaptation on no growth/no growth interface of Escherichia coli O157:H7, International Journal of Food Microbiology, vol.120, pp.237-249, 2007.

J. Baranyi and C. Pin, Estimating growth parameters by means of detection times, Applied and Environmental Microbiology, vol.65, pp.732-736, 1999.

J. Collado, A. Fernández, M. Rodrigo, and A. Martínez, Modelling the effect of a heat shock and germinant concentration on spore germination of a wild strain of Bacillus cereus, International Journal of Food Microbiology, vol.106, pp.85-89, 2006.

J. Delves-broughton and M. J. Gasson, Nisin, Natural Antimicrobial Systems and Food Preservation, CAB International, pp.99-131, 1994.

L. Leistner, Combined methods for food preservation, pp.457-485, 1999.

F. Nattress,

M. Baker and L. P. , Effects of treatment with lysozyme and nisin on the microflora and sensory properties of commercial pork, International Journal of Food Microbiology, vol.85, pp.259-267, 2003.

A. Valero, F. Perez-rodriguez, E. Carrasco, R. M. García-gimeno, and G. Zurera, Modeling the growth rate of Listeria monocytogenes using absorbance measurements and calibration curves, Journal of Food Science, vol.71, pp.257-264, 2006.

A. Crépet, I. Albert, C. Dervin, and F. Carlin, Estimation of microbial contamination of food from prevalence and concentration data: application to Listeria monocytogenes in fresh vegetables, Applied and Environmental Microbiology, vol.73, issue.1, pp.250-258, 2007.

G. Besse, N. Audinet, N. Beaufort, A. Colin, P. Cornu et al., A contribution to the improvement of Listeria monocytogenes enumeration in cold-smoked salmon, International Journal of Food Microbiology, vol.91, issue.2, pp.119-127, 2004.

I. Habib, I. Sampers, M. Uyttendaele, D. Berkvens, and L. De-zutter, Baseline data from a Belgium-wide survey of Campylobacter species contamination in chicken meat preparations and considerations for a reliable monitoring program, Applied and Environmental Microbiology, vol.74, issue.17, pp.5483-5489, 2008.

I. Habib, I. Sampers, M. Uyttendaele, D. Berkvens, and L. De-zutter, Performance characteristics and estimation of measurement uncertainty of three plating procedures for Campylobacter enumeration in chicken meat, Food Microbiology, vol.25, issue.1, pp.65-74, 2008.

D. C. Kilsby and M. E. Pugh, The relevance of the distribution of microorganisms within batches of food to the control of microbiological hazards from foods, Journal of Applied Bacteriology, vol.51, pp.345-354, 1981.

J. D. Legan, M. H. Vandeven, S. Dahms, and M. B. Cole, Determining the concentration of microorganisms controlled by attributes sampling plans, Food Control, vol.12, issue.3, pp.137-147, 2001.

M. F. Lorimer and A. Kiermeier, Analysing microbiological data: Tobit or not Tobit?, International Journal of Food Microbiology, vol.116, pp.313-318, 2007.

, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2009.

M. Uyttendaele, P. Busschaert, A. Valero, A. H. Geeraerd, A. Vermeulen et al., Prevalence and challenge tests of Listeria monocytogenes in Belgian produced and retailed mayonnaise-based deli-salads, cooked meat products and smoked fish between, International Journal of Food Microbiology, vol.133, pp.94-104, 2005.

J. Baranyi, Comparison of stochastic and deterministic concepts of bacterial lag, Journal of Theoretical Biology, vol.192, pp.403-408, 1998.

J. Baranyi and C. Pin, A parallel study on bacterial growth and inactivation, Journal of Theoretical Biology, vol.210, pp.327-336, 2001.

K. Bernaerts, R. D. Servaes, S. Kooyman, K. J. Versyck, and J. F. Van-impe, Optimal temperature input design for estimation of the Square Root model parameters: parameter accuracy and model validity restrictions, International Journal of Food Microbiology, vol.73, pp.145-157, 2002.

E. J. Dens, K. Bernaerts, A. R. Standaert, and J. F. Van-impe, Cell division theory and individual-based modeling of microbial lag, Part I. The theory of cell division, International Journal of Food Microbiology, vol.101, pp.303-318, 2005.

E. J. Dens, K. Bernaerts, A. R. Standaert, J. Kreft, and J. F. Van-impe, Cell division theory and individual-based modeling of microbial lag, Part II. Modeling lag phenomena induced by temperature shifts, International Journal of Food Microbiology, vol.101, pp.319-332, 2005.

W. D. Donachie, Relationship between cell size and time of initiation of DNA replication, Nature, vol.219, pp.1077-1079, 1968.

J. Ferrer, C. Prats, D. López, and J. Vives-rego, Individual-based modelling: an essential tool for microbiology, Journal of Biophysics, vol.34, pp.19-37, 2009.

J. Kreft, G. Booth, and J. W. Wimpenny, BacSim, a simulator for individual-based modelling of bacterial colony growth, Microbiology, vol.144, pp.3275-3287, 1998.

C. Prats, A. Giró, J. Ferrer, D. López, and J. Vives-rego, Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition, Journal of Theoretical Biology, vol.252, pp.56-68, 2008.

J. S. Clark, Models for Ecological Data: An Introduction, Bayesian Data Analysis, 2003.

S. Handa, B. Kimura, H. Takahashi, T. Koda, K. Hisa et al., Incidence of Listeria monocytogenes in Raw Seafood Products in Japanese Retail Stores, J. Food Prot, vol.68, issue.2, pp.411-415, 2005.

S. Sturtz, U. Ligges, and A. Gelman, R2WinBUGS: A Package for Running WinBUGS from R, Journal of Statistical Software, vol.12, pp.1-16, 2005.

J. C. Augustin, V. Zuliani, M. Cornu, and L. Guillier, Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions, Journal of Applied Microbiology, vol.99, pp.1019-1042, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02678332

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

J. Baranyi and T. A. Roberts, Mathematics of predictive food microbiology, International Journal of Food Microbiology, vol.26, pp.199-218, 1995.

C. Bidot, J. P. Gauchi, and J. P. Vila, Programmation Matlab du filtrage non linéaire par convolution de particules pour l'identification et l'estimation d'un système dynamique microbiologique, pp.2009-2010, 2009.

V. Rossi and J. P. Vila, Filtrage non linéaire en temps discret par convolution de particules, Actes des XXXVèmes Journées de Statistique, pp.823-826, 2003.

V. Rossi and J. P. Vila, Approche non paramétrique du filtrage de système non linéaire à temps discret et à paramètres inconnus, C.R. Acad. Sci. Paris. Ser I, vol.340, pp.759-764, 2005.

V. Rossi and J. P. Vila, Nonlinear filtering in discrete time : a particle convolution approach, Inst. Stat. Univ. Paris, vol.3, pp.71-102, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02665573

L. Rosso, J. R. Lobry, and J. P. Flandrois, An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model, Journal of Theoretical Biology, vol.162, pp.447-463, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00698186

J. P. Vila and I. Saley, Bayes Factor estimation for nonlinear dynamic state space models, C.R. Acad. Sci, vol.347, pp.429-434, 2009.

J. P. Vila, J. P. Gauchi, and C. Bidot, Inhibition of Bacillus cereus spores and vegetative cells by fatty acids and glyceryl monododecanoate, Actes des 41èmes Journées de Statistique, vol.11, pp.327-336, 1994.

J. Lee, Y. Kim, and D. Shin, Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus, Journal of Food Chemistry, vol.50, pp.2193-2199, 2002.

I. Leguerinel, I. Spegagne, O. Couvert, S. Gaillard, and P. Mafart, Validation of an overall model describing the effect on three environmental factors on the apparent D-value of Bacillus cereus spores, International Journal of Food Microbiology, vol.100, pp.223-229, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00654564

M. Marounek, E. Sk?ivanova, and V. Rada, Susceptibility of Escherichia coli to C2-C18 fatty acids, Folia Microbiology, vol.48, pp.731-735, 2003.

F. Tremoulet, P. Rabier, and G. Gas, Inhibition of Bacillus stearothermophilus spores in liquid medium by free fatty acids with and without heat: possible mechanism for the microbiological stability of canned fat-duck liver, Journal of Food Science, vol.67, pp.1144-1148, 2002.

, Etude individuelle nationale des consommations alimentaires, 2009.

A. Beaufort, S. Rudelle, N. Gnanou-besse, M. T. Toquin, A. Kerouanton et al., Prevalence and growth of Listeria monocytogenes in naturally contaminated cold-smoked salmon, Letters in Applied Microbiology, vol.44, pp.406-411, 2007.

E. Billoir, J. Denis, N. Commeau, M. Cornu, and V. Zuliani, Probabilistic modelling of L. monocytogenes behaviour in diced bacon along the manufacture process chain, 2009.

J. Baranyi and T. A. Roberts, Mathematics of predictive microbiology, International Journal of Food Microbiology, vol.26, pp.199-218, 1995.

E. Crouch and N. Golden, A Risk Assessment for Clostridium perfringens in Ready-To-Eat and Partially Cooked Meat and Poultry Products, USDA, Food Safety Inspection Service, 2005.

M. L. Delignette-muller, M. Cornu, R. Pouillot, and J. B. Denis, Use of Bayesian modelling in risk assessment: Application to growth of Listeria monocytogenes and food flora in cold-smoked salmon, International Journal of Food Microbiology, vol.106, pp.195-208, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00428068

V. K. Juneja, R. C. Whiting, H. M. Marks, and O. P. Snyder, Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat, Food Microbiology, vol.16, pp.335-349, 1999.

V. K. Juneja, J. S. Novaka, H. M. Marksb, and D. E. Gombas, Growth of Clostridium perfringens from spore inocula in cooked cured beef: development of a predictive model, Innovative Food Science & Emerging Technologies, vol.2, pp.289-301, 2001.

V. K. Juneja, H. Marks, and H. Thippareddi, Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef, Food Microbiology, vol.25, pp.42-55, 2008.

L. Huang, Numerical analysis of the growth of Clostridium Perfringens in cooked beef under isothermal and dynamic conditions, Journal of Food Safety, vol.24, pp.53-70, 2004.

L. Marc, Y. Plowman, J. Aldus, C. F. Munoz-cuevas, M. Baranyi et al., Modelling the growth of Clostridium perfringens during the cooling of bulk meat, International Journal of Food Microbiology, vol.128, issue.1, pp.41-50, 2008.

R. Pouillot, I. Albert, M. Cornu, and J. Denis, Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes, International Journal of Food Microbiology, vol.81, issue.2, pp.87-104, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01263599

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth, Applied and Environmental Microbiology, vol.61, issue.2, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

J. P. Boucher, M. Denuit, and M. Guillén, Risk classification for claim counts: a comparative analysis of various zero-inflated mixed Poisson and hurdle models, North American Actuarial Journal, vol.11, pp.110-131, 2008.

D. Lambert, Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, vol.34, pp.1-14, 1992.

J. Mullahy, Specification and testing of some modified count data models, Journal of Econometrics, vol.33, pp.341-365, 1986.

P. Dalgaard, O. Mejlholm, and H. H. Huss, Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish, Int J Food Microbiol, vol.38, pp.169-179, 1997.

P. Dalgaard, P. Buch, and S. Silberg, Seafood Spoilage Predictor-development and distribution of a product specific application software, Int J Food Microbiol, vol.73, pp.343-349, 2002.

. Fao, Fishery statistics. Capture production. Food Agriculture Organization of the United Nations, vol.92, pp.250-252, 2001.

H. Josupeit, A. Lem, and H. Lupin, Aquaculture products: quality, safety, marketing and trade, Presented at Conference on Aquacualture in the Third Millennium, 2001.

M. Giannakourou, K. Koutsoumanis, G. J. Nychas, and P. S. Taoukis, Development and assessment of an intelligent Shelf life Decision System (SLDS) for quality optimization of the food chill chain, Journal of Food Protection, vol.64, pp.1051-1057, 2001.

, Sensory analysis -Methodology -Evaluation of food products by methods using scales. The International Organization for Standardization, Appl Environ Microbiol, vol.4121, pp.1821-1829, 1987.

M. Nuin, B. Alfaro, Z. Cruz, N. Argartate, S. L. George et al., Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature, Int J Food Microbiol, vol.127, pp.193-199, 2008.

P. S. Taoukis, K. Koutsoumanis, and G. J. Nychas, Use of time-temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions, Int J Food Microbiol, vol.53, pp.21-31, 1999.

M. J. Nauta, A Modular Process Risk Model Structure for quantitative microbiological risk assessment and its application in an exposure assessment of Bacillus Cereus in a REPFED, RIVM Report, vol.100, p.pp, 2001.

M. Cornu, E. Billoir, H. Bergis, A. Beaufort, and V. Zuliani, Modeling microbial competition in foods. Application to the behaviour of Listeria monocytogenes and lactic acid flora in diced bacon

N. Commeau, E. Parent, E. Billoir, V. Zuliani, and M. Cornu, Modelling contamination to build a sampling plan : application to French diced bacon industry and Listeria monocytogenes

A. D. Lamber, J. P. Smith, and K. I. Dobris, Shelf-life extension and microbiological safety of fresh meat-a review, Food Microbiol, vol.8, pp.267-297, 1991.

V. Holy, T. E. Cloete, and W. H. Holzapfel, Quantification and characterization of microbial population associated with spoiled, vacuum-packed Vienna sausages, Food Microbiol, vol.8, pp.95-104, 1991.

J. A. Lopes, P. F. Costa, T. P. Alves, and J. C. Menezes, Chemometrics in bioprocess engineering: process analytical technology (PAT) applications, Chemometr. Intell.Lab. Syst, vol.74, pp.269-275, 2004.

D. Alexandrakis, G. Downey, and A. G. Scannelli, Detection and identification of Bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis, J. Agric. Food Chem, vol.56, pp.3431-3437, 2009.

R. Canty, A. Ripley, and B. , boot: Bootstrap R (S-Plus) Functions. R package version, vol.1, pp.2-36, 2009.

A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Applications, 1997.

M. J. Keeling and P. Rohani, Modeling Infectious Diseases, 2007.

, A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2008.

I. Soumpasis and F. Butler, Development and application of a stochastic epidemic model for the transmission of Salmonella Typhimurium at the farm level of the pork production chain, Risk Analysis: An International Journal, 2009.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. Fourth Edition, 2002.

J. Baranyi and T. A. Robert, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, issue.3-4, pp.277-294, 1994.

J. Baranyi, C. Pin, T. Ross, D. W. Cook, and A. Ruple, Indicator bacteria and Vibrionaceae multiplication in post-harvest shellstock oysters, International Journal of Food Microbiology, vol.48, issue.3, pp.343-349, 1989.

D. W. Cook, Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest Gulf Coast shellstock oysters, Applied and Environmental Microbiology, vol.60, issue.9, pp.3483-3484, 1994.

D. W. Cook, Refrigeration of oyster shellstock conditions which minimize the outgrowth of Vibrio vulnificus, Journal of Food Protection, vol.60, issue.4, pp.349-352, 1997.

C. A. Kaysner and A. Depaola, Vibrio cholerae, V. parahaemolyticus, V. vulnificus, and other Vibrio spp, 2004.

. Fao/who, Joint FAO/WHO activities in risk assessment of microbiological hazards in foods: Preliminary document, hazard identification, exposure assessment, and hazard characterization of Vibrio spp. in seafood (Prepared by, 2004.

N. Food and I. O. Board, Seafood Safety/Committee on Evaluation of the Safety of Fishery Products, 1991.

W. G. Hlady, R. C. Mullen, and R. Hopkin, Vibrio vulnificus from raw oysters. Leading cause of reported deaths from food-borne illness in Florida, Journal of the Florida Medical Association, vol.80, issue.8, pp.536-538, 1993.

K. C. Klontz, S. Leib, M. Schreiber, H. T. Janoowski, L. M. Baldy et al., Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, Annals of Internal Medicine, vol.109, issue.4, pp.318-323, 1981.

K. S. Kumamoto and D. J. Vukich, Clinical infections of Vibrio vulnificus: a case report and review of the literature, The Journal of Emergency Medicine, vol.16, issue.1, pp.61-66, 1998.

M. L. Motes, A. Depaola, D. W. Cook, J. E. Veazey, J. C. Hunsucker et al., Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters, Applied and Environmental Microbiology, vol.64, issue.4, pp.1459-1465, 1998.

D. A. Ratkowsky, J. Olley, T. A. Mcmeekin, and A. Ball, Relationship between temperature and growth rate of bacterial cultures, Journal of Bacteriology, vol.149, issue.1, pp.1-5, 1982.

M. L. Tamplin, G. E. Rodrick, N. J. Blake, and T. Cuoba, Isolation and characterization of Vibrio vulnificus from two Florida estuaries, Applied and Environmental Microbiology, vol.44, issue.6, pp.1466-1470, 1982.

A. Amezquita and M. M. Brashears, Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria, Journal of Food Protection, vol.65, pp.316-325, 2002.

C. Andrighetto, A. Lombardi, M. Ferrati, A. Guidi, C. Corrain et al., Lactic acid bacteria biodiversity in Italian marinated seafood salad and their interactions on the growth of Listeria monocytogenes, Food Control, vol.20, pp.462-468, 2009.

A. Beaufort, S. Rudelle, N. Gnanou-besse, M. T. Toquin, A. Kerouanton et al., Prevalence and growth of Listeria monocytogenes in naturally contaminated cold-smoked salmon, Letters in Applied Microbiology, vol.44, pp.406-411, 2007.

F. Devlieghere, A. H. Geeraerd, K. J. Versyck, B. Vandewaetere, J. Van-impe et al., Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model, Food Microbiology, vol.18, pp.53-66, 2001.

B. Gimenez and P. Dalgaard, Modelling and predicting the simultaneous growth of, 2004.

J. C. Augustin, V. Zuliani, M. Cornu, and L. Guillier, Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions, Journal of Applied Microbiology, vol.99, issue.5, pp.1019-1042, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02678332

A. Gunvig, J. Blom-hansen, T. Jacobsen, F. Hansen, and C. Borggaard, A predictive model for growth of Listeria monocytogenes in meat products with seven hurdle variables, Predictive Modelling in Foods -Conference Proceedings, p.553, 0200.

O. Mejlholm and P. Dalgaard, Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp, Journal of Food Protection, 2009.

, Opti.Form Listeria control 2007 model, PURAC, 2007.

T. Ross, Predictive Food Microbiology Models in the Meat Industry. Meat and Livestock Australia, p.196, 1999.

V. Zuliani, L. Lebert, J. C. Augustin, P. Garry, J. L. Vendeuvre et al., Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts, Journal of Applied Microbiology, vol.103, issue.3, pp.536-550, 2007.

. Sas/stat-user's-guide, SAS Institute Inc, 9, 2003.

K. A. Presser, D. A. Ratkowsky, and T. Ross, Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration, Appl Environ Microbiol, vol.63, pp.2355-2360, 1997.

K. A. Presser, T. Ross, and D. A. Ratkowsky, Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity, Appl Environ Microbiol, vol.64, pp.1773-1779, 1998.

T. Ross, D. Zhang, and O. J. Mcquestin, Temperature governs the inactivation rate of vegetative bacteria under growth-preventing conditions, Int J Food Microbiol, vol.128, pp.129-135, 2008.

P. A. Beloeil, C. Chauvin, K. Proux, N. Rose, S. Queguiner et al., Longitudinal serological responses to Salmonella enterica of growing pigs in a subclinically infected herd, Preventive Veterinay Medicine, vol.60, issue.3, pp.207-226, 2003.

P. J. Fedorka-cray, S. C. Whipp, R. E. Isaacson, N. Nord, and K. Lager, Transmission of Salmonella Typhimurium to swine, Veterinary Microbiology, vol.41, issue.4, pp.333-344, 1994.

M. J. Keeling and P. Rohani, Modeling Infectious Diseases, 2007.

B. Nielsen, D. Baggesen, F. Bager, J. Haugegaard, and P. Lind, The serological response to Salmonella serovars Typhimurium and Infantis in experimentally infected pigs. the time course followed with an indirect anti-lps ELISA and bacteriological examinations, Veterinary Microbiology, vol.47, issue.3-4, pp.205-218, 1995.

I. Soumpasis and F. Butler, A comparison of deterministic and stochastic epidemic models for the risk assessment of Salmonella at the preharvest level of pork production, FOODSIM 2008, 2008.

I. Soumpasis, . L. Butler-f.-;-r, and R. Rose, Development and application of a stochastic epidemic model for the transmission of Salmonella Typhimurium at the farm level of the pork production chain, Risk Analysis: An International Journal, vol.53, issue.5, pp.653-658, 1992.

I. Albert and P. Mafart, A modified Weibull model for bacterial inactivation, International Journal of Food Microbiology, vol.100, pp.197-211, 2005.

M. K. Borucki and D. R. Call, Listeria monocytogenes serotype identification by PCR, Journal of Clinical Microbiology, vol.41, pp.5537-5540, 2003.

L. Cocolin, M. Manzano, C. Cantoni, and G. Comi, Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages, Applied and Environmental Microbiology, vol.67, pp.5113-5121, 2001.

D. Dourou, Pathogens responses in food: underestimated eco-physiological factors, Official J. Eur. Union, vol.338, pp.1-26, 2005.

A. H. Geeraerd, C. H. Herremans, and J. F. Van-impe, Structural model requirements to describe microbial inactivation during a mild heat treatment, International Journal of Food Microbiology, vol.59, pp.185-209, 2000.

E. Heir, B. A. Lindstedt, O. J. Røtterud, T. Vardund, G. Kapperud et al., Molecular epidemiology and disinfectant susceptibility of Listeria monocytogenes from meat processing plants and human infections, International Journal of Food Microbiology, vol.96, pp.85-96, 2004.

D. Kagkli, V. Iliopoulos, A. Lazaridou, V. Stergiou, G. E. Nychas et al., The complete genome sequence of the meatborne lactic acid bacterium Lactobacillus sakei 23K, Nature Biotechnology, vol.23, pp.1527-1533, 2005.

R. Larsen, G. Buist, O. P. Kuipers, and J. Kok, ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis, Journal of Bacteriology, vol.186, pp.1147-1157, 2004.

F. Leroy, J. Verluyten, D. Vuyst, and L. , Functional meat starter cultures for improved sausage fermentation, International Journal of Food Microbiology, vol.106, pp.270-285, 2006.

G. Spano, S. Massa, M. E. Arena, and M. C. De-nadra, Arginine metabolism in wine Lactobacillus plantarum: in vitro activities of the enzymes arginine deiminase (ADI) and ornithine transcarbamoylase (OTCase), Annals of Microbiology, vol.57, pp.67-70, 2007.

M. Van-boekel, Statistical aspects of kinetic modeling for food science problems, Journal of Food Science, vol.61, pp.477-489, 1996.

M. C. Vergès, M. Zuñiga, F. Morel-deville, G. Pérez-martínez, M. Zagorec et al., Relationships between arginine degradation, pH and survival in Lactobacillus sakei, FEMS Microbiology Letters, vol.180, pp.297-304, 1999.

G. Vrancken, T. Rimaux, L. De-vuyst, and F. Leroy, Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem, International Journal of Food Microbiology, vol.128, pp.58-66, 2008.

G. Vrancken, T. Rimaux, S. Weckx, L. De-vuyst, and F. Leroy, Environmental pH determines citrulline and ornithine release through the arginine deiminase pathway in Lactobacillus fermentum IMDO 130101, International Journal of Food Microbiology, 2009.

M. Zúñiga, M. D. Miralles, and G. Pérez-martínez, The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway, Applied and Environmental Microbiology, vol.68, pp.6051-6058, 2002.

F. Lefevre, J. M. Audic, and F. Ferrand, Peracetic acid disinfection of secondary effluents discharged off coastal seawater, Water Science Technology, vol.25, issue.12, pp.155-164, 1992.

J. W. Visser, A. A. Jongeling, and H. J. Tanke, Intracellular pH-Determination by fluorescence measurements, The journal of Histochemistry and Cytochemistry, vol.27, pp.32-35, 1979.

J. Baranyi and M. L. Tamplin, CAC (Codex Alimentarius Commission), 2007. Principles and guidelines for the conduct of microbiological risk management, Annex II: guidance on microbiological risk management metrics. Joint FAO/WHO food standards programme Codex Committee on Food Hygiene, vol.67, 1967.

, ICMSF (International Commission on Microbiological Specifications for Foods, 2002.

, Microbiological testing in food safety management

S. Perni, R. Beumer, and M. H. Zwietering, Multi-tools approach for food safety risk management of steam meals, Journal of Food Protection, 2009.

M. H. Zwietering, J. C. De-wit, and S. Notermans, Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption, International Journal of Food Microbiology, vol.30, pp.55-70, 1996.

K. Bollaerts, M. Aerts, C. Faes, K. Grijspeerdt, J. Dewulf et al., Human salmonellosis: Estimation of dose-illness from outbreak data, Risk Analysis, vol.28, issue.2, pp.427-440, 2008.

G. Barron, U. Bergin, D. Butler, and F. , A meta-analysis study of the effect of chilling on Salmonella prevalence on pork carcasses, Journal of Food Protection, vol.71, issue.7, pp.1330-1337, 2008.

G. Barron, U. Soumpasis, I. Butler, F. Duggan, S. Prendergast et al., Estimation of prevalence of Salmonella spp. on pig carcasses and pork joints using a quantitative risk assessment model aided by meta-analysis, Journal of Food Protection, vol.72, issue.2, pp.274-285, 2009.

S. R. Patil, R. Morales, S. Cates, D. Anderson, and K. D. , An application of meta-analysis in food safety consumer research to evaluate consumer behaviours and practices, Journal of Food Protection, vol.67, issue.11, pp.2587-2595, 2004.

J. Sánchez, I. R. Dohoo, J. Christensen, and R. A. , Factor influencing the prevalence of Salmonella spp. in swine farms: a meta-analysis approach, Preventive Veterinary Medicine, vol.81, pp.148-177, 2007.

M. Vialette, N. Pinon, B. Leporq, C. Dervin, and J. M. Membré, Meta-analysis of food safety information based on a combination of a relational database and a predictive modelling tool, Risk Analysis, vol.25, issue.1, pp.75-83, 2005.

J. Baranyi, T. P. Robinson, A. Kaloti, and B. M. Mackey, Predicting growth of Brochothrix thermosphacta at changing temperature, International Journal of Food Microbiology, vol.27, pp.61-75, 1995.

U. Gonzales-barron, I. Soumpasis, F. Butler, S. Duggan, D. Prendergast et al., Estimation of prevalence of Salmonella spp. on pig carcasses and pork joints using a quantitative risk assessment model aided by meta-analysis, Journal of Food Protection, vol.72, issue.2, pp.274-285, 2009.

T. Hald, D. Vose, H. Wegener, and T. Koupeev, A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis, Risk Analysis, vol.24, issue.1, pp.255-269, 2004.

S. C. Ingham, B. H. Ingham, D. Borneman, E. Jaussaud, E. L. Schoeller et al., Predicting pathogen growth during short-term temperature abuse of raw sausage, Journal of Food Protection, vol.72, pp.75-84, 2009.

J. Kennedy, V. Jackson, I. S. Blair, D. A. Mcdowell, C. Cowan et al., Food safety knowledge of consumers and the microbiological and temperature status of their refrigerators, Journal of Food Protection, vol.68, pp.1421-1430, 2005.

K. L. Mattick, R. A. Bailey, F. Jorgensen, and T. J. Humphrey, The prevalence and number of Salmonella in sausages and their destruction by frying, grilling or barbecuing, Journal of Applied Microbiology, vol.93, pp.541-547, 2002.

G. L. Nichols and J. De-louvois, The microbiological quality of raw sausages sold in the UK, PHLS Microbiology Digest, vol.12, pp.236-242, 1995.

, Irish Universities Nutrition Alliance: The North/South Ireland food consumption survey database, NSIFCS, 2001.

J. Augustin and V. Carlier, Mathematical modelling of the growth rate and lag time for Listeria monocytogenes, International Journal of Food Microbiology, vol.56, issue.1, pp.29-51, 2000.

M. Cornu, A. Beaufort, S. Rudelle, L. Laloux, H. Bergis et al., Effect of temperature, water-phase salt and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models, International Journal of Food Microbiology, vol.106, issue.2, pp.159-68, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00345572

M. L. Delignette-muller, M. Cornu, R. Pouillot, and J. B. Denis, Use of Bayesian modelling in risk assessment: Application to growth of Listeria monocytogenes and food flora in cold-smoked salmon, International Journal of Food Microbiology, vol.106, issue.2, pp.195-208, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00428068

F. Devlieghere, A. H. Geeraerd, K. J. Versyck, B. Vandewaetere, J. Van-impe et al., Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model, Food Microbiology, vol.18, issue.1, pp.53-66, 2001.

. Fao/who, Risk assessment of Listeria monocytogenes in ready to eat foods -Technical report. Rome, Food and Agriculture Organization of the United Nations and World Health Organization, Microbiological Risk Assessment Series, vol.5, p.269, 2004.

. Fda/fsis, Quantitative Assessment of Relative Risk to Public Health from Foodborne Listeria monocytogenes Among Selected Categories of Ready-to-Eat Foods, Food and Drug Administration, United States Department of Agriculture, 2003.

B. Gimenez and P. Dalgaard, Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon, Journal of Applied Microbiology, vol.96, issue.1, pp.96-109, 2004.

L. Guillier and J. Augustin, Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions, International Journal of Food Microbiology, vol.111, issue.3, pp.241-251, 2006.

R. Pouillot, V. Goulet, M. L. Delignette-muller, A. Mahe, and M. Cornu, Quantitative Risk Assessment of Listeria monocytogenes in French Cold-Smoked Salmon: II. Risk Characterization, Risk Analysis, vol.29, issue.6, pp.806-819, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00347700

R. Pouillot, N. Miconnet, A. L. Afchain, M. L. Delignette-muller, A. Beaufort et al., Quantitative risk assessment of Listeria monocytogenes in French cold-smoked salmon: I. quantitative exposure assessment, Risk Analysis, vol.27, issue.3, pp.683-700, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434713

T. Ross and T. A. Mcmeekin, Modeling microbial growth within food safety risk assessments, Risk Analysis, vol.23, issue.1, pp.179-97, 2003.

T. Ross, S. Rasmussen, A. Fazil, G. Paoli, and J. Summer, Quantitative risk assessment of Listeria monocytogenes in ready-to-eat meats in Australia, International Journal of Food Microbiology, vol.131, issue.2-3, pp.128-165, 2009.

A. R. Standaert, K. Francois, F. Devlieghere, J. Debevere, J. F. Van-impe et al., Modeling individual cell lag time distributions for Listeria monocytogenes, Risk Analysis, vol.27, issue.1, pp.241-54, 2007.

S. J. Van-gerwen and M. H. Zwietering, Growth and inactivation models to be used in quantitative risk assessments, Journal of Food Protection, vol.61, issue.11, pp.1541-1549, 1998.

G. E. Archer, A. Saltelli, and I. M. Sobol, Sensitivity measures, ANOVA-like techniques and the use of bootstrap, Journal of Statistical Computation and Simulation, vol.58, pp.99-120, 1997.

A. Zuliani, V. Cornu, M. Guillier, and L. , Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions, Journal of Applied Microbiology, vol.99, pp.1019-1042, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02678332

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

K. Chan, S. Tarantola, A. Saltelli, and I. M. Sobol, Variance based methods, Sensitivity Analysis, p.475, 2000.

H. C. Frey and S. R. Patil, Identification and Review of Sensitivity Analysis Methods, Risk Analysis, vol.22, pp.553-578, 2002.

L. Guillier and J. C. Augustin, Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions, International Journal of Food Microbiology, vol.111, pp.241-251, 2006.

A. H. Havelaar, E. G. Evers, and M. J. Nauta, Challenges of quantitative microbial risk assessment at EU level, Trends in Food Science and Technology, vol.19, pp.26-33, 2008.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, pp.239-245, 1979.

J. Membré, D. Kan-king-yu, and C. D. Blackburn, Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs), International Journal of Food Microbiology, vol.128, pp.23-33, 2008.

R. Pouillot, Appréciation quantitative des risques en hygiène des aliments: Développements et mises en oeuvre pour la prise en compte des recommandations internationales, p.186, 2006.

D. A. Ratkowsky, J. Olley, T. A. Meekin, and A. Ball, Relationship between temperature and growth rate of bacterial cultures, Journal of Bacteriology, vol.149, pp.1-5, 1982.

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, pp.280-297, 2002.

I. M. Sobol, Global sensitivity indices for non linear mathematical models and their Monte Carlo estimtes, Mathematics and Computers in Simulation, vol.55, pp.271-280, 2001.

M. H. Zwietering, Quantitative Risk Assessment: Is More Complex Always Better? -Simple Is Not Stupid and Complex Is Not Always More Correct, International Journal of Food Microbiology. in press References den Aantrekker E.D. Beumer R, vol.87, pp.1-15, 2003.

D. Burfoot, S. Reavell, C. Tuck, and D. Wilkinson, Generation and dispersion of droplets from cleaning equipment used in the chilled food industry, Journal of Food Engineering, vol.58, pp.343-353, 2003.

R. Ivanek, Y. T. Gröhn, M. Wiedmann, and M. T. Wells, Mathematical model of Listeria monocytogenes cross-contamination in a fish processing plant, Journal of Food Protection, vol.67, issue.12, pp.2688-2697, 2004.

M. W. Reij and E. D. Den-aantrekker, Recontamination as a source of pathogens in processed foods, International Journal of Food Microbiology, vol.91, issue.1, pp.1-11, 2004.

D. W. Schaffner, Mathematical frameworks for modelling Listeria cross-contamination in food-processing plants, Journal of Food Science, vol.69, issue.6, pp.155-157, 2004.

, Risk assessment of Listeria monocytogenes in ready-to-eat foods, WHO, 2004.

G. M. Burnham, S. C. Ingham, M. A. Fanslau, B. H. Ingham, J. P. Norback et al., Using Predictive Microbiology to Evaluate Risk and Reduce Economic Losses Associated with Meats & Poultry Exposed to Temperature Abuse, Army Medical Department Journal, vol.3, pp.57-65, 2007.

G. M. Burnham, G. M. Madison-burnham, M. A. Fanslau, and S. C. Ingham, Evaluating microbial safety of slow partial-cooking processes for bacon: use of a predictive tool based on small-scale isothermal meat inoculation studies, J. Food Prot, vol.69, pp.602-608, 2006.

S. C. Ingham, S. Vang, B. Levey, L. Fahey, J. B. Norback et al., Predicting behavior of Staphylococcus aureus, Salmonella serovars, and Escherichia coli O157:H7 in pork products during single and repeated temperature-abuse periods, Press Ingham, vol.70, pp.1446-1456, 2007.

, Food Safety & Inspection Service (USDA), 1996.

, Hazard Analysis and Critical Control Point (HACCP) systems: final rule, Fed. Register, vol.61, pp.38805-38989

A. L. Afchain, F. Carlin, C. Nguyen-the, and A. I. , Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods, International Journal of Food Microbiology, vol.128, pp.165-173, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01263592

. Anonymous, Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs, The EFSA Journal, vol.175, pp.1-48, 2005.

F. Carlin, M. Fricker, A. Pielaat, S. Heisterkamp, R. Shaheen et al., Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group, International Journal of Food Microbiology, vol.109, pp.132-138, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667224

P. E. Granum, Bacillus cereus, Food microbiology Fundamentals and frontiers Third Edition, pp.445-455, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01329878

M. H. Guinebretiere, F. L. Thompson, A. Sorokin, P. Normand, P. Dawyndt et al., Ecological diversification in the Bacillus cereus Group, Environmental Microbiology, vol.10, pp.851-865, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00196368

J. Membré, B. Leporq, M. Vialette, E. Mettler, L. Perrier et al., Experimental protocols and strain variability of cardinal values (pH and a w ) of bacteria using Bioscreen C: microbial and statistical aspects, pp.143-146, 2002.

T. Ross and P. Dalgaard, Modeling Microbial Responses in Food, pp.63-150, 2004.

L. Rosso, J. R. Lobry, S. Bajard, and J. Flandrois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Micribiology, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

, A mathematical risk model for E. coli O157:H7 cross-contamination of lettuce during processing

. Campos, Danny, vol.3

E. T. Ryser,

. Bradley and P. Marks,

G. 1. Zurera, , vol.4

, Biosystems and Agricultural Engineering

;. Advertising, U. Mi, A. L. Buchholz, Z. Yan, and E. T. Ryser, Glo Germ as a cross contamination indicator during processing of leafy greens, Abst. Ann Mtg. Intern. Assoc. Food Prot, 2006.

D. M. Foley, A. Dufour, L. Rodriguez, F. Caporaso, and A. Prakash, Reduction of Escherichia coli O157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation, 2002.

A. Lammerding and A. Fazil, Hazard identification and exposure assessment for microbial food safety risk assessment, Intl. J. Food Microbiol, vol.58, pp.147-157, 2000.

B. A. Niemira, C. H. Sommers, and F. X. , Suspending lettuce type influences recoverability and radiation sensitivity of Escherichia coli O157:H7, J Food Prot, vol.65, issue.9, pp.1388-93, 2002.

B. A. Niemira, Irradiation compared with chlorination for elimination of Escherichia coli O157:H7 internalized in lettuce leaves: influence of lettuce variety, J. Food Sci, vol.73, pp.208-213, 2008.

, Nationwide E. coli O157:H7 outbreak: questions & answers. Available from, 1981.

, Le Lait, vol.61, pp.435-457

W. D. Bigelow, Logarithmic Nature of Thermal-death-time Curves, Journal of Infectious Disease, vol.29, pp.528-536, 1921.

J. B. Enright, W. W. Sadler, and R. C. Thomas, Pasteurization of milk containing the organism of Q fever, Am. J Public Health Nations. Health, vol.47, pp.695-700, 1957.

J. R. Esty and R. F. Meyer, The heat resistance of the spores of B. botulinus and allied anaerobes, Journal of Infectious Disease, vol.31, pp.165-193, 1922.

C. H. Kilbourne, Pasteurization of milk with suggestions as to methods and apparatus to be employed, Am. J Public Health, vol.2, pp.626-634, 1912.

C. H. Kilbourne, The control of temperatures in the pasteurization of milk, Am. J Public Health (N. Y. ), vol.3, pp.268-272, 1913.

D. A. Mossel and C. B. Struijk, Public health implication of refrigerated pasteurized ('sous-vide') foods, Int. J Food Microbiol, vol.13, pp.187-206, 1991.

M. W. Peck, Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?, J Appl. Microbiol, vol.101, pp.556-570, 2006.

S. C. Prescott and W. L. Underwood, Contributions to our knowledge of micro-organisms and sterilizing processes in the canning industries, Science, vol.6, pp.800-802, 1897.

P. Scheldeman, L. Herman, S. Foster, and M. Heyndrickx, Bacillus sporothermodurans and other highly heat-resistant spore formers in milk, J Appl. Microbiol, vol.101, pp.542-555, 2006.

R. Baranyi, J. Tamplin, and M. L. , ComBase: A common database on microbial responses to food environments, Journal of Food Protection, vol.67, pp.1967-1971, 2004.

S. Gaillard, I. Leguerinel, and P. Mafart, Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores, Journal of Food Science, vol.63, pp.887-889, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00653529

A. H. Geeraerd, V. Valdramidis, and J. F. Van-impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves, Microorganisms in Foods 7: Microbiological Testing in Food Safety Management, vol.102, pp.306-47262, 2002.

P. Mafart, O. Couvert, S. Gaillard, and I. Leguerinel, On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model, International Journal of Food Microbiology, vol.72, pp.107-113, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00654614

J. M. Membré, J. Bassett, and L. G. Gorris, Applying the food safety objective and related standards to thermal inactivation of Salmonella in poultry meat, International Journal of Food Microbiology, vol.70, pp.73-82, 2006.

I. Walls, Achieving continuous improvement in reductions in foodborne listeriosis -A risk-based approach, Journal of Food Protection, vol.68, pp.1932-1994, 2005.

I. Albert and P. Mafart, A modified Weibull model for bacterial inactivation, International Journal of Food Microbiology, vol.100, pp.197-211, 2005.

O. Couvert, S. Gaillard, N. Savy, P. Mafart, and I. Leguerinel, Survival curves of heated bacterial spores: effect of environmental factors on Weibull parameters, International Journal of Food Microbiology, vol.101, pp.73-81, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00560873

T. Cromeans, M. D. Sobsey, and H. A. Fields, Development of a plaque assay for a cytopathic, rapidly replicating isolate of hepatitis A virus, Journal of Medical Virology, vol.22, issue.1, pp.45-56, 1987.

N. Deboosère, O. Legeay, Y. Caudrelier, and M. Lange, Modelling effect of physical and chemical parameters on heat inactivation kinetics of hepatitis A virus in a fruit model system, International Journal of Food Microbiology, vol.93, issue.1, pp.73-85, 2004.

B. Flehmig, Hepatitis A-virus in cell culture: I. propagation of different hepatitis A-virus isolates in a fetal rhesus monkey kidney cell line (Frhk-4), Medical and Microbiological Immunology, vol.168, issue.4, pp.239-248, 1980.

S. M. Lemon, R. W. Jansen, and J. E. Newbold, Infectious hepatitis A virus particles produced in cell culture consist of three distinct types with different buoyant densities in CsCl, Journal of Virology, vol.54, issue.1, pp.78-85, 1985.

M. T. Niu, L. B. Polish, B. H. Robertson, B. K. Khanna, B. A. Woodruff et al., Multistate outbreak of hepatitis A associated with frozen strawberries, Journal of Infectious Diseases, vol.166, pp.518-524, 1992.

R. Pouillot, I. Albert, M. Cornu, and D. , Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes, International Journal of Food Microbiology, vol.81, pp.87-104, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01263599

C. N. Ramsay and P. A. Upton, Hepatitis A and frozen raspberries, Lancet, vol.1, pp.43-44, 1989.

E. Scholz, U. Heinricy, and B. Flehmig, Acid stability of hepatitis A virus, The Journal of General Virology, vol.70, pp.2481-2485, 1989.

M. A. Boekel, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, International Journal of Food Microbiology, vol.72, pp.898-907, 2002.

D. G. Black, F. Harte, and P. M. Davidson, Escherichia coli Thermal Inactivation Relative to Physiological State, Journal of Food Protection, vol.72, pp.399-402, 2009.

A. H. Geeraerd, C. H. Herremans, and J. F. Van-impe, Structural model requirements to describe microbial inactivation during a mild heat treatment, International. Journal of Food Microbiology, vol.59, pp.185-209, 2000.

A. H. Geeraerd, V. P. Valdramidis, and J. F. Van-impe, GinaFiT, a freeware tool to assess non-log-linear microbial survivor curves, International. Journal of Food Microbiology, vol.102, pp.95-105, 2005.

V. K. Juneja and J. S. Novak, Adaptation of Foodborne Pathogens to Stress from Exposure to Physical Intervention Strategies, Microbial Stress Adaptation and Food Safety, pp.159-211, 2003.

J. Baranyi and T. A. Roberts, Mathematics of predictive food microbiology, International Journal of Food Microbiology, vol.26, pp.199-218, 1995.

L. Gram and H. H. Huss, Microbiological spoilage of fish and fish products, International Journal of Food Microbiology, vol.33, pp.121-137, 1996.

K. Koutsoumanis and G. J. Nychas, Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions, International Journal of Food Microbiology, vol.60, pp.171-184, 2000.

E. A. Loovas, Sensitive spectrophotometric method for lipid hydroperoxide determination, JAOCS, vol.69, pp.777-783, 1992.

?. Neumeyer, ?. Ross, and ?. ?. Mcmeekin, Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads, International Journal of Food Microbiology, vol.38, pp.45-54, 1997.

L. Pivarnik, P. Ellis, X. Wang, and T. Reilly, Standardization of the Ammonia electrode method for evaluating seafood quality by correlation to sensory analysis, Journal of Food Science, vol.66, issue.7, pp.945-952, 2001.

A. L. Raoult-wack, Recent advances in the osmotic dehydration of foods, Trends in Food Science & Technology, vol.5, pp.255-260, 1994.

M. Sivertsvik, W. K. Jeksrud, and J. Rosnes, A review of modified atmosphere packaging of fish and fishery products-significance of microbial growth, activities and safety, International Journal of Food Science and Technology, vol.37, pp.107-127, 2002.

L. V. Thomas and J. Delves-broughton, Antimicrobials in Food, pp.237-274, 2005.

E. Torrieri, S. Cavella, F. Villani, and P. Masi, Influence of modified atmosphere packaging on the chilled shelf life of gutted farmed bass (Dicentrarchus labrax), Journal of Food Engineering, vol.77, pp.1078-1086, 2006.

T. Tsironi, I. Salapa, and P. Taoukis, Shelf life modelling of osmotically treated chilled gilthead seabream fillets, Innovative Food Science and Emerging Technologies, vol.10, pp.23-31, 2009.

L. Everis and G. Betts, Modelling the increase and growth of spoilage microorganisms in food: Production of an Enterobacteriaceae model for predictions under fluctuating conditions, Campden BRI, 2008.

L. Everis and G. Betts, Unpublished. The final report of the acid preservation club, 1999.

B. Campden and G. U. Chipping-campden,

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

J. P. Kerry, M. N. O'grady, and S. A. Hogan, Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review, Meat Science, vol.74, pp.113-130, 2006.

T. Mcmeekin, J. Bowman, O. Mcquestin, L. Mellefont, T. Ross et al., The future of predictive microbiology: Strategic research, innovative applications and great expectations, International Journal of Food Microbiology, vol.128, pp.2-9, 2008.

D. A. Ratkowsky, J. Olley, T. A. Mcmeekin, and A. Ball, Relationship between temperature and growth rate of bacterial cultures, Journal of Bacteriology, vol.149, pp.1-5, 1982.

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

P. S. Taoukis and T. P. Labuza, Applicability of time-temperature indicators as shelf life monitors of food products, Journal of Food Science, vol.54, pp.783-788, 1989.

T. D. Dang, A. Vermeulen, P. Ragaert, and F. Devlieghere, A peculiar stimulatory effect of acetic and lactic acid on growth and fermentative metabolism of Zygosaccharomyces bailii, Food Microbiology, vol.26, issue.3, pp.320-327, 2009.

A. Vermeulen, T. D. Dang, A. H. Geeraerd, K. Bernaerts, J. Debevere et al., Modelling the unexpected effect of acetic and lactic acid in combination with pH on the growth/no growth interface of Zygosaccharomyces bailii, International Journal of Food Microbiology, vol.124, issue.1, pp.79-90, 2008.

P. References-dalgaard, P. Buch, and S. Silberg, Seafood Spoilage Predictor -development and distribution of a product specific application software, International Journal of Food Microbiology, vol.73, pp.227-233, 2002.

L. Marc, Y. Huchet, V. Bourgeois, C. M. Guyonnet, J. P. Mafart et al., Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration, International Journal of Food Microbiology, vol.73, issue.2-3, pp.219-237, 2002.

T. A. Mcmeekin, J. Baranyi, J. Bowman, P. Dalgaard, M. Kirk et al., Information systems in food safety management, International Journal of Food Microbiology, vol.112, issue.3, pp.181-194, 2006.

O. Mejlholm and P. Dalgaard, Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp, Journal of Food Protection, vol.72, 2009.

O. Mejlholm, L. Marc, Y. Dalgaard, and P. , Evaluation of growth boundary models -importance of data distribution and performance indices, 2009.

O. Mejlholm, A. Gunvig, C. Borggaard, F. Hansen, L. Mellefont et al., Predicting growth and growth boundary of Listeria monocytogenes -an international validation study with focus on processed and ready-to-eat meat and seafood, 2009.

M. Tamplin, Accessible modelling software and databases, Bulletin of the International Dairy Federation, vol.433, pp.59-64, 2009.

, Transport des carcasses n'ayant pas atteint la température réglementaire. Institut de la filière porcine, References Anonymous, 2005.

, Advice 31-2008 of the Scientific Committee of the FASFC on the uncooled transport of pig carcasses, 2008.

J. Fosse, H. Seegers, and C. Magras, Prioritising the risk of foodborne zoonoses using a quantitative approach : application to foodhorne bacterial hazards in pork and beef. Revue scientifique et technique, International Office of Epizootics), vol.27, pp.643-655, 2008.

C. O. Gill, Intrinsic bacteria in meat, Journal of Applied Bacteriology, vol.47, pp.367-378, 1979.

G. Barron, U. Bergin, D. Butler, and F. , A meta-analysis study of the effect of chilling on prevalence of Salmonella on pig carcasses, Journal of Food Protection, vol.71, pp.1330-1337, 2008.

S. C. Ingham, M. A. Fanslau, G. M. Burnham, B. H. Ingham, J. P. Norback et al., Predicting pathogen growth during short-term temperature abuse of raw pork, beef, and poultry products: use of an isothermal-based predictive tool, Journal of Food Protection, vol.70, issue.6, pp.1446-1456, 2007.

, Industry Standard 6 / Industry Agreed Standard 6 Processing of Edible Product, New Zealand Food Safety Authority, 2004.

T. Ross, D. A. Ratkowsky, L. A. Mellefont, and T. A. Mcmeekin, Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli, International Journal of Food Microbiology, vol.82, pp.33-43, 2003.

J. W. Savell, S. L. Mueller, B. E. Baird, C. Cagney, H. Crowley et al., Prevalence and numbers of Escherichia coli O157:H7 in minced beef and beef burgers from butchers shops and supermarkets in the Republic of Ireland, Meat Science -50th International Congress of Meat Science and Technology, vol.70, pp.203-212, 2004.

E. Carney, S. B. O'brien, J. J. Sheridan, D. A. Mcdowell, I. S. Blair et al., Prevalence and level of Escherichia coli O157 on beef trimmings, carcasses and boned head meat at a beef slaughter plant, Food Microbiology, vol.23, issue.1, pp.52-59, 2006.

, Updata: multistate outbreak of Escherichia coli O157:H7 infections from hamburgers-western United States, 1992-1993. Morbid Mortal, Weekly Report, vol.42, pp.258-263, 1993.

P. A. Chapman, Sources of Escherichia coli O157 and experiences over the past 15 years in Sheffield, UK. Journal of Applied Microbiology Symposium Supplement, vol.88, pp.51-60, 2000.

E. Cummins, P. Nally, F. Butler, G. Duffy, and S. O'brien, Development and validation of a probabilistic second-order exposure assessment model for Escherichia coli O157:H7 contamination of beef trimmings from Irish meat plants, Meat Science, vol.79, pp.139-154, 2008.

G. Duffy, F. Butler, E. Cummins, S. O'brien, P. Nally et al., E. coli O157:H7 in beef burgers produced in the Republic of Ireland: A quantitative microbial risk assessment, Ashtown Food Research Centre, vol.15, p.184170461, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-01146091

G. Duffy, E. Cummins, P. Nally, S. O'brien, and F. Butler, A review of quantitative microbial risk assessment in the management of Escherichia coli O157:H7 on beef, Meat science, vol.74, issue.1, pp.76-88, 2006.

G. Duffy, S. B. O'brien, E. Carney, J. J. Sheridan, D. A. Mcdowell et al., Characterisation of E. coli O157 isolates from bovine hide and beef trimming in Irish abattoirs by pulsed field gel electrophoresis, Journal of Microbiological Methods, vol.60, issue.3, pp.375-382, 2005.

, Epidemiology of Verotoxigenic E. coli in Ireland, HPSC, 2007.

J. M. Mcevoy, A. M. Doherty, M. Finnerty, J. J. Sheridan, L. Mcguire et al., The relationship between hide cleanliness and bacterial numbers on beef carcasses at a commercial abattoir, Letters in Applied Microbiology, vol.30, pp.390-395, 2000.

J. M. Mcevoy, A. M. Doherty, J. J. Sheridan, F. M. Thomson-carter, P. Garvey et al., The prevalence and spread of Escherichia coli O157:H7 at a commercial beef abattoir, Journal of Applied Microbiology, vol.95, pp.256-266, 2003.

J. M. Mcevoy, A. M. Doherty, J. J. Sheridan, F. M. Thomson-carter, P. Garvey et al., The incidence and spread of Escherichia coli O157:H7 at a commercial beef abattoir. Epidemiology of verocytotoxigenic E. coli, Proceedings of Concerted action, pp.98-3935, 2001.

S. B. O'brien, G. Duffy, E. Carney, J. J. Sheridan, D. A. Mcdowell et al., Prevalence and numbers of Escherichia coli O157: on bovine hide at a beef slaughter plant, Journal of Food Protection, vol.68, issue.4, pp.660-665, 2005.

J. Sheridan, B. Lynch, and D. Harrington, The effect of boning and plant cleaning on the contamination of beef cuts in commercial boning hall, Meat Science, vol.32, pp.185-194, 1992.

D. Vose, Risk Analysis: a Quantitative Guide, 2000.

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

F. Baty and M. Delignette-muller, Estimating the bacterial lag time: which model, which precision, International Journal of Food Microbiology, vol.91, pp.261-277, 2004.

R. L. Buchanan, R. C. Whiting, and W. C. Damert, When is simple good enough: a comparison of the Gompertz, Baranyi and three-phase linear models for fitting bacterial growth curves, Food Microbiology, vol.14, pp.313-326, 1997.

P. Dalgaard and K. Koutsoumanis, Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models, Journal of Microbiological Methods, vol.43, pp.183-196, 2001.

S. López, M. Prieto, J. Dijkstra, M. S. Dhanoa, and J. France, Statistical evaluation of mathematical models for microbial growth, International Journal of Food Microbiology, vol.96, pp.289-300, 2004.

S. Perni, P. W. Andrew, and G. Shama, Estimating the maximum growth rate from microbial growth curves: definition is everything, Food Microbiology, vol.22, pp.491-495, 2005.

M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. Van't-riet, Modelling of the bacterial growth curve, Applied and Environmental Microbiology, vol.56, pp.1875-1881, 1990.

J. Baranyi and T. A. Roberts, Mathematics of predictive food microbiology, International Journal of Food Microbiology, vol.26, pp.199-218, 1995.

P. Dalgaard, O. Mejlholm, and H. H. Huss, Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish, International Journal of Food Microbiology, vol.38, pp.169-179, 1997.

L. Gram and H. H. Huss, Microbiological spoilage of fish and fish products, International Journal of Food Microbiology, vol.33, pp.121-137, 1996.

V. R. Kyrana, V. P. Lougovois, and D. S. Valsamis, Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice, International Journal of Food Science and Technology, vol.32, pp.339-347, 1997.

K. Koutsoumanis and G. J. Nychas, Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions, International Journal of Food Microbiology, vol.60, pp.171-184, 2000.

?. Neumeyer, ?. Ross, and ?. ?. Mcmeekin, Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads, International Journal of Food Microbiology, vol.38, pp.45-54, 1997.

A. L. Raoult-wack, Recent advances in the osmotic dehydration of foods, Trends in Food Science & Technology, vol.5, pp.255-260, 1994.

T. Tsironi, I. Salapa, and P. Taoukis, Shelf life modelling of osmotically treated chilled gilthead seabream fillets, Innovative Food Science and Emerging Technologies, vol.10, pp.23-31, 2009.

P. Aérial, Innovation -rue Laurent Fries F-67412 Illkirch (v.stahl@aerial-crt.com)

L. Afssa, 23 avenue du Général de Gaulle -F -94706 Maisons Alfort Cedex (m.simon-cornu@afssa.fr)

L. Afssa, Boulevard Bassin Napoléon -F-62200 Boulogne Sur Mer (g.bourdin@afssa.fr)

A. Normandie, bd 13 juin 1944 -F -14310 Villers

Z. Adria-développement and . Creac,

, Institut Pasteur de Lille, 1 rue du Prof. Calmette -BP 245 F -59019 Lille

, IFIP-Institut du porc, pôle viandes fraîches et produits transformés, 7 avenue du Général de Gaulle -F-94704

, Maisons Alfort Cedex (veronique.zuliani@ifip.asso.fr)

M. Unité, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle -F-94704 Maisons-Alfort Cedex

, References AFNOR NF V01-009 (2007) describing the laboratory protocols for implementing challenge-tests

. Anonymous, Technical Guidance Document on shelf life studies for Listeria monocytogenes in ready-to-eat foods, 2008.

M. Cornu, A. Beaufort, S. Rudelle, L. Laloux, H. Bergis et al., Effect of temperature, WPS (water-phase salt) and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models, International Journal of Food Microbiology, vol.106, pp.161-170, 2006.

M. L. Delignette-muller, M. Cornu, R. Pouillot, and D. J. , Use of Bayesian modelling in risk assessment: Application to growth of Listeria monocytogenes and food flora in cold-smoked salmon, International Journal of Food Microbiology, vol.106, pp.195-208, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00428068

F. Devlieghere, A. H. Geeraerd, K. J. Versyck, B. Vanderwaetere, J. Van-impe et al., Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model, Food Microbiology, vol.18, pp.53-66, 2001.

L. Guillier and J. C. Augustin, Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions, International Journal of Food Microbiology, vol.111, issue.3, pp.241-251, 2006.

K. P. Koutsoumanis, P. A. Kendall, and J. N. Sofos, A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface, Food Microbiology, vol.21, pp.415-422, 2004.

L. Marc, Y. Huchet, V. Bourgeois, C. M. Guyonnet, J. P. Mafart et al., Combined effects of pH and organic acids on the growth rate of Listeria innocua, International Journal of Food Microbiology, vol.73, issue.2-3, pp.219-237, 2002.

A. Pinon, M. Zwietering, J. Membré, B. Leporq, E. Mettler et al., Development and validation of experimental protocols for use of cardinal growth models for prediction of microorganism in food products, Applied and Environmental Microbiology, vol.70, pp.1081-1087, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683431

S. Tienungoon, D. A. Ratkowsky, T. A. Mcmeekin, and R. T. , Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid, Applied and Environmental Microbiology, vol.66, pp.4979-4987, 2000.

V. Zuliani, I. Lebert, J. C. Augustin, P. Garry, J. L. Vendeuvre et al., Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts, Journal of Applied Microbiology, vol.103, pp.536-550, 2007.

C. References, References ICMSF (1996) Microorganisms in foods 5. Characteristics of microbial pathogens, Centers for Disease Control and Prevention, 2005.

S. Resnik and J. Chirife, Proposed theoretical water activity values at various temperatures for selected solutions to be used as reference sources in the range of microbial growth, Journal of Food Protection, vol.51, issue.5, pp.419-423, 1988.

J. Baranyi, C. Pin, and T. Ross, Validating and comparing predictive models, International Journal of Food Microbiology, vol.48, issue.3, pp.159-166, 1999.

A. Diels, I. Van-opstal, B. Masschalck, and C. W. Michiels, Modelling of high-pressure inactivation of microorganisms in foods, vol.9, pp.161-197, 2007.

, Guidance for industry: Control of listeria monocytogenes in refrigerated or frozen ready-to-eat foods. Food and Drug Administration. Center for food Safety and Applied Nutrition, 2008.

A. Jofré, M. Garriga, and T. Aymerich, Inhibition of listeria monocytogenes in cooked ham through active packaging with natural antimicrobials and high pressure processing, Journal of Food Protection, vol.70, issue.11, pp.2498-2502, 2007.

S. Koseki, Y. Mizuno, and K. Yamamoto, Predictive modelling of the recovery of listeria monocytogenes on sliced cooked ham after high pressure processing, International Journal of Food Microbiology, vol.119, issue.3, pp.300-307, 2007.

T. Ross, P. Dalgaard, and S. Tienungoon, Predictive modelling of the growth and survival of Listeria in fishery products, International Journal of food Microbiology, vol.62, issue.3, pp.231-245, 2000.

R. Simpson and A. Gilmour, The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate-buffered saline and model food systems, Journal of Applied Microbiology, vol.83, issue.2, pp.181-188, 1997.

J. P. Smelt, Mycotoxins in milk production. Occurrence, relevance and possible minimization in the production chain feeds-milk, Kieler Milchwirtschaftliche Forschungsberichte, vol.9, issue.4, pp.219-263, 1998.

R. Coffey, E. Cummins, and S. Ward, Exposure assessment of mycotoxins in dairy milk, Food Control, vol.20, issue.3, pp.239-249, 2009.

, Opinion of the Scientific Panel on Contaminants in Food Chain on a request from the Commission related to Aflatoxin B1 as undesirable substance in animal feed, The European Food Safety Authority Journal, vol.39, pp.1-27, 2004.

R. R. Marquardt, Effects of molds and their toxins on livestock performance: a western Canadian perspective, Animal Feed Science and Technology, vol.58, issue.1-2, pp.77-89, 1996.

S. Notermans, Food authenticity and traceability, ensuring the safety of animal feed, 2003.

, Survey of spices for aflatoxins and ochratoxin A, 2005.

D. Vose, Risk Analysis: a Quantitative Guide, 2000.

A. Yiannikouris and J. P. Jouany, Mycotoxins in feeds and their fate in animals: a review, Animal research, vol.51, pp.81-90, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02681624

R. Baranyi, J. Robert, and T. A. , A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, issue.3-4, pp.277-294, 1994.

J. Baranyi, C. Pin, and T. Ross, Validating and comparing predictive models, International Journal of Food Microbiology, vol.48, issue.3, pp.159-166, 1999.

G. W. Calvo, M. W. Luckenbach, S. K. Allen, and . E. Burreson, A comparative field study of Crassostrea ariakensis and Crassostrea virginica in relation to salinity in Virginia, 2000.

A. Depaola, J. L. Nordstrom, J. C. Bowers, J. G. Wells, and . D. Cook, Draft risk assessment on the public health impacts of Vibrio parahaemolyticus in raw molluscan shellfish, Applied and environmental Microbiology, vol.69, issue.3, pp.970-974, 2002.

C. A. Kaysner and A. Depaola, Vibrio cholerae, V. parahaemolyticus, V. vulnificus, and other vibrio spp, Chapter 9, 2004.

S. Parveen, K. A. Hettiarachchi, J. C. Bowers, J. L. Nordstrom, M. L. Tamplin et al., Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters, International Journal of Food Microbiology, vol.128, issue.2, pp.354-390, 2008.

S. Parveen, L. Dasilva, A. Depaola, J. C. Bowers, C. White et al., Development and validation of predictive models for the growth and survival of total Vibrio parahaemolyticus in post harvest shellstock American oysters. 108th General Meeting for ASM, 2007.

W. Cochran, Sampling techniques, p.47116240, 1977.

E. Billoir, J. Denis, N. Commeau, M. Cornu, and V. Zuliani, Probabilistic modelling of L. monocytogenes behaviour in diced bacon along the manufacture process chain

A. J. Melendez-martinez, I. M. Vicario, and F. J. Heredia, Review: Analysis of carotenoids in orange juice, Journal of Food Composition and Analysis, vol.20, issue.7, pp.638-649, 2007.

C. Nebel, Ozone decolorization of secondary dye laden effluents Second Symposium on Ozone Technology Montreal, 1975.

S. Patil, P. Bourke, J. M. Frias, B. K. Tiwari, and P. J. Cullen, Inactivation of Escherichia coli in orange juice using ozone Innovative Food Science & Emerging Technologies in press, 2009.

D. A. Ratkowsky, R. K. Lowry, T. A. Mcmeekin, A. N. Stokes, and R. E. Chandler, Model for bacterial culture-growth rate throughout the entire biokinetic temperature-range, Journal of Bacteriology, vol.154, issue.3, pp.1222-1226, 1983.

B. K. Tiwari, K. Muthukumarappan, C. P. O'donnell, and P. J. Cullen, Kinetics of Freshly Squeezed Orange Juice Quality Changes during Ozone Processing, Journal of Agricultural and Food Chemistry, vol.56, issue.15, 2008.

T. Abee and J. A. Wouters, Microbial stress response in minimal processing, Int. J. Food Microbiol, vol.50, pp.65-91, 1999.

C. K. Bower and M. A. Daeschel, Resistance responses of microorganisms in food environments, Int. J. Food Microbiol, vol.50, pp.33-44, 1999.

B. Delgado, P. S. Fernández, A. Palop, and P. M. Periago, Effect of thymol and cymene to establish safe conditions related to Bacillus cereus vegetative cells through the use of frequency distributions, Food Microbiol, vol.21, pp.327-334, 2004.

T. B. Hansen and S. Knøchel, Factors influencing resuscitation and growth of heat injured Listeria monocytogenes 13-249 in sous vide cooked beef, Int J Food Microbiol, vol.63, pp.135-147, 2001.

I. M. Helander, H. Alakomi, K. Latva-kala, T. Mattila-sandholm, I. E. Pol et al., Characterisation of the action of selected essential oil components on Gram-negative bacteria, J. Agricul. Food Chem, vol.46, pp.3590-3595, 1998.

C. Jacquet, B. Catimel, R. Brosch, C. Buchrieser, P. Dehaumont et al., Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992, Appl. Environ. Microbiol, vol.61, pp.2242-2246, 1995.

L. Leistner, Basic aspects of food preservation by hurdle technology, Int. J. Food Microbiol, vol.55, pp.181-186, 2000.

M. Muñoz, B. De-ancos, C. Sánchez-moreno, and P. Cano, Effects of high pressure and mild heat on endogenous microflora and on the inactivation and sublethal injury of Escherichia coli inoculated into fruit juices and vegetables soup, J Food Prot, vol.70, pp.1587-1593, 2007.

P. M. Periago, T. Abee, and J. A. Wouters, Analysis of the heat-adaptive response of psychrotrophic Bacillus weihenstephanensis, Int. J. Food Microbiol, vol.79, issue.1-2, pp.17-26, 2002.

P. M. Periago, R. Conesa, B. Delgado, P. S. Fernández, and A. Palop, Bacillus megaterium spore germination and growth inhibition by a treatment combining heat with natural antimicrobials, Food Technol. Biotechnol, vol.44, issue.1, pp.17-23, 2006.

P. M. Periago, B. Delgado, P. S. Fernández, and A. Palop, Use of carvacrol and cymene to control growth and viability of Listeria monocytogenes cells and predictions of survivors using frequency distribution functions, J. Food Prot, vol.67, pp.1408-1416, 2004.

P. M. Periago and R. Moezelaar, Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus, Int. J. Food Microbiol, vol.68, pp.141-148, 2001.

P. M. Periago, A. Palop, and P. S. Fernández, Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells, Food Sci. Technol. Int, vol.7, issue.6, pp.487-492, 2001.

P. M. Periago, W. Van-schaik, T. Abee, and J. A. Wouters, Identification of proteins involved in the heat-stress response of Bacillus cereus ATCC14579, App. Environ. Microbiol, vol.68, issue.7, pp.3486-3495, 2002.

A. Sivropoulou, E. Papanikolaou, C. Nikolaou, S. Kokkini, .. T. Lanaras et al., Antimicrobial and cytotoxic activities of Origanum essential oils, J. Agricul. Food Chem, vol.44, issue.5, pp.1202-1205, 1996.

A. Ultee, R. A. Slump, G. Steging, and E. J. Smid, Antimicrobial activity of carvacrol towards Bacillus cereus on rice, J. Food Protec, vol.63, issue.5, pp.620-624, 2000.

E. Y. Wuytack, L. Duong-thi-phuong, A. Aertsen, K. M. Reyns, D. Marquenie et al., Comparison of sublethal injury induced in Salmonella enterica serovar Typhimurium by heat and by different nonthermal treatments, J. Food Protec, vol.66, pp.31-37, 2003.

L. Flander, M. Salmenkallio-marttila, T. Suortti, and K. Autio, Optimisation of ingredients and baking process for improved wholemeal oat bread quality, vol.40, pp.860-870, 2007.

, Final rule for food labelling: Health claims; Oats and coronary heart disease, Federal Regulations, vol.7, issue.62, pp.3584-3681, 1997.

E. Theuwissen and R. P. Mensink, Simultaneous intake of ?-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic Subjects, The Journal of Nutrition, vol.137, pp.583-588, 2007.

S. M. Tosh, Y. Brummer, T. M. Wolever, and P. J. Wood, Glycemic response to oat bran muffins treated to vary molecular weight of ?-glucan, Cereal Chemistry, vol.85, issue.2, pp.211-217, 2008.

N. Yao, J. Jannink, and P. J. White, Molecular weight distribution of (1?3)(1?4)-?-glucan affects pasting properties of flour from oat lines with high and typical amounts of ?-glucan, Cereal Chemistry, vol.84, issue.5, pp.471-479, 2007.

, Growth Model of Yersinia species in Raw Ground Beef Saumya Bhaduri* and Lihan Huang Eastern Regional Research

, USA (saumya.bhaduri@ars.usda.gov, lihan.huang@ars.usda.gov), 19038.

B. Latto and K. W. Chow, Hydrodynamic transport of cylindrical capsules in a vertical pipeline, The Canadian Journal of Chemical Engineering, vol.60, pp.713-722, 1982.

A. Orta-ramirez, B. P. Marks, C. R. Warsow, A. M. Booren, and E. T. Ryser, Enhanced thermal resistance of Salmonella in whole muscle compared to ground beef, Journal of Food Science, issue.7, pp.359-362, 2005.

J. Rochowiak, Modeling the Transport of Salmonella into Whole-Muscle Meat Products during Marination, Biosystems and Agricultural Engineering, 2007.

V. Tuntivanich, Effects of Marination on Salmonella Penetration and Muscle Structure of Turkey Breast, Food Science and Human Nutrition, 2008.

V. Tuntivanich, A. Orta-ramirez, B. P. Marks, E. T. Ryser, and A. M. Booren, Thermal inactivation of Salmonella in whole muscle and ground turkey breast, Journal of Food Protection, issue.12, pp.2548-2551, 2008.

. Usda-fsis, Performance standards for the production of certain meat and poultry products, Federal Register, pp.732-749, 1999.

. Usda-fsis, Comparative risk assessment of intact (non-tenderized) and non-intact (tenderized) beef: Technical Report. United States Department of Agriculture, Food Safety Inspection Service, Food Safety Inspection Service, 2002.

A. Velasquez, Thermal resistance and migration of Salmonella spp. into marinated pork products, Food Science and Human Nutrition, 2006.

C. R. Warsow, A. Orta-ramirez, B. P. Marks, E. T. Ryser, and A. M. Booren, Single directional migration of Salmonella into marinated whole muscle turkey breast, Journal of Food Protection, vol.71, pp.153-156, 2008.

J. Baranyi and T. A. Roberts, Review paper: A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

D. Vuyst, L. Vandamme, and E. J. , Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations, Journal of General Microbiology, vol.188, pp.571-578, 1992.

D. Vuyst, L. Callewaert, R. Crabbé, and K. , Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorans and evidence for stimulation of bacteriocin production under unfavourable growth conditions, Microbiology, vol.142, pp.817-827, 1996.

A. Gálvez, H. Abriouel, R. L. Lucas-lópez, and N. B. Omar, Bacteriocin-based strategies for food biopreservation, International Journal of Food Microbiology, vol.120, pp.51-70, 2007.

M. C. Joerger and T. R. Klaenhammer, Characterization and purification of helveticin J and evidence for a chromosomally encoded bacteriocin produced by Lactobacillus helveticus 481, Journal of Bacteriology, vol.167, pp.439-446, 1986.

M. S. Juárez--tomás, E. Bru, B. Wiese, A. A. De-ruiz-holgado, and M. E. Nader-macías, Influence of pH, temperature and culture media on the growth and bacteriocin production of vaginal Lactobacillus salivarius CRL 1328, Journal of Applied Microbiology, vol.93, issue.4, pp.714-724, 2002.

F. Krier, A. M. Revol-junelles, and P. Germain, Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation, Applied Microbiology and Biotechnology, vol.50, pp.359-363, 1998.

F. Leroy, B. Degeest, D. Vuyst, and L. , A novel area of predictive modelling: describing functionality of beneficial microorganisms in foods, International Journal of Food Microbiology, vol.73, pp.251-259, 2002.

F. Leroy, D. Vuyst, and L. , Temperature and pH conditions that prevail Turing fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K, Applied and Environmental Microbiology, vol.65, pp.974-981, 1999.

M. Mataragas, J. Metaxopoulos, M. Galiotou, and E. H. Drosinos, Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, Meat Science, vol.64, pp.265-271, 2003.

E. Parente, A. Ricciardi, and G. Addario, Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140VWC during batch fermentation, Applied Microbiology and Biotechnology, vol.41, pp.388-394, 1994.

L. E. Quadri, Regulation of antimicrobial peptide production by autoinducer mediated quorum sensing in lactic acid bacteria, Antonie Van Leeuwenhoek, vol.82, pp.133-145, 2002.

U. Schillinger and F. K. Lucke, Antimicrobial activity of Lactobacillus sake isolated from meat, Applied and Environmental Microbiology, vol.55, pp.1901-1906, 1989.

, Effects of citral, carvacrol and (E)-2-hexenal on growth inactivation of Listeria monocytogenes during heat treatment S, L. Sado Kamdem, vol.1

M. Laboratoire-de, P.O. Box, vol.812

N. P. Bahadur, W. Shiu, D. G. Boocock, and D. Mackay, Temperature Dependence of Octanol-Water Partition Coefficient for Selected Chlorobenzenes, J. Chemical Engineering Data, vol.42, pp.685-688, 1997.

M. G. Corradini and M. Peleg, Demonstration of the applicability of the Weibull-Log-Logistic survival model to the isothermal and nonisothermal inactivation of E. coli K-12 MG1655, J. Food Protect, vol.67, pp.2617-2621, 2004.

G. Kai-uwe, Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER). Fluid Phase Equilibrium, vol.233, pp.19-22, 2005.

L. Marc, Y. Huchet, V. Bourgeois, C. M. Guyonnet, J. P. Mafart et al., Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration, International Journal of Food Microbiology, vol.73, issue.2-3, pp.219-237, 2002.

O. Mejlholm and P. Dalgaard, Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp, Journal of Food Protection, 2009.

, PA 19038 (vijay.juneja@ars.usda.gov*, lihan.huang@ars.usda.gov) 2. U.S. Department of Agriculture, Food Safety Inspection Service, 14th and Independence S, vol.68583

J. Baranyi and T. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

. Fda, Food Code. Part 3.5: Limitation of growth of organisms of public health concern. U.S. Food and Drug Administration, 2001.

V. K. Juneja, J. E. Call, and A. Miller, Evaluation of methylxanthines and Related compounds to enhance Clostridium perfringens sporulation using a modified Duncan and Strong medium, Journal of Rapid Methods and Automation in Microbiology, vol.2, pp.203-218, 1993.

. Usda/fsis, Performance standards for the production of certain meat and poultry products; final rule, Federal Register, vol.64, pp.732-749, 2001.

L. Huang, Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef, International Journal of Food Microbiology, vol.87, pp.319-332, 2003.

F. Caponio, C. Summo, D. Delcuratolo, and A. Pasqualone, Quality of the lipid fraction of Italian biscuits, Journal of the Science of Food and Agriculture, vol.86, pp.356-361, 2006.

P. Dlouh?, E. Tvrzická, B. Sta?ková, M. Vecka, A. ?ak et al., Higher content of 18:1 trans fatty acids in subcutaneous fat of persons with coronographically documented atherosclerosis of the coronary arteries, Annals of Nutrition and Metabolism, vol.47, issue.6, pp.302-305, 2003.

A. Kita, K. Anio?owski, and E. W?odarczyk, Zmiany frakcji t?uszczowej w przechowywanych produktach przek?skowych, ?ywno??. Nauka. Technologia. Jako??, vol.2, issue.35, pp.87-95, 2003.

D. Klensporf and J. H. , Analysis of volatile aldehydes in oat flakes by SPME -GC/MS, Polish Journal of Food and Nutrition Science, vol.4, pp.389-395, 2005.

P. Koczo?, J. Piekut, M. Borawska, R. ?wis?ocka, and W. Lewandowski, Microbiological and vibrational study of selected picolinates and o-iodobenzoates, Analytical and Bioanalytical Chemistry, vol.384, pp.302-308, 2006.

M. C. Oomen, M. Ock?, E. J. Feskens, M. A. Erp-barat, F. J. Kok et al., Association between trans fatty acids intake and 10-years risk of coronary heart disease in the Zutphen Elderly Study: A prospective population -based study, The Lancet, vol.357, pp.746-751, 2001.

N. M. De-roos, E. G. Schouten, and M. B. Katan, Consumption of a solid fat rich in lauric acids results in a more favourable serum lipid profile in healthy men and women than cosumption of a solid fat rich in transfaty acids, Human Nutrition and Metabolism, the Journal of Nutrition, vol.131, issue.2, pp.242-245, 2001.

A. Tay, R. K. Singh, S. S. Krishnan, and J. P. Gore, Authentication of olive oil adulterated with vegetable oils using, Fourier Transform Infrared Spectroscopy. Lebensmittel-Wissenschaft und-Technologie, vol.5, pp.99-103, 2002.

R. Quilitzsch, M. Baranska, H. Schulz, and E. Hoberg, Fast determination of carrot quality by spectroscopy methods in the UV-VIS, NIR and IR range, Journal of Applied Botny and Food Quality, vol.79, pp.163-167, 2005.

G. Yildiz, R. L. Wehling, and S. L. Cuppett, Monitoring PV in corn and soybean oils by NIR Spectroscopy, Journal of American Oil Chemists' Society, vol.11, pp.1085-1089, 2002.

, Cathal Brugha Street, Dublin, vol.1

O. Cerf, K. R. Davey, and A. K. Sadoudi, Thermal inactivation of bacteria -A new predictive model for the combined effect of three environmental factors: Temperature, pH and water activity, Food Research International, vol.29, issue.3-4, pp.219-226, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02686032

D. Knorr, M. Zenker, V. Heinz, and D. U. Lee, Applications and ultrasonics in food potential of processing, Trends in Food Science & Technology, vol.15, issue.5, pp.261-266, 2004.

H. S. Lee and G. A. Coates, Measurement of total vitamin C activity in citrus products by HPLC: A review, Journal of Liquid Chromatography & Related Technologies, vol.22, issue.15, pp.2367-2387, 1999.

S. Meydav, I. Saguy, and I. J. Kopelman, Browning determination in citrus products, Journal of Agricultural and Food Chemistry, vol.25, issue.3, pp.602-604, 1977.

D. A. Ratkowsky, R. K. Lowry, T. A. Mcmeekin, A. N. Stokes, and R. E. Chandler, Model for bacterial culture-growth reate throughout the entire biokinetic temperature-range, Journal of Bacteriology, vol.154, issue.3, pp.1222-1226, 1983.

B. K. Tiwari, K. Muthukumarappan, C. P. O'donnell, and P. J. Cullen, Effects of sonication on the kinetics of orange juice quality parameters, Journal of Agricultural and Food Chemistry, vol.56, issue.7, pp.2423-2428, 2008.

E. Ugarte-romero, H. Feng, S. E. Martin, K. R. Cadwallader, and S. J. Robinson, Inactivation of Escherichia coli with power ultrasound in apple cider, Journal of Food Science, vol.71, issue.2, pp.102-108, 2006.

H. Vaikousi, K. Koutsoumanis, and C. G. Biliaderis, Kinetic modelling of non-enzymatic browning of apple juice concentrates differing in water activity under isothermal and dynamic heating conditions, Food Chemistry, vol.107, issue.2, pp.785-796, 2008.

S. V. Avery, Microbial cell individuality and the underlying sources of heterogeneity, Nature Reviews, vol.4, pp.577-587, 2006.

J. Baranyi and T. A. Roberts, A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, vol.23, pp.277-294, 1994.

A. Elfwing, Y. Lemarc, J. Baranyi, and A. Ballagi, Observing growth and division of large numbers of individual bacteria by Image Analysis, Applied Environmental Microbiology, vol.70, pp.675-678, 2004.

Y. Wakamoto, I. Inoue, H. Morguchi, and K. Yasuda, Analysis of single-cell differences by use of an on-chip microculture system and optical trapping, Fresenius' Journal of Analytical Chemistry, vol.371, pp.276-281, 2001.

H. Vaikousi, C. G. Biliaderis, and K. Koutsoumanis, Applicability of a microbial Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat, International Journal of Food Microbiology, vol.133, pp.272-278, 2009.

H. C. Vaikousi, K. P. Biliaderis, and . Koutsoumanis, Development of a Microbial Time/Temperature Indicator Prototype for Monitoring the Microbiological Quality of, Chilled Foods Appl. Envir. Microbiol, vol.74, pp.3242-3250, 2008.

P. Dalgaard and K. Koutsoumanis, Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models, Journal of Microbiological Methods, vol.43, pp.183-196, 2001.

D. Jesús, A. J. Whiting, and R. C. , Thermal inactivation, growth, and survival studies of Listeria monocytogenes strains belonging to three distinct genotypic lineages, Journal of Food Protection, vol.66, pp.1611-1617, 2003.

V. K. Juneja, H. M. Marks, and L. Huang, Growth and heat resistance kinetic variation among various isolates of Salmonella and its application to risk assessment, Risk Analysis, vol.23, pp.199-213, 2003.

A. Lianou, J. D. Stopforth, Y. Yoon, M. Wiedmann, and J. N. Sofos, Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins, Journal of Food Protection, vol.69, pp.2640-2647, 2006.

R. Lindqvist, Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods, Applied and Environmental Microbiology, vol.72, pp.4862-4870, 2006.

T. Ross and T. A. Mcmeekin, Modeling microbial growth within food safety risk assessments, Risk Analysis, vol.23, pp.179-197, 2003.

K. Koutsoumanis, Predictive modeling of the shelf life of fish under nonisothermal conditions, Applied and Environmental Microbiology, vol.67, pp.1821-1829, 2001.

L. Rosso and T. P. Robinson, A cardinal model to describe the effect of water activity on the growth of moulds, International Journal of Food Microbiology, vol.63, pp.265-273, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00294350

J. D. Andrews and T. R. Moss, Reliability and risk assessment, vol.2, 2002.

. Anonymous, Environmental and milk products test positive for Listeria. Milk processing plant will remain closed until cleared by health officials, Press release, 2008.

T. Giffel, M. C. Zwietering, and M. H. , Validation of predictive models describing the growth of Listeria, Int. J. Food Microbiol, vol.46, pp.135-149, 1999.

E. D. Van-asselt and M. H. Zwietering, A systematic approach to determine global thermal inactivation parameters for various food pathogens -Int, J. Food Microbiol, vol.107, issue.1, pp.73-82, 2006.

J. H. Van-lieverloo, M. Fox, M. Schutyser, M. C. Te-giffel, and P. Jong, Evolving from high through low uncertainty risk assessments for dairy products using kinetic, stochastic and fault tree modelling, Proc. 5 th Int. Conf. Predictive Modeling in Foods, pp.16-19, 2007.

, Environmental and milk products test positive for Listeria. Milk processing plant will remain closed until cleared by health officials, Literature Anonymous, 2008.

E. D. Den-aantrekker, R. R. Beumer, S. J. Van-gerwen, M. H. Zwietering, M. Van-schothorst et al., Estimating the probability of recontamination via the air using Monte Carlo simulations -Int, J. Food Microbiol, vol.87, issue.1-2, pp.1-15, 2003.

M. W. Reij, E. D. Den-aantrekker, and . Ilsi-europe-risk, Recontamination as a source of pathogens in processed foods, Analysis in Microbiology Task Force, vol.91, pp.1-11, 2004.

T. Giffel, M. C. Zwietering, and M. H. , Validation of predictive models describing the growth of Listeria, Int. J. Food Microbiol, vol.46, pp.135-149, 1999.

J. H. Van-lieverloo, M. Fox, M. Schutyser, M. C. Te-giffel, and P. Jong, Evolving from high through low uncertainty risk assessments for dairy products using kinetic, stochastic and fault tree modelling, Proc. 5 th Int. Conf. Predictive Modeling in Foods, pp.16-19, 2007.

D. Vose, S. Castro, V. Jimenez-jacinto, M. Peralta-gil, A. Santos-zavaleta et al., RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation, Risk analysis: a quantitative guide. 3 rd edition. J. Wiley & Sons, Chichester, United Kingdom, 735 p. References Gama, vol.36, pp.120-124, 2008.

I. M. Keseler, J. Collado-vides, S. Gama-castro, J. Ingraham, S. Paley et al., EcoCyc: a comprehensive database resource for Escherichia coli, Nucleic Acids Res, vol.33, pp.334-337, 2005.