C. Egger-danner, B. Fue-rst-waltl, W. Zhacker, R. Janacek, J. Lederer et al., Esta blishing a health mon itoring for cattl e i n Austr ia: fi rst experi ences, EAAP-Book of Abstracts No 13: 58 th Annual Meeting of the EAAP, vol.8, p.363, 2007.

I. Dohoo and H. Marti-n-w,-s-tryhn, , 2003.

J. Hofrichter, P. Wi-nter, and K. Fuchs, Compa rison of t wo statsitical models based o n Somatic cell count for di agnosis of i ntramammary infections at cow level. 5 th IDF Ma stitis Conference, pp.558-561, 2010.

T. J. Lam, O. Gm, R. Ri-ekerink, and . Oc, Masti tis di agnostics and performance monitoring: a practical approach, Irish Vet. J, vol.62, pp.34-39, 2009.

. National-mastitis-council, Laboratory Handbook on Bovine Mastitis, 1999.

J. Pantoja, C. Hulland, and P. Ruegg, Dynamics of somatic cell counts a nd intramammary infections across dry period, Prev. Vet. Med, vol.90, pp.43-54, 2009.

M. Caccamo, R. F. De-jo-ng, G. Pool, M. H. Petri, R. et al., V ariance components for test-da y mil k, fat, and prot ein yi eld, and somati c ce ll score for anal yzing management information, J. Dairy Sci, vol.91, pp.3268-3276, 2008.

N. Gengler, A. Tijani, and G. R. Wiggans, Use of sequential estimation of regressions and effects on regressions to s olve la rge mu ltitrait t est-day models, J Dairy Sc i, vol.8, p.369, 2000.

. Icar, International agreement of recording practices, 2009.

M. Koivula, J. I. Nousiainen, J. Nous-iainen, M. , and E. A. , Use of herd solutions from a random regr ession test-d ay model for di agnostic dai ry herd management, J. D airy Sci, vol.90, pp.25-63, 2007.

P. Mayeres, J. Stoll, J. Bor-mann, R. Re, G. et al., 2 004. P rediction o f d aily mi lk, fat, and protein production by a random regression test-day model, J. Dairy Sci, vol.87, pp.1925-1933

D. Boichard, L. Maignel, and É. Verrier, The value of using probabilities of gene origin to measure genetic variability in a population, Genet. Sel. Evol, vol.29, pp.5-23, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00894153

D. Boichard, Pedig: a Fortran package for pedigree analysis suited for large populations, Proc. of the 7 th World Congr, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02833573

H. De-rochambeau, F. Fournet-hanocq, and J. Vu-tien-khang, Measuring and managing genetic variability in small populations, Ann. Zootech, vol.49, p.197, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00889883

C. Hunlun,

J. P. Gutiérrez, J. Altarriba, C. Díaz, R. Quintanilla, J. Cañón et al., Pedigree analysis of eight Spanish beef cattle breeds, Genet. Sel. Evol, vol.35, pp.43-63, 2003.

J. P. Gutiérrez and F. Goyache, A note on ENDOG: a computer program for analysing pedigree information, J. Anim. Breeding and Genetics, vol.122, pp.172-176, 2005.

G. C. Gandini and P. De-filippi, Minbreed -Software package for the genetic management of small breeds, Proc. of the 6 th World Congr. Genet. Appl. Livest. Prod, 1998.

G. C. Gandini, L. Ollivier, B. Danell, O. Distl, A. Georgoudis et al., Criteria to assess the degree of endangerment of livestock breeds in, Europe. Livest. Prod. Sci, vol.91, pp.173-182, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02671179

M. Huby, L. Griffon, S. Moureaux, H. De-rochambeau, C. Danchin-burge et al., Genetic variability of six French meat sheep breeds in relation to their genetic management, Genet. Sel. Evol, vol.35, pp.637-655, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02676101

C. Hunlun, The breeding structure of the Bonsmara breed, Bonsmara SA. Bloemfontein, pp.229-234, 2009.

C. Hunlun and P. Ferreira, A demographic overview of the Bonsmara cattle breed, Bonsmara SA. Bloemfontein, pp.65-68, 2009.

J. L. Lush, Chance as a cause of changes in gene frequency within pure breeds of livestock, Am. Nat, vol.80, pp.318-342, 1946.

L. Maignel, D. Boichard, and E. Verrier, Genetic variability of French dairy breeds estimated from pedigree information, Interbull Bull, vol.14, pp.49-54, 1996.

S. Moureaux, E. Verrier, A. Ricard, and J. C. Mériaux, Genetic variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms, Genet. Sel. Evol, vol.28, pp.83-102, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00894122

A. Robertson, A numerical description of breed structure, J. Agric. Sci, vol.43, pp.334-336, 1953.

A. Robertson, Inbreeding in selection programmes, Genet. Res, pp.189-194, 1961.

J. Sölkner, L. Filipcic, and N. Hampshire, Genetic variability of populations and similarities between subpopulations in Austrian cattle breeds determined by pedigree analysis, Anim. Sci, vol.67, pp.249-256, 1998.

B. Van-der-westhuizen, Population history and genetic variability in Bonsmara beef cattle via a pedigree analysis, Bonsmara SA. Bloemfontein, pp.258-268, 2009.

E. Verrier, J. J. Colleau, and J. L. Foulley, Methods for predicting response to selection in small populations under additive genetic models: a review, Livest. Prod. Sci, vol.29, pp.93-114, 1991.

S. Wright, Evolution in Mendelian populations, Genetics, vol.16, pp.97-159, 1931.

. Arc-aii, Beef Breeding in South Africa, vol.220, p.pp, 2001.

. Arc-api, ARC-Animal Production Institute, Nati onal Beef Recording and Impr ovement Scheme: Annual Report, vol.20, p.pp, 2008.

K. Ramsay, L. Harris, and A. Kotzé, Landrace breeds: South Africa's indigenous and locally developed farm animals, Farm Animal Conservation Trust. Pretoria, vol.112, p.pp, 2000.

. Fao, Commi ssion on Geneti c Resources for Food and Agriculture: Food an d Agriculture Organization of the United Nations, p.511, 2007.

J. P. Gutiérrez, J. Altarriba, C. Diaz, R. Quintanilla, J. Cañón et al., Pedigree analysis of eight Spanish beef cattle breeds, Genet. Sel. Evol, vol.35, pp.43-63, 2003.

C. Hunlun, Edi tors). Bonsmara: Born to breed -born to lead, Bonsmara SA. Bloemfontein, pp.229-234, 2009.

C. Hunlun and P. Ferreira, A demographic overview of the Bonsmara ca ttle breed, B onsmara S A. Bl oemfontein, pp.65-68, 2009.

. Nextgensa, N extGenSA -A s tatistical and an alytical s ervice by, 2010.

A. Robertson, A numerical description of breed structure, J. Agric. Sci, vol.43, pp.334-336, 1953.

. Sa-s-tud and . Book, South African Livestock Breeding -2004, vol.160, p.pp, 2004.

B. Van-der-we-sthuizen, Population hi story and gen etic vari ability in Bonsmara be ef cattl e vi a a pedigree ana lysis, Bonsmara SA. Bloemfontein, pp.258-268, 2009.

, Proc. ICAR 37th Annual Meeting -Riga, 2010.

U. G. Abreu, C. Mcmanus, and S. A. Santos, Cattle Ranching, Conservation and Transhumance in the Brazilian Pantanal, Pastoralism -Research, Policy and Practice, vol.1, 2010.

J. S. Barker, J. H. Van-der-werf, H. Graser, R. Frankham, C. Gondoro et al., Adaptation and Fitness in Animal Populations. Evolutionary and Breeding Perspectives on Genetic Resource Management, Aust. J. Exp. Agric, vol.48, pp.21-27, 2008.

. Scholtz,

L. Bergh, The national beef recording and improvement scheme, Beef breeding in South Africa, 2 nd Edition, pp.57-72, 2010.

H. Blackburn and C. Mezzadra, Policies for the management of animal genetic resources, Proc. 8 th Wrld, 2006.

J. C. Bonsma, Livestock production: a global approach, 1980.

J. C. Bonsma, Man must measure: livestock production, 1983.

M. W. Bruford, D. G. Bradley, and G. Luikart, DNA markers reveal the complexity of livestock domestication, Nature Reviews Genetics, vol.4, pp.900-910, 2003.
URL : https://hal.archives-ouvertes.fr/halsde-00294790

H. Clark, C. Klein, and P. Newton, Potential management practices and technologies to reduce nitrous oxide, methane and carbon dioxide emissions from New Zealand Agriculture. Ngaherehere, NZ: Ministry of Agriculture and Forestry, 2001.

C. M. Delgado, H. Rosegrant, S. Steinfeld, . Ehui, and C. Courbois, Livestock to 2020: the next food revolution. IFPRI, FAO, and ILRI, 1999.

S. Demeke, F. W. Neser, and S. J. Schoeman, Estimates of genetic parameters for Boran, Friesian and crosses of Friesian and Jerseys with the Boran cattle in the tropical highlands of Ethiopia: milk production traits and cow weight, Journal of Animal Breeding and Genetics, vol.121, pp.163-175, 2004.

D. S. Falconer and T. F. Mackay, Introduction to Quantitative Genetics, 1996.

. Fao/waap, Report of the FAO/WAAP Workshop on Production Environment Descriptors for Animal Genetic Resources, 2008.

D. Furstenburg and M. M. Scholtz, Global climate change and animal production in southern Africa: a short review. Poster presented at 10th Wrld. Cong, Anim. Prod. Cape Town, 2009.

T. Garnett, Intensive versus extensive livestock systems and greenhouse gas emissions. Food Climate Research Network briefing paper, 2010.

D. Gianola, Statistics in animal breeding: Angels and demons, Proc. 8 th Wrld, 2006.

J. P. Goopy and R. S. Hegarty, Repeatability of methane production in cattle fed concentrate and forage diets, J. Anim. Feed Sci, vol.13, pp.75-78, 2004.

G. Guérin, E. Bailey, D. Bernoco, I. Anderson, D. F. Antczak et al., The second generation of the International Equine Gene Mapping Workshop half-sibling linkage map, Animal Genetics, vol.34, pp.161-168, 2003.

G. Guillot, A. Estoup, F. Mortier, and J. F. Cosson, A spatial statistical model for landscape genetics, Genetics, vol.170, pp.1261-1280, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683491

O. Hanotte, D. G. Bradley, Y. V. Ochieng, E. W. Hill, and J. E. Rege, African pastoralism: Genetic imprints of origins and migrations, Sci, vol.296, pp.336-339, 2002.

L. B. Hansen, Monitoring the worldwide genetic supply for dairy cattle with emphasis on managing crossbreeding and inbreeding, Proc 8th Wrld Cong. Genet. Applied Livest. Prod, 2006.

B. J. Hayes, P. J. Bowman, A. J. Chamberlain, and M. E. Goddard, Invited review: genomic selection in dairy cattle: progress and challenges, Journal of Dairy Science, vol.92, pp.433-476, 2009.

P. Hazell, C. Poulton, S. Wiggins, and A. Dorward, The future of small farms for poverty reduction and growth, 2007.

, Challenges and opportunities for beef production in developing countries of the southern hemisphere

S. R. Hegarty, J. P. Goopy, R. M. Herd, and B. Mccorkell, Cattle selected for lower residual feed intake have reduced daily methane production, J. Anim. Sci, vol.85, pp.1479-1486, 2007.

M. Herrero, O. Hanotte, A. Notenbaert, and P. K. Thornton, Potential of modelling animal genetic resources data in relation to other existing data sets, Report on the FAO/WAAP workshop on production environment descriptors for animal genetic resources report, 2008.

, Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change, Synthesis report, 2007.

D. M. Kidd and M. G. Ritchie, Phylogeographic information systems: putting the geography into phylogeography, J. Biogeogr, vol.33, pp.1851-1865, 2006.

B. Kinghorn and S. Kinghorn, Pedigree viewer, 2009.

I. S. Kosgey, S. M. Mbuku, A. M. Okeyo, J. Amimo, J. Philipsson et al., Institutional and organizational frameworks for dairy and beef recording in Kenya: A review and opportunities for improvement, Agricultural Systems, 2010.

G. V. Kozloski, Bioquímica dos ruminantes. Santa Maria: Editora UFSM, p.140, 2002.

D. Kugonza, Genetic diversity, selection criteria and verification of kinship assignment based on oral indigenous knowledge of Ankole cattle, 2009.

R. A. Leng, Supplementation of tropical and subtropical pastures for ruminant production, Herbivore nutrition in the tropics and subtropics, pp.129-144, 1984.

M. J. Linington, The use of Sanga cattle in beef production, pp.31-37, 1990.

S. Manel, M. K. Schwartz, G. Luikart, and P. Taberlet, Landscape genetics: combining landscape ecology and population genetics, Trends Ecol. Evol, vol.18, pp.189-197, 2003.
URL : https://hal.archives-ouvertes.fr/halsde-00279786

A. S. Mariante and C. Mcmanus, The role of the Southern Cone of Latin America in World Beef Production. WAAP Book of the Year, 2007.

R. E. Mcdowell, Improvement of livestock production in warm climates, 1972.

C. Mcmanus, H. Louvandini, and S. Paiva, Examples of different aspects of adaptive fitness, how they can be measured and possible proxi-indicators, Report on the FAO/WAAP workshop on production environment descriptors for animal genetic resources report, pp.6-8, 2008.

C. Mcmanus, E. Prescott, G. R. Paludo, E. Bianchini, H. Louvandini et al., Heat tolerance in naturalized Brazilian cattle, Livest. Sci, vol.120, pp.156-264, 2009.

T. H. Meuwissen, B. J. Hayes, and M. E. Goddard, Prediction of total genetic value using genomewide dense marker maps, Genet, vol.157, pp.1819-1829, 2001.

R. A. Moss, Methane: Global warming and production by animals, p.105, 1993.

F. W. Neser, G. J. Erasmus, and M. M. Scholtz, The use of a cluster analysis in across herd genetic evaluation for beef cattle, S.A. J. Anim. Sci, vol.38, pp.51-57, 2008.

J. D. Nkrumah, E. K. Okine, G. W. Mathison, K. Schmid, C. Li et al., Relationships of feedlot efficiency, performance and feeding behaviour with metabolic rate, methane production, and energy partitioning in beef cattle, J. Anim. Sci, vol.84, pp.145-153, 2006.

C. S. Pinares-patino, R. Baumont, and C. Martin, Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can, J. Anim. Sci, vol.83, p.769, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02683597

K. C. Prayaga, W. Barendse, and H. M. Burrow, Genetics of tropical adaptation, Proc 8 th Wrld Congr. Genet. Appl. Livest. Prod, 2006.

. Scholtz,

K. C. Prayaga and J. M. Henshall, Adaptability in tropical beef cattle: genetic parameters of growth, adaptive and temperament traits in a crossbred population, Aust. J Exp. Agri, vol.45, pp.971-983, 2005.

A. Primo, América: conquista e colonização: a fantástica história dos conquistadores ibéricos e seus animais na era dos descobrimentos, p.183, 2004.

T. O. Rewe, P. Herold, H. P. Piepho, A. K. Kahi, and A. Valle-zarate, Genetic and economic evaluation of basic breeding programme for Kenya Boran cattle, Trop. Anim. Hlth and Prod, vol.42, pp.327-340, 2010.

C. E. Romanini, I. D. Nääs, D. Salgado, K. A. Lima, M. M. Valle et al., Impact of Global Warming on Brazilian Beef Production, Livestock Environment VIII, 2008.

M. M. Scholtz and J. Bester, Off-take and production statistics in the different South African cattle sectors: Results of a structured survey, S. Afr. J. Anim. Sci, 2009.

M. M. Scholtz and A. Theunissen, The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa, Anim. Genet. Res. Inf, vol.46, pp.33-39, 2010.

M. M. Scholtz, Selection possibilities for hardy beef breeds in Africa: The Nguni example, Proc. 3 rd World Cong. Sheep and Beef Cattle Breed, vol.2, pp.303-319, 1988.

M. M. Scholtz, The role of research and the seed stock industry in the in situ conservation of livestock genetic resources, Proc. 4th All Africa Conf. Anim. Agric. Arusha, pp.311-316, 2005.

M. M. Scholtz, D. Furstenburg, A. Maiwashe, M. L. Makgahlela, H. E. Theron et al., Environmental-genotype responses in livestock to global warming: A Southern African perspective, S. Afr. J. Anim. Sci, 2009.

M. M. Scholtz, P. E. Lombard, D. S. De-bruin, and C. B. Enslin, Eenvoudige metode vir die beraming van bosluisbestandheid by beeste, S. Afr. Tydskrif. Veek, vol.19, pp.121-123, 1989.

M. M. Scholtz, A. M. Spickett, P. E. Lombard, and C. B. Enslin, The effect of tick infestation on the productivity of cows of three breeds of cattle, Onderstepoort J. Vet. Res, vol.58, pp.71-74, 1991.

R. G. Silva, L. A. Smith, B. G. Cassell, and R. E. Pearson, The Effects of Inbreeding on the Lifetime Performance of Dairy Cattle, J. Dairy Sci, vol.81, issue.10, pp.2729-2737, 1998.

A. M. Spickett, D. De-klerk, C. B. Enslin, and M. M. Scholtz, Resistance of Nguni, Bonsmara and Hereford cattle to ticks in a bushveld region of South Africa, Onderstepoort J. Vet. Res, vol.56, p.251, 1989.

C. Steiger, Modern Beef Production in Brazil and Argentina, Choices, vol.21, pp.105-110, 2006.

H. Steinfeld, P. Gerber, T. Wassenaar, V. Castel, M. Rosales et al., Livestock's long shadow: Environmental issues and options, p.390, 2006.

, GEO4 Global Environment Outlook., Environment for development, UNEP, p.540, 2007.

. Us-epa, United States Environmental Protection Agency, 2006.

P. M. Vanraden, Efficient methods to compute genomic predictions, J. Dairy Sci, vol.91, pp.4414-4423, 2008.

P. M. Vanraden, C. P. Van-tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel et al., Invited Review: Reliability of genomic predictions for North American Holstein bulls, J. Dairy Sci, vol.92, pp.16-24, 2009.

E. Wall, G. Simm, and D. Moran, Developing breeding schemes to assist mitigation of greenhouse gas emissions, pp.1-11, 2009.

C. B. Wasike, E. D. Ilatsia, J. M. Ojango, and A. K. Kahi, Genetic parameters for weaning weight of Kenyan Boran cattle accounting for direct-maternal genetic covariances, S. Afr. J. Anim. Sci, vol.36, pp.275-281, 2006.

J. L. Williams, The use of molecular marker-assisted selection in animal breeding and biotechnology, Rev. Sci. Tech. Off. Int. Epiz, vol.24, pp.379-391, 2005.

M. Wurzinger, D. B. Ndumu, R. Baumung, A. G. Drucker, A. M. Okeyo et al., A comparative analysis of alternative methods for capturing indigenous selection criteria, Anim. Breed. Genet, 2009.

O. Leray, Update on ICA R R eference La boratory Network. Fourth ICA R Reference Labora tory Network Me eting. Proceed ings of the 3 6 th ICAR Bie nnial Se ssion, ICAR technical Series, vol.1, issue.13, pp.291-293, 2008.

O. Leray, ICAR AQA strategy -International anchorage and harmonisation. Fourth ICAR Reference Laboratory N etwork Meeti ng, ICAR technical Series, issue.13, pp.295-300, 2008.

D. Bertrand and E. , La spectrom étrie i nfrarouge et ses ap plications anal ytiques, 2006.

. Foss, Reference Manual of Milkoscan FT120 (Type 71200), 1998.

J. K. Kramer, V. Fell, M. E. Sauer, F. D. Mossoba1, M. M. Yurawecz et al., Eval uating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids, Lipids, vol.32, pp.1219-1228, 1997.

M. Ferrand, B. Huq, S. Barb, F. Barille, F. Fauc-on et al., D etermination of fatty acid profil e i n cow's mi lk usi ng mi d-infrared spectrometry: Interest o f appl ying a vari able sel ection by geneti c al gorithms before a PLS regression, 2010.

R. Leardi and G. Lupi, Genetic algorithms applied to feature sel ection in PLS regression: how and when to use them, Anal.Chim. Acta, vol.461, pp.189-200, 2002.

H. Soyeurt, P. Dardenne, F. Dehareng, G. Lognay, G. Ve et al.,

N. Gengler, Esti mating Fatty A cid Content in Cow Mil k Us ing Mi d-Infrared S pectrometry, J . Dairy Sci, vol.89, pp.3690-3695, 2006.

M. Tenenhaus, La regression PLS, Technip, Lassay-les_Chateaux, p.281, 2002.

, New parameters and analytical challenges for milk recording by Fourier-Transform Mid-Infrared Spectrometry, 2010.

, Passage des Deportes 2, B-5030 Gembloux, Belgium 2 National Fund for Scientific Research, Animal Science Unit

C. Bastin, L. Laloux, A. Gillon, F. Miglior, H. Soyeurt et al., Modeling milk urea of Walloon dairy cows in management perspectives, J. Dairy Sci, vol.9, pp.3529-3540

P. S. Belton, Theory and appl ication of near infrared spectroscopy in determination of foo d Chillia, Chem, vol.69, issue.1, 1997.

H. Cen and Y. He, Trends Food Sci. Technol, vol.2, issue.2, pp.72-83

Y. Rd, C. Marti-n, J. Rouel, and M. Doreau, Milk fatty aci ds i n dai ry cows fed whol e cr ude linseed, extruded l inseed, or linseed oil , and thei r relationship with me thane o utput, J . Dairy Sc i, vol.92, pp.5199-5211, 2009.

, New Parameters and Analytical Challenges for Milk Recording by FTMIR

F. G. Colinet, H. Soye-urt, C. Au, A. Van-lierde, N. Keyen et al., Potential etimation of titrable acidity in co w milk using mid-infrared spectrometry, Proc. 37 th Dal Z Reproducibility and re peatability of measures of mi lk coagul ation properti es an d De M le acidity, and pH of bovi ne milk using Hanse airy Sci, vol.84, pp.575-582, 2010.

, content estimated by mi d-infrared spectrometry in Soyeu Sci. 91:3211-3224. 26. ow milk u sing mid -infrared spectrometry, J. Dairy Sci, vol.90, pp.1761-1766

L. Riga, R. Otto, M. De-m-archi, A. Ce-cchinato, M. Enasa et al., predictive ability of mid-infrared reflectance spectroscopy, Soyeu ICAR annual meeting, vol.91, pp.4103-4112, 2008.

M. Archi, C. C. Fagan, C. P. O'donnell, A. Cecchinato, R. Da-l-zotto et al., Prediction of coagul ation properties, titratab mid-infrared spectroscopy, J. Dairy Sci, vol.92, pp.423-432, 2009.

P. W. , Screening of dai ry cows for ketosi s by use of i nfrared spectroscopy and multivariate calibration, J. Dairy Sci, vol.82, pp.2005-2010, 1999.

C. Heuer, H. J. Uinge, E. T. Utz, Y. H. Schukken, J. H. Van-der-maa-s et al., D etermination of acetone i n cow milk by Fouri er transform i nfrared, 2001.

A. P. De-roo-s, H. J. Van-den-bi-jgaart, J. Horl, and G. Jong, 20 07. S creening for sub clinical ketosis in dairy cattle by Fourier transfor

M. J. Rutten, H. Bovenhui-s, K. A. Hettinga, H. J. Van-val, J. A. Van-ar et al., Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer, J. Dairy Sci, vol.92, pp.6202-6209, 2009.

S. Sivakesava and J. Irudayaraj, R apid d etermination of t etracycline in mi lk b y F T-MIR a nd FT-NIR spectroscopy, J. Dairy Sci, vol.85, issue.3, pp.487-493, 2002.

H. Soyeurt, P. Dardenne, F. Dehareng, G. Lognay, D. Veselko et al., Esti mating fatty aci d content i n cow mil k using mi d-infrared s pectrometry, J. Dairy Sci, vol.89, issue.9, pp.3690-3695, 2006.

H. Soyeurt, F. G. Co-linet, V. M. .-r.-arnould, P. Dardenne, C. Be-rtozzi et al., Genetic variability of lactoferrin bovine milk, J. Dairy Sci, vol.90, issue.9, pp.4443-4450, 2007.

H. Rt, F. Dehareng, P. Mayeres, C. Bertozzi, and N. Gengler, Variation of delta9-desaturase activity in dairy cattle, J. Dairy, 2008.

H. Soyeurt, P. Dardenn-e, F. Dehareng, C. Basti-n, and N. Er, Geneti c paramet ers o f saturated an d monounsat urated fatty acid content and the rati o of saturated to unsaturated fatt y acids in bovine milk, J. Dairy Sci, vol.91, pp.3611-3647, 2008.

H. Soyeurt, D. Bruwier, J. Romn-ee, N. Er, C. Bertozzi et al., Dairy Sci, vol.9, pp.2444-2454

H. Rt, F. Dehareng, N. Gengler, S. Mcparland, E. Wall et al., J. Dairy Sci. Submitted. Report of Interbull Sub-Committee Chair Reinhard Reents Members, vol.1, 2010.

, Vereinigte Informationssysteme Tierhaltung w

, Heideweg, vol.1, 27283.

, Brian Van Doormaal vandoorm@cdn.ca Canadian Dairy Network 150 Research Lane, vol.307

G. Pedersen and A. Gap@landscentret, dk Nordisk Avelsvärdering Udkaersvej 15

, Animal Evaluation Unit, vol.3016

M. Faust-mfaust@absglobal,

P. , Box 459, 1525 River Rd

, Sophie Mattalia sophie.mattalia@jouy.inra.fr

I. France-génétique-Élevage and . Vilvert, , vol.78352

, Enrico Santus enrico.santus@anarb.it

W. Hans-wilmink, H@cr-delta.nl NRS PO Box 454, 6800 AL Arnhem

, Juraj Candrák Slovak University of Agriculture in Nitra Juraj.candrak@uniag.sk 956 13 Korniarovce 153

, Jan Philipsson (Secretary)

J. P. Slu, se SLU -Department of Animal Breeding and Genetics SE-750 07 Uppsala, Sweden Members left Paul Van Raden (USA), Bill Montgomerie (NZL) Meetings Last, 2010.

M. Burke,

, Allain Clement (France) Allain.Clement@inst-elevage.asso.fr

A. Fear,

M. Hammel,

P. Savary,

V. Tancin, Slovak Republic) tancin@scpv.sk Members left Meetings Last, Next, vol.02, pp.16-17, 2010.

P. Full, +. Tc-directors, P. Huijsmans, and G. Van-logtenstinj, The Netherlands Report of Artificial Insemination and Relevant technologies Working Group WG/TF/SC name Artificial Insemination and Relevant technologies Chair Laurent Journaux, Laurent.journaux@unceia.fr Members, vol.1, 2008.

U. Witschi, S. Swissgenetics, and . Uwi@swissgenetics,

J. Gerben-de and . Delta, The Netherlands jong.g@cr-delta

G. Doak, . Naab, and . Org,

U. Janowitz, G. Ruweg, and . Ujanowitz@ruweg,

J. Erikson and S. , Sweden jan-ake.eriksson@svenskmjolk.se Members left Meetings Last: Niagara Falls, 17 th of, 2008.

L. Andrews, , pp.3-3, 2006.

C. Egger-danner, E. Zuchtdata, and . Gmbh,

N. Gengler,

J. Pryce, J. Dr, and . Pryce, Biosciences Research Division, Department of Primary Industries, Senior Research Scientist, vol.3083

K. F. Stock and V. , Vereinigte Informationssysteme Tierhaltung w.V. Heideweg, vol.1, p.27283, 2010.

J. B. Dr and . Cole, Research Geneticist Animal Improvement Programs Laboratory 10300 Baltimore Avenue BARC-West, Building 005, p.306

A. Bradley,

A. J. , Bradley@bris.ac.uk Members left Ab Groen (original chairman

J. Sölkner, original member) Meetings Last: ICAR meeting, 2006.

, Next: part of group, 2010.

, Participation Full +: Absence: None Key Agenda Issues 11. Status of female fertility guidelines. 12. Plan for feet and legs guidelines. SC 13. Circulating female fertility guidelines and getting them approved 14

, Circulating FLG and getting them approved 16. Writing calving ease and stillbirth guidelines (CESG)

, Circulating CESG and getting them approved

Z. Liu, . Vit, . Germany, and . De,

S. Mattalia, Institute de l'Elevage, France, sophie.mattalia@dga.jouy.inra.fr, since, 2004.

L. Schaeffer,

M. Fioretti, . Aia, and . Italy, , 2010.

P. Vanraden and . Aipl--usda, United States, paul@aipl.arsusda.gov, since 1998

N. Gerben-de-jong, T. Netherlands, and J. G@nrs, Members left Alessia Tondo, AIA, Italy, tondo.a@aia.it, Latvia Report of Goat Milk Recording Working Group Chair Zdravko Barac, vol.1, 2004.

. Drago and . Kompan@bfro,

J. Astruc,

C. Ligda, National Agricultural Research Foundation, 2004.

J. and N. Falls,

, Changes in the constitution of the working group -Renewal of the members of the group

, Discussion about preparing "on line" database to fill in his own results for each countries

, To establish the standards for meat recording in goat breed? on-line enquiry is a useful and collective tool that should be filled in by all the countries with dairy sheep population

, International Agreement of Recording Practices. Guidelines approved by the General Assembly, ICAR guidelines, pp.57-67, 2008.

C. Gerard-van-logtestijn and . Nl, Report of the Parentage Recording Working Group Members 1, 2010.

J. M. Vacelet, Organisme de selection de la race Montbeliarde, FR, 2007.

J. Duda and . Lkv-munchen, , 2007.

S. Harding,

S. Tellez, Resource Computing, US, sztellez@aol.com Members left Dick Koorn, CRV, NL, Koorn.d@nrs.nl Meetings Last, 2007.

, Sheep (all breeds) Filiation tests 673 an

. Belgium, Wallonia Region) Sheep (all breeds) PrP 206 an, p.206

. Belgium, Wallonia Region) Sheep (Belgian Milk Sheep) Microsatellite markers for genetic diversity studies, vol.121, p.12

, Cryo-preservation program

, Sheep (all breeds) Filiation tests 977 an, p.252

, France Lacaune PrP 6704 Yes 2009 France Lacaune PrP 6337 Yes 2008 France Manech Tête Noire PrP 648 Yes 2009 France Manech Tête Noire PrP 745 Yes 2008 France Manech Tête Rousse PrP 5943 Yes 2009 France Manech Tête Rousse PrP 4348 Yes 2009 Italy all Scrapie 20000 analysis (estimated) , 410 flocks Yes 2009 Slovenia All breeds PrP genotyping 2255 analyses, 253 flocks Yes, Czech Rep. All breeds PrP Yes 2009 Czech Rep. All breeds PrP Yes 2008 France all breeds Filiation tests 1473 animals (all rams progeny-tested and some ewes, 2008.

P. Spain-lacaune and . Pnrp, PNRP Filiation test: 225/6; PNRP: 1632/35 Yes 2009 Spain Merina de Grazalema Filiation test (11), PNRP Filiation test: 640/30; PNRP: 650/30 Yes 2008 Spain Rubia del Molar PNRP, 34000/29 Yes 2008 Spain Latxa Cara Negra Filiation test, pp.112-118, 2008.

, Most of the samples are collected but analyzed only if needed; more analysis in, 2008.