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ABSTRACT Many studies have been devoted to the interaction between natural convection and 
radiation heat transfer in a differentially heated cavity. This problem has already been treated using 
the Boussinesq approximation. The main purpose of this study is to extend this interaction to the 
low Mach number approximation (in 3D), for both transparent and participating media. The Navier-
Stokes and energy equations written for an ideal gas are solved using a finite volume method, while 
the discrete ordinates method is used to solve the radiation transfer equation. The coupling between 
the energy equation and the radiation transfer is done by adding an additional source term in the 
energy equation and via the radiation heat exchange between the surfaces bounding the computation 
domain. The work is first validated using the Boussinesq approximation mainly by investigating the 
distribution of the heat flux on the hot isothermal wall. Then some simulations are presented 
highlighting the differences between the low Mach number and the Boussinesq approximations. 
 

NOMENCLATURE 
 

L     cubic enclosure length, [m] 
N mesh size in a space direction 
n normal vector to a surface  
Pth thermodynamic pressure, [Pa] 
Qrad       radiative heat flux, [W.m-2]  

Q* dimensionless total heat flux, -L(∂T/∂n)/(Th-Tc) + LQrad .n /k0(Th-Tc) 
R ideal gas constant, [J.Kg-1.K-1]  

s discrete ordinate 
T* dimensionless temperature, (T-Tc)/(Th-Tc) 
 



Subscripts and superscripts 

0 reference value  
c cold  boundary 
h hot  boundary 
rad radiative 
* dimensionless 
 
Dimensionless groups 

Pl Planck number, k0(Th-Tc)/LσBTc
4 

Pr Prandtl number, µ0CP0 /k0 
Ra Rayleigh number, gρ0

2L3(Th-Tc)Pr/T0µ0
2 

T0
* reference temperature ratio, Tc /(Th-Tc) 

 
Symbols 

∇. divergence operator, ∂ /∂ x+∂ /∂ y+∂ /∂ z 
 

INTRODUCTION 
 

The numerical simulation of fluid flow, with high temperature heat transfers in participating media, is 
one of the most difficult problems in fluid mechanics. To solve this problem, one needs to manage at 
least two non-linear phenomena: the convective term in the generalized Navier-Stokes equations 
(NSE) (continuity, momentum, energy) and the black body emission in the energy and radiation 
transfer equation (RTE). The numerical resolution of the RTE, requires an additional computational 
effort, due to the directional nature of the RTE that must be solve along an optical path. 
 
The main purpose of this paper is the analysis of natural convection phenomenon coupled with 
radiation heat transfer in a three-dimensional differentially heated cavity. Flows in a confined 
geometry, associated with heat transfer phenomena are commonly encountered in many practical 
situations. Because of the simplicity of the geometry and the easy way to fix the boundary 
conditions, this problem has been widely studied and represents a simplified version of more 
practical scenarios. For the same reasons mentioned just above, it constitutes also a very interesting 
benchmark problem that is very often used to validate new numerical methods. 
 
Following the previous study of Colomer [2004], this problem has been solved using a 
dimensionless formulation and for a given set of Rayleigh and Planck numbers, which are the 
relevant physical parameter governing the convective heat transfer in the cavity. Both non-
participating and participating media have been investigated. For the latter, several values of the 
optical thickness were considered. The analysis was limited to the case for which all the walls have 
the same emissivity. Code validation was performed in the case of Boussinesq assumption and then 
the analysis has been extended to the low Mach number approximation, thus allowing dealing with 
large temperature gaps for which the radiative effects are relevant and to which little attention has 
been paid by the heat transfer community. 
 

CONFIGURATION: DIFFERENTIALLY HEATED CAVITY  
 

The flow and the heat transfer in a cubic enclosure of length L are analyzed, considering either a 
transparent or a participating, gray, purely absorbing (non-scattering) homogeneous media. As 
depicted in Fig. 1, the west wall is maintained isothermal at the temperature Th, the east one is 



maintained isothermal at the temperature Tc with Th > Tc, while the remaining four walls are adiabatic. 
The walls of the cavity have been treated as black bodies. 

 
Figure 1.  Three-dimensional differentially heated cavity scheme. 

 
MODELING 

 
We consider a Newtonian fluid whose flow, assumed to be laminar and steady state, is governed by 
the NSE obtained under the assumption of a low Mach number. The equation of state is that of an 
ideal gas and the transport equations are solved in their conservative form. The DOM is used to solve 
the RTE for a non-scattering medium, determining thus the radiation intensity field [e.g., Modest 
2003]. To ensure the coupling between radiation and convection in the case of a participating medium, 
a source term is added in the energy equation. Under these assumptions, the energy equation can be 
written in the dimensional form as follows: 

( )   ∂ ∂ ∂= − ∇ ⋅    ∂ ∂ ∂  

0
j rad

j j P0 j

k T
Tu Q

x x C x
ρ  

where the radiative dimensional divergence term is calculated as the difference between the 
emission and the absorption: 

4
rad B

P0 4

Q 4 T I ds
C L π

τ σ
 

∇ ⋅ = −  
 

∫  

and variables ρ, uj, T, and I denote respectively the density, the velocity component along the j-
direction, the temperature, and the radiation intensity (solution of the RTE). k0 represents the 
thermal conductivity, CP0 is the specific heat at constant pressure, and σB is the Stefan-Boltzmann 
constant. τ represents the optical thickness, defined by τ = κ×L where κ is the absorption coefficient. 
The RTE writes as follows: 

π
σκκ

4T
IIs B=+∇⋅  

The radiation intensity depends both on space and directions. Physical properties of the RTE and 
several resolution methods are detailed in Modest’s book [Modest 2003]. 

For the velocity field, no-slip boundary conditions are applied on the walls and for the temperature 
field uniform temperatures are imposed on the west and the east walls, as shown in Fig. 1. The 



adiabatic boundary condition applied on the remaining walls includes a conduction term and a 
radiation one. The temperature gradient at the adiabatic wall is given by:  

rad
0

T 1
Q .n

n k

∂ =
∂

     and         ( )rad

4

Q .n n s I ds
π

= ⋅∫  

where Qrad.n represents the energy flux due to radiation through an arbitrarily oriented surface 
whose perpendicular vector is n, estimated with a weighted summation of the integrand at selected 
ordinates (directions) s. For non-participating media (τ = 0), the coupling between the radiation 
transfer and the NSE is done via the radiative heat exchange between surfaces at the boundaries of 
the computational domain. Thus, radiation effects only depend on the temperature of the 
boundaries, as outlined in Colomer [2004]. Initially, we consider the fluid at rest, at a uniform 
temperature T0, namely the mean value between Th and Tc. 
 
The flow structure and the temperature distribution are governed, for a given optical thickness τ, by the 
Rayleigh number (Ra), the Prandtl number (Pr), the Planck number (Pl), and the dimensionless 
temperature T0
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Following the work of Colomer [2004], we consider air as the working fluid (R = 287 J.Kg -1.K -1, 
CP0 = 1004.5 J.Kg -1.K -1, Pr = 0.71). The length of the cubic cavity L was taken equal to 1 m and the 
thermodynamic pressure of reference Pth0 = 1.013×105 Pa. The present work is characterized by the 
governing parameters Ra = 10 6 and Pl = 0.016. The thermal conductivity obtained by 
k0 = Pl σB Tc

4L /(Th-Tc ) and the dynamical viscosity µ0 = k0Pr/CP0 are constant. The gravity intensity 
g = Ra µ0

2T0 /(ρ0
2PrL3(Th-Tc )) is consistently modulated and the mean density value is obtained using 

the perfect gas law ρ0 = Pth0 /RT0. In the context of the low Mach number approximation, the mean 
temperature T0 = (Th+Tc)/2 is taken equal to 600 K and the mean temperature ratio T0

* = 1, this leads 
to Th = 800 K and to Tc = 400 K. For the code validation, minor code modifications were necessary to 
perform the benchmark of Colomer [2004] with the same dimensionless control parameters, under the 
Boussinesq approximation. To deal with that, the mean temperature T0 is taken equal to 300 K, and the 
prescribed mean temperature ratio (T0

* = 17) leads to Th = 308.5 K and Tc = 291.5 K approximately. 
The dimensionless local total heat flux at the hot wall can be calculated by: 

  *
0 rad

0 y 0

1 T
Q k Q .n

Q n =

∂ = − + ∂ 
     with      
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where Q0 represents the reference total heat flux. This total heat flux has been considered as the 
significant result to be presented for the three-dimensional differentially heated cavity solutions 
throughout this paper, as in the work of Colomer [2004]. 
 

NUMERICAL METHOD  
 
The transport equations are solved by a fully-implicit finite volume method in a segregated 
formulation on a structured but non-uniform staggered mesh. The space discretization is based on high 
order schemes with flux limiters: QUICK scheme (third order scheme) is used for convection terms 
while diffusion terms are approached by a central difference approximation. The velocity-pressure 
coupling is treated using SIMPLER algorithm and the linearization of the equations relies on the 
Picard procedure. The linear systems obtained from the discretized transport equations are solved 
using the BiCGStab iterative method, while the linear system of the pressure equation (symmetric 
equation) is solved by the Conjugate Gradient (CG) method. The validity of the computation code has 
been checked on several benchmarks of natural and forced convection [e.g. Accary, to appear]. The 



use of under-relaxation techniques, when it was necessary, allowed a faster convergence and a better 
stability of the solution. A steady-state solution is supposed to be obtained when the residuals (in L-∞ 
norm) of all transport equations reach 10-9 in dimensional form. Concerning the discrete ordinates 
contribution, the calculations were performed using the S8-approximation. All the results given 
throughout the paper were obtained with an upwind scheme for the interpolation of the radiation 
intensity, usually known as the Step scheme. The choice of weights and ordinates is similar to that of 
Modest [2003].  
 

CODE VALIDATION: THE BOUSSINESQ CASE  
 

The numerical code employed in this work has been verified by the means of the resolution of the 
benchmark problem treated in Colomer [2004]. The results have been briefly compared in order to 
validate the numerical method rather to give extensive numerical results. A quantitative agreement 
with the results was observed; this agreement required a non-uniform mesh of N3 = 1003 refined near 
the solid walls. Figure 2 shows the temperature field, where T* = (T-Tc )/(Th-Tc), obtained in the 
context of Boussinesq approximation for a participating medium with a specified optical length τ = 10, 
and in which the governing parameters values are Ra = 106, Pl = 0.016, T0

* = 17 and Pr = 0.71. A 
quick inspection shows that the solution presents symmetry with respect to the center of the cavity, 
which is a property of natural convection in the Boussinesq approximation for the considered 
configuration. We notice particularly that the temperature gradient at the adiabatic boundaries is not 
zero in the presence of radiation as mentioned in the Modeling section. For the same set of parameters, 
a study was performed to analyze the influence of the mesh spacing on the final result. Three different 
meshes, with 603, 803, and 1003 control volumes were used. The convergence to an asymptotic 
solution can be observed by evaluating one or several pertinent quantities between one simulation and 
its previous coarser solution. Figure 3(a) shows the averaged (in the z-direction) dimensionless heat 
flux at the hot wall versus the depth x, for three grid sizes (N = 603, 803, and 1003). These results 
motivated the selection of the third mesh (i.e. the mesh with 1003 control volumes) as fine enough to 
perform the numerical studies. A comparison of the mean heat flux for three-dimensional situations 
has been also carried out for several optical thicknesses. Figure 3(b) shows the mean heat flux versus 
the depth x, for a non-participating medium (τ = 0) and for a participating medium (τ = 1 and τ =10). 
Again a good agreement is obtained here with the results presented by Colomer [2004]. 
 

       
                             (a)                                                                          (b) 

Figure 2.  (a) Temperature field obtained in the Boussinesq approximation for Ra = 106, Pl = 0.016, 
T0

* = 17, τ = 10, and Pr = 0.71. (b) A cut on the temperature field with the streamlines at x = 0.5. 
 



     
                                           (a)                                                                           (b)    
Figure 3. Average heat flux at the hot wall versus depth x obtained in the Boussinesq approximation 
for Ra = 106, Pl = 0.016, T0

* = 17, Pr = 0.71. (a) For τ = 10 and for three grid sizes, showing the 
reaching of a mesh independent solution. (b) For N = 100 and for τ = 0, 1, 10. 
 

EXTENSION TO THE LOW MACH NUMBER APPROXIMATION 
 

The investigation is now extended to a large temperature gap (Th-Tc) for which the Boussinesq 
assumption fails. Following the analysis done in the “code validation” section, figure 4 shows the 
temperature field, where T* = (T-Tc )/(Th-Tc), obtained in the case of the low Mach number 
approximation for a participating medium with a specified optical length τ = 10, and in which the 
governing value parameters are Ra = 106, Pl = 0.016, T0

* = 1 and Pr = 0.71. As expected we notice 
that the solution has lost its symmetry with respect to the center of the cavity, due to the fact that the 
density (computed from the ideal gas equation of state ρ = Pth /RT ) looses in this case its linear 
behaviour with respect to the temperature. 
 

   
                                         (a)                                                               (b) 

Figure 4.  Temperature field obtained in the low Mach number approximation for Ra = 106, 
Pl = 0.016, T0

* = 1, τ = 10, and Pr = 0.71. (b) A cut on the temperature field with the streamlines at 
x = 0.5. 
 
Similarly, a study was performed to analyze the influence of the mesh spacing on the final result. As 
done before, three different meshes, with 603, 803 and 1003 control volumes were used. Figure 5(a) 



shows the averaged (in the z-direction) dimensionless heat flux at the hot wall versus the depth x, 
for three grid sizes (N=60, 80 and 100). Here also, the mesh with 1003 control volumes is fine 
enough to perform the numerical studies. A comparison of the mean heat flux for three-dimensional 
situations has been thus carried out for several values of the optical thickness. Figure 5(b) shows the 
mean heat flux versus the depth x, for a non-participating medium (τ = 0) and for a participating 
medium (τ = 1 and τ =10). The mean heat fluxes at the boundaries obtained using the low Mach 
number approximation are 30 times larger (in dimensionless form) than those obtained in the 
Boussinesq approximation. This difference is only imputed to radiation; indeed without radiation, 
the mean Nusselt number (Nu) at the hot wall, that can be obtained from the expression of Q* by 
dropping Qrad.n, is nearly the same for both formulations at Ra = 106 and Pr = 0.71; Nu = 8.63 in 
the Boussinesq approximation and Nu = 8.86 in the low Mach number one [e.g. Accary 2006]. 
Finally, table 1 reports the thermodynamic pressures obtained in the low Mach number 
approximation for three optical thicknesses. The ratio of the thermodynamic pressures is given by: 

th

0th0

P 1
TP dV
TΩ

=
∫

 

where Ω = [0,1]×[0,1]×[0,1] is the computation domain and dV is a control volume. The fact that 
the thermodynamic pressure increases (resp. decreases) with decreasing (resp. increasing) τ indicates 
that the fluid volume is globally heated (resp. cooled). 
 

    
                                          (a)                                                                           (b)    
Figure 5. Average heat flux at the hot wall versus depth x obtained in the low Mach number 
approximation for Ra = 106, Pl = 0.016, T0

* = 1, Pr = 0.71. (a) For τ = 10 and for three grid sizes, 
showing the reaching of a mesh independent solution. (b) For N = 100 and for τ = 0, 1, 10. 
 

Optical thickness τ 0 1 10 
Pth /Pth0 1.0732 1.0395  0.9764 

Table 1. Thermodynamic pressure obtained in the low Mach number approximation for Ra = 106, 
Pl = 0.016, T0

* = 1, Pr = 0.71, and for τ = 0, 1, 10. 
 

CONCLUSION 
 

In this paper, the coupling between radiation and convection has been studied, for both transparent and 
participating (gray, purely absorbing) media, in a differentially heated cavity. The influence of the 
optical thickness has been studied for duly chosen values of Rayleigh and Planck numbers, both in the 



Boussinesq approximation and in the Low-Mach number one. It has been shown for both cases that a 
decrease of the optical thickness results in an increase in the heat flux at the isothermal boundaries. 
Important differences were observed between the two formulations, which justify the utility of 
proposed extension. In return, the authors are conscious that a particular effort should be made to 
overcome the well-known deficiencies of the DOM method, first by implementing more accurate 
discretization schemes [e.g., Coehlo 2002, Coelho 2002 (JCP)]. 
 
The investigation will be however extended to study the influence of the Rayleigh and the Planck 
numbers, and to take into account the presence of diffusive reflection and emission effects occurring 
at the walls (ε ≠ 1). This functionality is already implemented in the code, but for the sake of 
brevity, we restricted the present prospective work to the case ε = 1. Another possible extension of 
the study is handling non-homogeneous, scattering and non-gray media in the DOM method. 
Finally, an OpenMP parallel version of the code is actually being developed and will soon be 
running on a SGI ALTIX cluster (consisting in 20 Itanium2 processors and 40 GB of shared 
memory). The angular decomposition strategy has been adopted for the parallelization of the DOM 
method, and has shown, in addition to its simplicity, higher efficiencies in comparison to an 
alternative approach based on spatial decomposition, [e.g, Gonçalves 1997]. 
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