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COMBINING DIRICHLET DISTRIBUTIONS FOR MODELING LITHO-TYPE WITH SOFT PROBABILTIES FROM SEISMIC ATTRIBUTES AND EXTERNAL INFORMATION

We consider the problem of deriving consistent 3D proportion trends from seismic attributes. From well data, i.e. where seismic attributes and litho-types are known, we derive conditional probabilities with a kernel smoothing algorithm applied for each litho-type from which we define a probability model with the Dirichlet distribution. In this framework, we show how these probabilities can be combined with external geological information. Some implementation issues are discussed and the approach is illustrated on a real field case.

INTRODUCTION

In many applications of earth modelling, it is necessary to perform a 3D lithology model because petrophysical properties of the medium are strongly dependent on litho-type. In stochastic models, lithology assignment is controlled by the probability of occurrence (or proportion) assigned as input. Due to conceptual geology and indirect measures (seismic campaign,...), a non stationary 3D proportion trend is often needed. This basic information is needed for all geostatistical algorithms addressing lithology simulation (Sequential Indicator Simulation, Sequential Categorical Simulation (D'Or et al., 2008), Truncated Gaussian Simulation, Boolean models, and even Multiple Point Statistics Simulation); it is not easy to obtain it and a rigorous methodology has to be used to build these 3D trends.

In this paper, we suggest here below a formalism to incorporate indirect measures in proportion evaluation. The outline of the paper is the following. We first present the methodology: from well data (where a couple of seismic attributes and the litho-types are known) conditional probabilities for each litho-type are estimated using a kernel smoothing algorithm. If necessary, the global marginal distribution of seismic attributes from the exhaustive grid can also be used as weighting Comment citer ce document : Allard, D. (2008). Litho-type modeling using soft-probabilities from seismic attributes and other sources of information. In: Geostats 2008. 2 volumes (p. 319-328). Presented at 8. International Geostatistics Congress, Santiago, CHL (2008-12-01 -2008-12-05). Santiago, CHL : Universidad de Chile.

P. BIVER, D. ALLARD AND D. D'OR correction. Then, these conditional probabilities are used as parameters for a soft probability model using a Dirichlet distribution. It is shown that the Equivalent Number of Independent Data (ENID) plays an important role, and we present how it can be comptued. In this framework, we show how this soft probability model can be combined with external geological information and we propose indices to assess the uncertainty related to the probability model. A real field case is then analysed using our approach, which illustrates that it allows us to obtain at the same time a reliable trend surface and a consistent soft-probabilty model with a measure of its associated uncertainty.

WEIGHTED KERNEL REGRESSION

Basic kernel regression algorithm

Using the seismic information and the lithotypes measured at the wells, each well data can be reported on the cross-plot of seismic variables and labeled with the litho-type. Now, we would like to obtain the probability distribution of the litho-types for every possible pair of seismic values on the cross-plot area. We thus have to perform some kind of regression on the litho-types probabilities. To achieve this, we propose to use the kernel regression approach [START_REF] Nadaraya | Nonparametric Estimates of Probability densities and Regression Curves[END_REF][START_REF] Watson | Smooth regression analysis[END_REF].

Let us consider the case of bivariate data (e.g. two seismic attributes), where s 1 , . 

Y (s) = f (s) + ε(s) (1) 
where f (s) is the deterministic trend we wish to estimate, and ε(s) is a random residual. The kernel methods propose a linear estimator for f (s):

f (s) = n ∑ i=1 w i Y (s i ) (2) 
for which the weights w i are functions of the distances between s and the data locations s i , and where the sum of the weights is equal to one. The weights are written:

w i = K h (s -s i ) ∑ n i=1 K h (s -s i ) (3) 
where K h (u) is a compact writing for In our situation, the random variables are the indicator functions Y k (s) for each one of the K litho-type, i.e. Y k (s i ) = 1 if litho-type k is observed at location s i and 0 otherwise. Eq. ( 3) automatically ensures that all the estimated probabilities belong to [0; 1] and sum up to one at each location, yielding valid probability distributions of litho-types at location s. As primary result, the kernel regression procedure yields a probability map per litho facies over the whole cross-plot area.

K h (u) = 1 h x h y K u x h x ; u y h y (4) in which K(•,

Weighting procedure

The kernel regression procedure may be easily modified to become weighted. The regression weights w i are then modified from Eq. ( 3) to incorporate some weights p(s i ):

w i = K h (s -s i )p(s i ) ∑ n i=1 K h (s -s i )p(s i ) (5) 
Two kinds of weights p(s i ) may be used: (1) declustering weights, and (2) bias correction weights.

Declustering weights

Declustering weights are obtained from a declustering of the data performed on the reservoir area and allow to take into account a possible redundancy of information brought by data that are clustered on this area.

Bias correction weights

As shown above, kernel regression is performed using well data only. In some situations, those data may not be perfectly representative of the true bivariate distribution of seismic variables. This distribution may be estimated more accurately using the whole seismic data avalaible on the reservoir grid. The bias is then defined as the difference between the probability density functions estimated from the whole seismic data set on one hand, denoted by fIR (s), and from the well data on the other hand, denoted by fIW (s). The kernel smoothing approach can be used to estimate both densities with:

f (s) = 1 n n ∑ i=1 K h (s -s i ) (6) 
where K h (ss i ) is a kernel as defined in Eq. ( 4). For each data set, the data are used all together to estimated the density, whatever their litho-type.

Bias correction weights may then be computed as:

p(s i ) = 1 + ∆ I (s i ) n (7) with ∆ I (s i ) = a fIR (s i ) -fIW (s i )
where a is the area of a grid cell on the cross-plot. Doing so,

∆ I (s i ) ∈ [-1; 1]. Eq. (7) ensures that: i) p(s i ) → 0 when ∆ I (s i ) → -1; ii) p(s i ) → 1 when ∆ I (s i ) → 1; iii) p(s i ) = 1/n if ∆ I (I i ) = 0
(with n, the number of pairs of seismic variables measured at the wells); and iv) ∑ n p(s i ) = 1. 

Uncertainty indices

In diagnostics, a first interesting result is the map of the most likely litho-type on the cross-plot area. This map is easy to compute from the litho-types probability maps. It may be accompanied by two maps of measures of uncertainty on the estimation. A first type of uncertainty arises from the estimated probability distribution itself. It is related to the uncertainty on the choice of the most likely facies. To measure this uncertainty, we can compute a quality index derived from the Gini index, which is defined as [START_REF] Gini | Variabilita e mutabilita: Contributo allo studio delle distribuzioni e delle relazioni statistice[END_REF]:

G(s) = ∑ i = j p i (s)p j (s) = 1 -∑ i p i (s) 2 (8)
The Gini index G is 0 if one of the litho-types has a probability equal to 1 (no uncertainty), and maximum (equal to 1 -(1/K)) when all the litho-types are equilikely (maximum uncertainty). The maximum goes towards 1 when the number of litho-types increases. In order to allow for comparisons, an uncertainty index belonging to [0; 1], equal to 0 when the uncertainty is maximum and to 1 when there is no uncertainty, can be computed from the Gini index as follows:

Q(s) = 1 - G(s) G max with G max = 1 - 1 K (9)
The second uncertainty measure is related to the uncertainty on the estimation of the individual proportions. It can be quantified by the Equivalent Number of Independent Data (ENID), ñ:

ñ = 1 ∑ w 2 i ( 10 
)
with the weights w i obtained using Eq. ( 5) in which all the data points are considered, wathever their litho-type. The ENID map allows to identify areas that less informed by the data than others.

DIRICHLET DISTRIBUTIONS

Description

Using a Bayesian formalism, [START_REF] Haas | Uncertainties in facies proportion estimation i. theoretical framework: the dirichlet distribution[END_REF] and [START_REF] Biver | Uncertainties in facies proportion estimation ii. application to geostatistical simulation of facies and assessment of volumetric uncertainties[END_REF] have shown that the uncertainty on the vector of litho-types probabilities may be modeled using a Dirichlet distribution. The Dirichlet distribution with K parameters α k is defined as

f n (z) = f n (z 1 , . . . , z K-1 ) = Γ(θ ) Γ(α 1 ) × . . . × Γ(α K ) z α 1 -1 1 × . . . × z α K -1 K with K ∑ k=1 z k = 1 and θ = K ∑ i=1 α i = n + K (11)
where z k is the proportion (probability) of litho-type k, Γ(q) is the gamma function for the positive variable q. It is easy to see that when K = 2, the Dirichlet distribution is in fact a Beta distribution.
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The α k parameters can be computed as

α k = ñz k + 1 (12)
where ñ is the ENID, zk is the estimated proportion. If necessary, Eq. ( 12) can be made non stationary by indexing its components with location s i .

Using this formalism, vectors of proportions may be randomly generated by drawing in the Dirichlet distribution with parameters α k . Note that the ENID plays a crucial role as it is the parameter that controls the uncertainty on the distribution of proportions. A large ENID induces low uncertainty and vice-versa.

Combination

In some situations, additional information may be available. It can be either another independent data set or an expert knowledge. In both cases, it is interesting to incorporate it in the analysis. It is easy to do it in the Dirichlet framework.

Additional data set

Let z k1 and z k2 respectivly denote the proportions of the two data sets, and ñ1 and ñ2 , the associated ENIDs. The two Dirichlet distributions may be combined by computing a combined ENID and a combined vector of proportions with ñc = ñ1 + ñ2 and

z kc = ñ1 z k1 + ñ2 z k2 ñ1 + ñ2 (13) 
Those combined parameters are then plugged into Eq. ( 12) to obtain the parameters of the combined distribution.

Expert knowledge

The combined ENID and vector of proportions are here obtained using ñkc = ñ(1 + r) and

z kc = z k + r.y k 1 + r ( 14 
)
where r is the relative confidence in the expert judgement (varying between 0 and +∞) and y k is the proportion for litho-type k provided by the expert. Again, those two parameters are plugged into Eq. ( 12) to obtain the parameters of the combined distribution.

CASE STUDY

Data set description

To test the methodology described in the previous paragraphs, a turbiditic reservoir has been chosen. attributes seem to be informative for lithology (Figure 1b); grid sampling at well data location can be performed and the crossplot PR residual versus IP residual at wells can be labeled by litho-types (Figure 1a); a first look at this crossplot confirms the prediction potential of seismic attributes for litho-type modelling. 

Crossplot smoothing results

To provide a 3D proportion trend based on seismic attributes available exhaustively on the reservoir grid, it is necessary to associate probabilities of litho-types to each value of seismic attributes and therefore to perform the smoothing of the crossplot.
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Several parameters have to be chosen for this operation: kernel type, data weights (same weights for all data in our case as there are neither bias nor clusters), kernel size to control smoothing. Impact of kernel size is illustrated on Figure 2 for massive sand probability of occurrence: a 100*100 kernel size leads to a regression surface containing irrelevant variations (interpreted as non significant noise), while a 200*200 kernel size reflects the trend surface, without erasing significant variations. The latter kernel size is thus chosen. Once this crossplot smoothing is validated, it is possible to assign the information to reservoir grid since now seismic attributes are define over the entire domain. This operation is illustrated on Figure 3 (first part) for the probability of occurrence of massive sands and for the most likely litho-type; the main channel shape can be distinguished on these maps.

Some additional diagnostics can be performed, see Figure 3 (second part):

-from the computation of the ENID, a region where proportions are known with the best precision can be identified; it is in an area of the crossplot dominated by massive clay lithology; -from the computation of the Gini index, a region where maximum mixing is occurring can be identified; the most likely facies is not relevant in this region;

Combination with geological information

The seismic campaign has been previously interpreted qualitatively by geologists; they have picked polygons corresponding to major geological events and they have computed vertical proportion curves (from well data and conceptual geology) for each interpreted polygon. This information could be used to correct 3D proportion
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If an equivalent number of independent data is assigned on both seismic trend and geological trend, it is possible to calculate the resulting Dirichlet distribution mixing both informations with their relevant weights. This operation is illustrated on Figure 4 for the probability of occurrence of massive sands and for the most likely litho-type. In the region delimited by the ellipse, the ENID of the geological interpretation is larger than the ENID of the seismic data analysis. This results in an improved visibility of the channel meander and its lateral overbank on the combined proportion trend. In other regions, the seismic data analysis has the largest ENID and thus is better represented on the combined proportion trend.

CONCLUSIONS

A rigorous methodology has been established to build 3D proportion cubes including seismic and geological information with their relevant weight (associated to uncertainties). It has been tested on a real field case with satisfactory results. However some points need further investigations: i) testing the efficiency of bias correction on other field cases with less well data sampling, and ii) comparing the combination of probabilities using Dirichlet formalism with other theories for combining information (e.g. Tau model from [START_REF] Journel | Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses[END_REF], or minimum variance combination).
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Figure 1 :

 1 Figure 1: Data set used to test the methodology. a) Well data: on the basis of Facies log data interpretation at 8 wells, and seismic attributes extraction at these wells location, a crossplot of residual Poisson ratio versus residual acoustic impedance of compression waves is labeled with litho-type. b) Seismic data: on the reservoir grid, two seismic attributes are available in each cell: residual acoustic impedance of compression waves and residual Poisson ratio (interpreted from the seismic campaign).

Figure 2 :

 2 Figure 2: Influence of the Kernel size on the smoothing results: the probability of occurrence for each litho-type is evaluated from experimental crossplot by kernel smoothing; with a small size of the kernel (100*100) unrealistic fluctuations are occurring on probability map; these fluctuations are filtered out with a larger kernel size (200*200).

Figure 3 :

 3 Figure 3: Smoothing results (crossplot and reservoir grid) and diagnosis (crossplot): (a) probability of occurrence of massive sands in the bivariate space of seismic attributes; (b) most probable litho-type in the same bivariate space; (c) and (d) same variables directly on the reservoir grid; (e) equivalent number of independent data in the bivariate space of seismic attributes (ellipse indicates the most representative area, see also (a)); (f) Gini index in the same bivariate space (ellipse indicates the area with an important mixing between litho-types, see also (b)).

  

  It is sampled with a set of wells reasonably representative (no sampling bias problem); the well data have been interpreted in five different litho-types. The seismic campaign has an intermediate quality but seismic
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