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Geometric optimization and sums of algebraic functions

Antoine Vigneron ∗

Abstract

We present a new optimization technique that yields
the first FPTAS for several geometric problems. These
problems reduce to optimizing a sum of non-negative,
constant description-complexity algebraic functions.
We first give a FPTAS for optimizing such a sum of
algebraic functions, and then we apply it to several
geometric optimization problems. We obtain the first
FPTAS for two fundamental geometric shape matching
problems in fixed dimension: maximizing the volume
of overlap of two polyhedra under rigid motions, and
minimizing their symmetric difference. We obtain the
first FPTAS for other problems in fixed dimension, such
as computing an optimal ray in a weighted subdivision,
finding the largest axially symmetric subset of a poly-
hedron, and computing minimum area hulls.

1 Introduction
A fundamental problem in geometric shape matching is
to find the maximum area of overlap of two polygons
under rigid motions. More precisely, we want to do
the following: Given two polygons P and Q, find a
rigid motion ρ such that the area of overlap |P ∩ ρQ|
is maximum. No polynomial-time, constant factor
approximation algorithm is known for this problem
using standard models of computations. In the special
case where P and Q are convex, Ahn et al. [3] gave
an FPTAS. In the general, non-convex case, the only
theoretical result is by Cheong et al. [11], who found a
polynomial-time algorithm that gives an additive error
bound. (More precisely, the time bound is polynomial
in n and 1/E, where E|P | is the additive error bound.)

It is straightforward to obtain an algebraic formu-
lation of this problem, using as parameters the sine and
cosine of the angle of rotation, and the coordinates of the
translation part of the rigid motion ρ. Thus, we obtain a
new formulation of this maximum overlap problem as a
problem of maximizing a sum of constant-degree ratio-
nal functions in a constant number of variables. (Each
such rational function is partially defined over a con-
stant description-complexity semi-algebraic set.)
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Several other geometric optimization problems can
be reduced to the problem of maximizing a sum of ra-
tional functions. For instance, the generalization of our
maximum area problem to arbitrary fixed dimension,
where one wants to find the maximum overlap of two
polyhedra under rigid motions. Barequet and Rogol [7]
considered the related problem of computing the largest
axially symmetric subset of a polygon. Arkin et al. [6]
studied generalizations of two-dimensional convex hulls,
and Mahji et al. [18] studied several computational ge-
ometry problems motivated by CAD applications, that
all reduce to the problem of maximizing or minimizing
a sum of rational functions. Chen et al. [10] considered
several geometric problems that reduce to optimizing a
sum of linear fractions, and in particular, the problem
of finding an optimal ray in a weighted subdivision. Fi-
nally, Cheong et al. [11] considered a polygon guarding
problem and the problem of maximizing the area of a
Voronoi cell, which also reduce to maximizing a sum of
rational functions.

A polynomial-time algorithm for the problem of
optimizing a sum of constant description-complexity
rational functions would immediately yield polynomial-
time algorithms for the Problems above. Unfortunately,
it seems that no such algorithm is known. The problem
is that, after summing up m constant-degree rational
functions, we obtain a rational function of degree Ω(m)
in the worst case. No polynomial-time algorithm seems
to be known for this problem. For instance, the time
bound of the algorithm of Renegar [23] for finding
approximate solutions in this case would be exponential
in m.

To overcome this difficulty, Barequet and Rogol [7],
Arkin et al. [6], and Mahji et al. [18] solved numerically
instances of this problem of optimizing a sum of rational
functions. It requires finding roots of polynomials of
degree n in 2 variables. As was noted by Chen et al. [10],
the running time of these algorithms depends on the
conditioning of the roots, and thus it is not bounded
as a function of the size of the input. Chen et al. [10]
used techniques from global optimization and obtained
another algorithm, whose running time is still not
known to be polynomial. In fact, no polynomial-time
constant factor approximation algorithm is known for
any of the problems mentioned in this paper. (Except
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the optimal ray problem in 2D [12].)
Some approximation algorithms, giving worst case

time bounds, have been designed for some of these
problems. As we noted earlier, an FPTAS is known for
maximizing the area of overlap of two convex polygons
under rigid motions [3]. Ahn et al. [2] gave an FPTAS
for finding the largest axially symmetric subset of a
convex polygon. Cheong, Efrat, and Har-Peled [11]
gave a technique that yields FPTAS for two of these
problems: maximizing the area of a Voronoi cell and
maximizing the visibility region of a point in a simple
polygon. But their technique does not seem to work for
all of these problems that reduce to optimizing a sum
of rational functions.

1.1 Our results and comparison with previous
work. In this paper, we give a general technique that
yields FPTAS for all the geometric optimization prob-
lems mentioned above. Intuitively, these problems have
a constant number of degrees of freedom, and consist
in optimizing a sum of lengths, areas, or volumes, in
arbitrary fixed dimension.

We first give FPTAS for optimizing a sum
f =

∑m
i=1 fi of constant description complexity, non-

negative, algebraic functions fi : R
d → R, where

d = O(1). We call these functions nice functions; a
definition can be found in Section 2.1. Our FPTAS for
the maximization problem is given in Section 3.1, and
an improved version when d � 4 is given in Section 3.3.
Our FPTAS for the minimization problem are given in
Section 3.4.

Our approach is the following: we build a collection
of level sets of each function fi. As fi is an algebraic
function of constant description complexity, each level
set is given as the zero-set of a polynomial of constant
degree. Then we find one point in each cell of the
arrangement of these level sets. Using an algorithm by
Basu, Pollack, and Roy [8], we can find these points in
time polynomial in the number of level sets. Among
these points, we return the one that maximizes f . In
order for this approach to succeed, we need our level sets
to provide an accurate discretization of the problem; we
show that it suffices to take O(1

ε log m
ε ) level sets for

each function fi in order to get an ε relative error on∑
fi. The first step for constructing these level sets is to

get a factor-m approximation of the optimum of f . For
the maximization problem, we just take the maximum of
the maxima of all the functions fi. For the minimization
problem, we take the lowest point on the upper envelope
of the functions fi.

Then we give geometric applications of our FP-
TAS for optimizing sums of algebraic functions. In
Section 4.1, we give a FPTAS for L1-fitting a sphere

to an n-point set, in fixed dimension. Har-Peled [14]
gave a randomized FPTAS for this problem, with time
bound O(n + ((1/ε) log n)O(1)). In 2D, the exponent
in the second term of this bound is somewhere be-
tween 20 and 60. Our algorithm runs in O(n4+ε′

+
(n/ε)3 log4(n/ε)β(n/ε)), for any ε′ > 0, where β is a
very slowly growing function related to the inverse Ack-
ermann function.

In Section 4.2, we give a FPTAS for maximizing the
volume of overlap of two polyhedra under rigid motions,
in fixed dimension. It is the first FPTAS for this prob-
lem even in R

2. In fact, no polynomial time, constant
factor algorithm was known. More specialized results
were known, as we mentioned earlier: Ahn et al. [3] gave
a FPTAS for convex polygons. In the non-convex case,
Mount, Silverman, and Wu. [20] gave an O(n4) exact
algorithm for maximum overlap under translations. For
non-convex polygons with at most n vertices, Cheong,
Efrat, and Har-Peled [11] gave a randomized algorithm
whose running time is 1 O(n3/E8 · log5 n) with high
probability, and E is an absolute error bound: they allow
an error of E times the area of the smallest polygon. By
contrast, our algorithm is a FPTAS: it gives a relative
error bound, which is a stronger requirement. More-
over, our algorithm is deterministic. In Section 4.3, we
give an improved FPTAS for the 2D case with running
time O((n6/ε3) log4(n/ε)β(n/ε)).

In Section 4.4, we give a FPTAS for finding the
largest axially symmetric subset of a polygon with
n vertices. Its running time is O((n4/ε2) log2(n/ε)).
Barequet and Rogol gave an algorithm with running
O(n4T (n)), where T (n) is the average time needed by a
numeric algorithm to maximize some rational functions.
This numeric algorithm is not known to run in worst
case polynomial time, although in practice, Barequet
and Rogol observed that T (n) is O(n) on average.

In Section 4.5, we consider the problem of mini-
mizing the volume of the symmetric difference of two
polyhedra under rigid motions, in fixed dimension. An
optimal rigid motion for this problem is also optimal for
the problem above of maximizing the volume of overlap,
but if we compute ε-approximations of the optimum, it
is not true anymore. We give a FPTAS for this prob-
lem in arbitrary fixed dimension. Previously, no FP-
TAS was known; the only previous result we found on
this problem is by Alt et al. [4], who gave polynomial-
time, constant-factor approximation algorithms for con-
vex polygons.

In Section 4.6, we give a FPTAS for the problem of
finding an optimal ray that reaches a target region in a

1The time bound given in the paper [11] is smaller, because of
a calculation error in the final derivation of the time bound.
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weighted subdivision with n simplices, in arbitrary fixed
dimension. In 2D, Chen et al. [10] reduced this problem
to O(n2) instances of a fractional program, which they
solve using practical algorithms that do not provide
worst case time bounds. The only theoretical result is
by Daescu and Palmer [12], who gave a polynomial time
algorithm in the arithmetic model of computation (as
opposed to our algorithms which work in the unit cost
model) for the 2D case. Their approach is based on fast
algorithms for finding roots of univariate polynomials of
degree n, and a geometric observation that reduces the
number of variables to one. Hence, our algorithm is the
first FPTAS for this problem in dimension higher than
2. In 3D, our time bound is O(n5+ε′

+(n5/ε2) log2(n/ε))
for any ε′ > 0.

In Section 4.7, we give a FPTAS for finding the
smallest star-shaped polygon containing a given poly-
gon. Arkin et al. [6] and Chen et al. [10] gave algo-
rithms that reduce this problem to solving O(n2) frac-
tional programs, which are solved by algorithms that
are not known to run in polynomial time. Our algo-
rithm runs in O(n4+ε′

+(n4/ε2) log2(n/ε)) time for any
ε′ > 0.

We gave 6 geometric applications of our technique,
but it yields FPTAS for other problems, including all
the problems in the papers we cited by Arkin et al. [6],
Barequet and Rogol [7], Chen et al. [10], Cheong, Efrat,
and Har-Peled [11], and Majhi et al. [18] Thus, our
approach seems to be more general than Cheong et
al.’s framework [11]. Their approach is similar, but
instead of using directly the level sets of some algebraic
functions, they first sample points on the input objects
(to form an ε-approximation), and then construct an
arrangement of surfaces, each surface corresponding
to one sample point belonging to an object. Their
approach gives time bounds with better dependency on
n, but it requires careful sampling arguments for each
problem, and uses randomization (while our algorithms
are deterministic). It is unclear how to apply it to
several of the problems we mentioned here, and in
particular to the minimization problems.

Another related work is on shared camera control,
by Har-Peled et al. [15]. Here, the problem reduces to
optimizing a sum of piecewise linear functions. They
give an exact algorithm, as well as a very fast approxi-
mation algorithm.

2 Preliminary

Let d be an integer constant. We will consider real poly-
nomials in d variables. As no confusion is possible, we
will abuse notation and identify each such polynomial P
with the corresponding polynomial function P : R

d →
R. For any such polynomial P ∈ R[X1, . . . , Xd], we

denote by zer(P ) the zero-set of P , that is, the set of
points x ∈ R

d such that P (x) = 0. For any r ∈ R and
D′ ⊂ R

d, and for any function g : D′ → R, the r-level
set of g, which we denote by lev(g, r), is defined as the
set of points x ∈ D′ such that g(x) = r:

lev(g, r) = {x ∈ D′ | g(x) = r}.
An algebraic function g : R

d → R is a function that
satisfies a polynomial equation of the form P (x, g(x)) =
0, where P is a polynomial in d + 1 variables. For
instance, a rational function g(x) = N(x)/D(x), where
N and D are polynomials, is algebraic, because it is
defined by the polynomial equation N(x)−D(x)·g(x) =
0. Another example is the L2 norm, where we have
(L2(x1, . . . , xd))

2−x2
1−· · ·−x2

d = 0; the L2 norm is the
positive solution to this equation.

2.1 Nice functions. The functions we want to opti-
mize are sums of a large number of nice functions fi, as
defined below. A nice function is a non-negative func-
tion that coincides with an algebraic function of con-
stant description complexity over a semi-algebraic set
of constant description complexity, and is equal to zero
outside this semi-algebraic set. In the rest of this sec-
tion, we give a more formal definition of nice functions.

Let d′ be an integer constant. We denote by P the
set of polynomials in R[X1, . . . , Xd] with degree at most
d′. In other words, P is a set of real polynomials with
constant degree and a constant number of variables. We
denote by P ′ the set of polynomials in R[X1, . . . , Xd+1]
with degree at most d′.

A domain D is a semi-algebraic set of R
d defined

as follows. There exists polynomials Q, K1, . . . , Ku ∈ P
such that u � d′ and

D = {x ∈ R
d | Q(x) = 0 and ∀u′, Ku′(x) � 0}.

We assume that the dimension of D is dq = dim(zer(Q)).
A function fi : D → R is a nice function with

domain D if it has the following properties:

(i) fi is non-negative.

(ii) There exists a semi-algebraic set supp(fi) ⊂ D, and
an algebraic function gi defined by a polynomial in
P ′, such that fi(x) = gi(x) for all x ∈ supp(fi),
and fi(x) = 0 for all x ∈ D \ supp(fi).

(iii) The semi-algebraic set supp(fi) is defined by a
boolean combination of at most d′ inequalities of
the form Uij(x) � 0, or equations of the form
Uij(x) = 0, where Uij ∈ P . The set of these
polynomials Uij is denoted by SUPP(fi).

(iv) The restriction of fi to supp(fi) is continuous.

908 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



We call supp(fi) the support of fi. Our definition allows
fi to be discontinuous at the boundary of supp(fi).

2.2 Algorithms for arrangements. We need to be
able to sample a point in each cell of an arrangement
of level sets of nice functions. All these functions will
have the same domain D, so we will only look at their
arrangement on the fixed algebraic hypersurface zer(Q).
To achieve this, we use the algorithm below by Basu,
Pollack, and Roy. The statement is adapted to our
notations, and our special case where the degrees and
the number of variables are less than a constant.

Let S be a set of s polynomials in P . We denote by
arr(S) the arrangement over zer(Q) of the zero-sets of
all the polynomials in S.

Theorem 2.1. ([8]) We can compute in time O(sdq+1)
a set of O(sdq) points, such that each cell of arr(S)
contains at least one point of this set.

We will also use a related result of Basu, Pollack
and Roy [9, Algorithm 14.9], which allows to minimize
or maximize a nice function over a semi-algebraic sets.
Again, the formulation is adapted to our special case,
where the degree and number of variables are constant.

Theorem 2.2. ([9]) We can compute in time O(s2d+1)
the minimum and the maximum of a nice function over
a semi-algebraic set defined by s polynomials in P.

The algorithm in Theorem 2.1 does not compute
the entire structure of the arrangement arr(S): it only
samples one point in each cell. We will need to compute
this structure in order to improve the time bounds of
our approximation schemes in low dimension. More
precisely, we will compute a vertical decomposition of
arr(S), which is a refinement of arr(S) into a collection
of constant description-complexity cells [13].

In two dimensions, this vertical decomposition has
complexity θ(s2) [13], and it can be computed in optimal
O(s2) time [5] using an algorithm by Amato, Goodrich,
and Ramos.

Theorem 2.3. ([5]) When d = 2, the vertical decom-
position of arr(S) has size O(s2), and it can be computed
in O(s2) time.

In three dimensions, the complexity of arr(S) is
θ(s3), but the best known upper bound on the com-
plexity of its vertical decomposition is slightly higher: it
is O(s3β(s)) where β(s) is a very slowly growing func-
tion related to the inverse Ackermann function. More
precisely, β(s) = λ(s)/s where λ(s) is the maximum
length of a Davenport-Schinzel sequence of order O(1)
with s symbols [13]. We compute it using an algorithm

by Shaul and Halperin [25], which gives the following
bounds.

Theorem 2.4. ([25]) When d = 3, the vertical decom-
position of arr(S) has size O(s3β(s)), and it can be com-
puted in O(s3 log(s)β(s)) time.

Finally, in four dimensions, we use a result of
Koltun [16]:

Theorem 2.5. ([16]) When d = 4, and for any ε′ > 0,
the vertical decomposition of arr(S) has size O(s4+ε′

),
and can be computed in time O(s4+ε′

).

2.3 Models of computation. We use the real-RAM
model of computation [22], which is the standard model
in computational geometry. As in previous work on
computing arrangements [16, 24] of algebraic surfaces,
we assume that we can decide semi-algebraic sets of
constant description complexity in constant time; this
corresponds to basic geometric predicates for deciding
the existence of vertices, edges, and faces, and finding
their relative position. We assume that, when such a
semi-algebraic set is non-empty, we can compute a point
inside this set in constant time.

The model above assumes infinite precision arith-
metic. A more realistic model that accounts for the
bit-complexity of the input numbers can also be used in
the algorithms by Basu, Pollack, and Roy (theorems 2.1
and 2.2). In this model, the input numbers are τ -bits
integers, and the running time depends on τ . Our re-
sults still hold in this model in the sense that we still
obtain FPTAS for all the problems we mention, but the
running time may increase by a polynomial factor in τ ,
n, and 1/ε.

3 Optimizing a sum of algebraic functions
In this section, we give FPTAS for the problem of op-
timizing a sum of nice functions. We first consider
the maximization problem in arbitrary fixed dimension
(Section 3.1 and 3.2), then we give an improved algo-
rithm in dimension 2 to 4 (Section 3.2), and finally, we
give minimization algorithms (Section 3.4.)

3.1 Maximizing a sum of algebraic functions.
We consider the problem of maximizing a sum of nice
functions in arbitrary fixed dimension. As we mentioned
in Section 2, we will try to maximize this sum over
an algebraic hypersurface zer(Q) of R

d. The reason is
that for some applications, it is more natural to restrict
oneself to an algebraic subset; for instance, the space
of rigid motions in R

δ can be seen as an algebraic
hypersurface of dimension δ(δ + 1)/2 in R

δ2+δ, and we
use this observation in our algorithm to maximize the
overlap of two polyhedra. (See Section 4.2.)
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Theorem 3.1. Let ε ∈ (0, 1) and let m be a posi-
tive integer. Let D be a dimension-dq domain. Let
f =

∑m
i=1 fi where each function fi : D → R is

a bounded, nice function with domain D, as defined
in Section 2.1. Then we can compute a point xε ∈
D such that maxx∈D f(x) � (1 + ε) · f(xε) in time
O

((
m
ε

)dq+1 logdq+1
(

m
ε

))
.

We now prove Theorem 3.1. We can compute the
maximum maxD fi of each function fi in constant time
using Theorem 2.2. So we compute all these maxima in
O(m) time. If maxD fi = 0 for some i, then we discard
fi. Then we compute in time O(m) the maximum M of
these maxima, that is, M = maxi (maxD fi).

We will build a collection of level-sets of the func-
tions fi; these level-sets will give an accurate discretiza-
tion of the problem. More precisely, we construct a set
S of polynomials, such that for any S ∈ S, there is a
function fi such that zer(S) is a level set of fi, or S is a
polynomial in SUPP(fi), or S is one of the polynomials
K1, . . . , Ku defining D.

We now describe which polynomials are inserted
into S for each function fi. Let α = ε/Cα, where Cα is
a large enough constant, to be specified later. Let k be
the positive integer such that

(3.1)
1

(1 + α)k
� α

m
<

1
(1 + α)k−1

.

Then we have

(3.2) k = O

(
1
α

log
(m

α

))
.

For each j ∈ {1, . . . , k}, we insert a polynomial cor-
responding to the level set lev

(
fi, M/(1 + α)j

)
. Re-

member that whenever fi(x) �= 0, the function fi is
given by a polynomial Pi ∈ P ′ such that Pi(x, fi(x)) =
0. So the level set lev

(
fi, M/(1 + α)j

)
is equal to

zer(Sij) ∩ supp(fi), where Sij(x) = Pi

(
x, M/(1 + α)j

)
.

This polynomial Sij is in P . We insert into S the poly-
nomials Sij for all i, j. We also insert into S the poly-
nomials in SUPP(fi) for all i. Finally, we insert into
S the polynomials K1, . . . , Ku that define D. (See Sec-
tion 2.1.) By Equation (3.2), the cardinality of S is
s = O(m/α · log(m/α)). We apply Theorem 2.1 to S,
and thus we obtain in time O(sdq+1) a set E of O(sdq)
points that meets every cell of the arrangement arr(S).
Since α = Θ(ε), this time bound can be rewritten
O

(
(m/ε)dq+1 logdq+1 (m/ε)

)
. Then we remove from E

the points that are not in D; it can be done in constant
time per point by checking the sign of the polynomials
K1, . . . , Ku at each point.

At this point, we would like to choose xε to be a
point x ∈ E that maximizes f(x). Unfortunately, we

do not know how to do it fast enough—this problem is
harder than the well known open problem of comparing
two sums of square roots [21]. In the present case, we
only need an approximate answer, and the functions fi

have constant description complexity, so it is reasonable
to assume that their values can be approximated well
enough using standard numerical algorithms. Thus, for
the rest of this proof, we will assume that we have
found the point xε in E that maximizes f . For sake
of completeness, we present in Section 3.2 a way of
resolving this issue, with an explicit construction of an
approximation of f over E.

So our algorithm returns xε such that f(xε) =
maxE f . It remains to prove that this algorithm is
correct. Let x∗ ∈ D be an optimal point, that is, a
point such that f(x∗) = maxD f . We want to prove that
f(x∗) � (1+ε)f(xε). Let C denote the cell of arr(S) that
contains x∗. As the polynomials K1, . . . , Ku that define
D are in S, this cell C is contained in D. Then there
exists a point xe ∈ E ∩ C. We first need the following
lemma:

Lemma 3.1. For any i ∈ {1, . . . , m}, we have fi(x∗) �
αM

m + (1 + α)fi(xe).

Proof. If fi(x∗) � αM/m, then this lemma holds
trivially. So we assume that αM/m < fi(x∗). By
Equation 3.1, we have M/(1 + α)k � αM/m. Thus,
M/(1 + α)k < fi(x∗), so there exists j ∈ {1, . . . , k}
such that M/(1 + α)j < fi(x∗) � M/(1 + α)j−1.
Since x∗ and xe lie in the same cell C of arr(S), there
exists a continuous path γ from x∗ to xe within C.
As x∗ ∈ supp(fi), and SUPP(fi) ⊂ S, the path γ
cannot leave supp(fi). The level sets M/(1 + α)j and
M/(1 + α)j−1 restricted to supp(fi) are the zero sets
of Sij , Si(j−1), thus γ cannot cross these level sets.
As fi restricted to supp(fi) is continuous, it implies
that M/(1 + α)j < fi(xe) � M/(1 + α)j−1, and thus
fi(x∗)/fi(xe) < 1 + α.

Lemma 3.1 implies that f(x∗) � αM +(1+α)f(xe).
Since M � f(x∗) and f(xe) � f(xε), we get

(3.3) (1 − α)f(x∗) � (1 + α)f(xε).

We choose Cα = 3, and thus α = ε/3. It implies that
f(x∗) � (1 + ε)f(xε), which completes the proof of
Theorem 3.1.

3.2 Approximating a sum of algebraic func-
tions. In this section, we show how to resolve the prob-
lem mentioned in the proof of Theorem 3.1: we may not
be able to find the point xε in E that maximizes f . To
remedy this, we approximate f by a function f̂ as fol-
lows. This approximation f̂ also allows us to obtain a
faster algorithm in low dimension. (See Section 3.3.)
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We first consider each function fi separately. If
fi(x) � αM/m, then we set f̂i(x) := 0. Otherwise, as
fi has constant description complexity, we can find in
time O(k) the index ji ∈ [1, k] such that M/(1 + α)ji <
fi(x) � M/(1+α)ji−1 . Then our approximation of fi(x)
is f̂i(x) := M/(1 + α)ji .

For each x ∈ E, we compute f̂(x) :=
∑m

i=1 f̂i(x).
For any i ∈ {1, . . . , m}, we have fi(x) � αM/m + (1 +
α)f̂i(x), so by summing up over all i, we obtain

(3.4) f(x) − αM � (1 + α)f̂(x).

Another property of f̂ is that

(3.5) f̂(x) � f(x).

Instead of returning the point xε, our modified algo-
rithm returns the point x̂ε such that f̂(x̂ε) = maxE f̂ .
Then f̂(xε) � f̂(x̂ε), and thus by Equation (3.4), we
have

f(xε) − αM � (1 + α)f̂(xε) � (1 + α)f̂ (x̂ε),

so Equation (3.3) yields

(1 − α)f(x∗) − α(1 + α)M � (1 + α)2f̂(x̂ε).

As M � f(x∗), we obtain

(1 − 2α − α2)f(x∗) � (1 + α)2f̂(x̂ε).

and thus by Equation (3.5)

(1 − 2α − α2)f(x∗) � (1 + α)2f(x̂ε).

Choosing Cα = 7, and thus α = ε/7, we conclude that
f(x∗) � (1 + ε)f(x̂ε), which proves that this modified
algorithm is correct.

We still need to check that computing f̂(x) at each
point of E does not make our time bound worse. As
the cardinality of E is O

(
(m/ε)dq logdq(m/ε)

)
, and

k = O ((1/ε) log(m/ε)), it takes

O
(
(m/ε)dq+1 logdq+1(m/ε)

)

time to compute f̂(x) for all x ∈ E, which is the time
bound of Theorem 3.1.

3.3 Improved algorithm in low dimension. In
this section, we present an algorithm for maximizing
a sum of nice functions with a better running time than
the previous algorithm from Theorem 3.1, when d � 4
and d = dQ. The function β in the statement below
is a very slowly growing function related to the inverse
Ackermann function, as in Theorem 2.4.

Theorem 3.2. Let ε ∈ (0, 1) and let m be a positive
integer. Let f =

∑m
i=1 fi where each function fi :

D → R is a bounded, nice function with domain
D ⊂ R

d, as defined in Section 2.1. Then we can
compute a point xε ∈ D such that maxx∈D f(x) �
(1 + ε) · f(xε) in time O

((
m
ε log m

ε

)2
)

when d = 2,

in time O
((

m
ε

)3 log4
(

m
ε

)
β

(
m
ε

))
when d = 3, and

O
((

m
ε log m

ε

)4+ε′)
for any ε′ > 0 when d = 4.

The proof of this theorem is an extension of the proof of
Theorem 3.1. We build the same set S of O(m

ε log m
ε )

polynomials as in Theorem 3.1. Instead of using the
algorithm from Theorem 2.1 to sample a point in each
cell of arr(S), we compute the vertical decomposition
V of arr(S) using Theorem 2.3 (resp. Theorem 2.4,
Theorem 2.5) when d = 2 (resp. d = 3, d = 4). The time
bound for computing V dominates the running time of
our algorithm, and is as stated in Theorem 3.2.

The incidence graph G of this vertical decomposition
V is a graph whose nodes are the cells of V , and such that
two nodes of G are connected by an arc when the two
corresponding cells C1, C2 are incident [13], that is, when
C1 is a maximal subcell of C2 or C2 is a maximal subcell
of C1. The algorithms from theorems 2.3, 2.4, and 2.5
provide this incidence graph, whose size is proportional
to the size of V .

We obtain a graph G′ by removing from G the nodes
that correspond to cells of arr(S) outside D, and remov-
ing the adjacent edges. This new graph G′ may have
several connected components. There is only a con-
stant number of such connected components, because
they correspond to cells in arr({Q, K1, . . . , Ku}), and
u = O(1). In the following, we consider one of these
connected components G′′.

We traverse G′′, starting at an arbitrary node, and
visiting each node at least once. (For instance, using
depth-first search.) In each cell of V , the value of the
approximation f̂ of f that we presented in Section 3.2
is fixed, because f̂ only changes when we cross a level-
set lev(fi, M/(1 + α)j). So during our traversal of
G′′, we maintain the unique value of f̂ over the cell
corresponding to the current node.

We now explain how we maintain this value when
we move from a cell C1 of V to an incident cell C2. We use
the same general position assumptions for our level sets
as in previous work on vertical decompositions [13, 16,
24]. As argued in these works, it does not incur any real
loss of generality. From these assumptions, when we go
from C1 to C2, we enter or we leave a constant number of
level sets lev(fi, M/(1+α)j), so we only need to update
the contribution of a constant number of functions fi.
These level sets are known from the description of C1
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and C2, so we can update the value of f̂ in constant
time.

Thus, we can traverse G′′ and maintain the value
of f̂ in the current cell without increasing our time
bound—we may only loose a constant factor.

During the traversal of the connected components
of G′, we maintain the largest value of f̂ found so far,
as well as an arbitrary point in the corresponding cell.
We return this point xε at the end of the traversals.

3.4 Minimizing a sum of algebraic functions. In
this section, we present approximation algorithms for
the minimization problem. The first one (Theorem 3.3)
is analogous to our maximization algorithm from The-
orem 3.1. The second algorithm (Theorem 3.4) is an
improved version, analogous to the algorithm from The-
orem 3.2.

Theorem 3.3. Let ε ∈ (0, 1) and let m be a positive
integer. Let D denote a dimension-dq domain. Let
f =

∑m
i=1 fi where each function fi : D → R is a nice

function as defined in Section 2.1. Then we can compute
a point x′

ε ∈ D such that f(x′
ε) � (1 + ε)minx∈D f(x)

in time O
(
T +

(
m
ε

)dq+1 logdq+1
(

m
ε

))
, where T is the

time needed to compute the lowest point on the upper
envelope of the functions fi. In particular, the following
bounds on T can be achieved:

(i) If d = 2, then T = O(m2+ε′
) for any ε′ > 0.

(ii) If d � 3, then T = O(m2d−2+ε′
) for any ε′ > 0.

The proof of Theorem 3.3 is similar to the proof
of Theorem 3.1; the main difference is the following.
In the maximization problem, our discretization uses
level sets of the form fi = M/(1 + α)j , where M is the
maximum of all functions fi. Intuitively, this approach
works because M is an m-factor approximation of the
optimal value. For the minimization problem, M does
not provide any useful approximation—some functions
fi might take very large values, when the optimal value
of f is small. So instead of using M to construct our
level sets, we will use H , which is the height of the lowest
point on the upper envelope of the functions fi. The
minimum of f is between H and mH , so it also gives a
factor-m approximation. On the low side, it seems that
we need to spend some extra time to compute H , while
M was trivially obtained in O(m) time.

We will first show how we compute H , then we will
complete the proof of Theorem 3.3.

Computing the lowest point on the upper en-
velope. The upper envelope of a set of nice functions
S = {f1, . . . , fm} is the set of points (x, fi(x)) where
fi(x) = maxj fj(x). Intuitively, the upper envelope is

the top part of the arrangement arr(S). Our minimiza-
tion algorithm will require to compute the lowest point
on this upper envelope. In other words, we want to
find the point xH that minimizes fi(xH) under the con-
straint fi(xH) = maxj fj(x). We denote H = fi(xH).

The algorithm of Theorem 2.2 allows us to compute
xH as follows. We handle the contribution of each
function fi separately. So we consider the set of points
x ∈ Rd such that fi(x) � fj(x) for all j �= i. It is a semi-
algebraic set defined by m− 1 polynomials in P . So we
can find the minimum of fi over this semi-algebraic set
in time O(m2d+1). Then we return the minimum of
these values over all 1 � i � m in time O(m2d+2).

The approach above for finding xH is sufficient
to obtain a FPTAS for all our applications; however,
we can obtain better time bounds as follows. When
d = 2, we first compute the upper envelope of the
functions fi in time O(m2+ε′

) for any ε′ > 0, using
the algorithm of Agarwal, Schwarzkopf, and Sharir [1].
Then we consider the maximization diagram in R

2,
whose cells are the vertical projections of the cells of the
upper envelope. We compute a vertical decomposition
of this maximization diagram, and within each cell of
this vertical decomposition, we apply Theorem 2.2 to
find the lowest point (which takes constant time per
cell). Overall, we still get a time bound O(m2+ε′

).
When d � 3, we use Koltun’s construction of

the vertical decomposition of an arrangement of sur-
faces [16]. This completes the proof of claims (i) and
(ii). (When d = 3, it is tempting to use the result of
Koltun and Sharir [17] for computing the vertices, edges
and 2-faces of the maximization diagram. However, we
don’t know how to obtain xH efficiently from this re-
sult, as it does not provide a decomposition into cells of
constant description-complexity.)

Proof of Theorem 3.3. As in the proof of Theo-
rem 3.1, we use α = ε/Cα, for a large enough constant
Cα. Let k′ be the positive integer such that

(3.6)
1

(1 + α)k′ � α

m2
<

1
(1 + α)k′−1

.

Then we have

(3.7) k′ = O

(
1
α

log
(m

α

))
.

We construct a collection S ′ of polynomials as
follows. For each function fi, and for each integer
0 � j � k′, we insert in the set S′ the polynomial
S′

ij corresponding to the level set lev(fi, mH/(1 + α)j).
We also insert into S′ the polynomials in SUPP(fi) for
each i. Finally, we insert the polynomials K1, . . . , Ku

that define D.
Then we proceed as in Theorem 3.1: we construct a

set of points E′ by sampling one point in each connected
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component of arr(S′), we remove from them the points
that are outside D, and we return the point x′

ε that
minimizes f over E′. The time bound is the same as in
Theorem 3.1, since our bound on k′ (Equation (3.7)) is
the same as our bound for k (Equation (3.2)). We still
need to check that f(x′

ε) � (1 + ε)f(x∗), where x∗ is a
point that minimizes f over D.

Let C′ denote the cell of arr(S′) that contains x∗.
Then there exists a point x′

e ∈ E′ ∩ C′. We first need
the following lemma:

Lemma 3.2. For any i ∈ {1, . . . , m}, we have fi(x′
e) �

αH
m + (1 + α)fi(x∗).

Proof. First assume that fi(x∗) � αH
(1+α)m . Then

fi(x∗) � mH/(1 + α)k′
. As there is a polynomial in S′

corresponding to lev(fi, mH/(1 + α)k′
), and x∗ lies in

the same cell as x′
e, we also have fi(x′

e) � mH/(1+α)k′
.

By Equation 3.6, it implies that fi(x′
e) � αH/m.

Now assume that αH
(1+α)m < fi(x∗). Since f(x∗) �

mH , we also have fi(x∗) � mH , and thus there exists
j ∈ [0, k′] such that mH/(1+α)j+1 < fi(x∗) � mH/(1+
α)j . As S′ contains the polynomial corresponding to
the level set mH/(1 + α)j , it follows that fi(x′

e) �
mH/(1 + α)j � (1 + α)fi(x∗).

Lemma 3.2 implies that f(x′
e) � αH +(1+α)f(x∗).

Since H � f(x∗) and f(x′
ε) � f(x′

e), we get

f(x′
ε) � (1 + 2α)f(x∗).

We choose Cα = 2, and thus α = ε/2. Then f(x′
ε) �

(1+ε)f(x∗), which completes the proof of Theorem 3.3.
Improved algorithm in low dimension. For

the minimization problem in low dimension, we have
the same improvement as we had for the maximization
problem using the same approach. So we obtain the
following result, by a straightforward modification of
the proof of Theorem 3.2. The time bound T is the
same as in Theorem 3.3 statement.

Theorem 3.4. Let ε ∈ (0, 1) and let m be a pos-
itive integer. Let f =

∑m
i=1 fi where each func-

tion fi : D → R is a nice function with domain
D ⊂ R

d as defined in Section 2.1. Then we can
compute a point x′

ε ∈ R
d such that f(x′

ε) � (1 +
ε)minx∈Rd f(x) in time O

(
T +

(
m
ε log m

ε

)2
)

when d =

2, in time O
(
T +

(
m
ε

)3 log4
(

m
ε

)
β

(
m
ε

))
when d = 3,

and O
(
T +

(
m
ε log m

ε

)4+ε′)
for any ε′ > 0 when d = 4.

4 Geometric applications
In this section, we give seven geometric applications of
our FPTAS for optimizing sums of nice functions. The

first one (Section 4.1) is a straightforward application
to a L1 sphere-fitting problem. The next application
(Section 4.2) is to the problem of maximizing the overlap
of two polyhedras under rigid motions. Then, we give
an improved algorithm for the 2D case, where we want
to maximize the area of overlap of two polygons under
rigid motions (Section 4.3). The fourth applications
(Section 4.4) is the problem of finding the largest
axially symmetric subset of an input polygon. The fifth
(Section 4.5) is the problem of minimizing the volume
of the symmetric difference of two polyhedras under
rigid motions. The sixth (Section 4.6) is on finding
an optimal ray that hits a target region of a weighted
subdivision. The last application (Section 4.7) is on
computing the smallest star-shaped polygon containing
an input polygon.

4.1 L1 shape fitting. We consider a shape fitting
problem that was studied by Har-Peled [14]. Let δ � 2
be a fixed integer. We are given a set Π of n points
in R

δ. For any δ − 1 sphere C ⊂ R
δ, and any point

pi ∈ Π, we denote by d(pi, C) the Euclidean distance
from pi to C. Our goal is to find a sphere that minimizes∑n

i=1 d(pi, C).
This problem falls within our framework. To alle-

viate notations, we only give details on the two dimen-
sional case (δ = 2). Then each circle C is represented by
its center (x, y) and its radius r: it is represented by the
point (x, y, r) ∈ R

3. For each i, we denote pi = (xi, yi).
When r � 0, we set fi(x, y, r) = d(pi, C), and thus

fi(x, y, r) =
∣∣√(x − xi)2 + (y − yi)2 − r

∣∣.
Our goal is to minimize over all x, y, and all r � 0,
the function f(x, y, r) =

∑
i fi(x, y, r). So we choose

the domain D = {(x, y, r) ∈ R
3 | r � 0}. (Hence the

polynomial Q is the zero polynomial, and K1(x, y, r) =
r.) Observe that for all x, y and r � 0, we have 4r2[(x−
xi)2+(y−yi)2] = [(x−xi)2+(y−yi)2+r2−fi(C)2]2. So
we choose supp(fi) = D, and thus fi is algebraic over
supp(fi). Then the function fi is a nice function with 3
variables.

Thus, we obtain an FPTAS by applying Theo-
rem 3.3 with m = n, d = dq = δ + 1. When δ = 2
or δ = 3, we obtain a better time bound by applying
Theorem 3.4 with d = 3 and d = 4, respectively.

Theorem 4.1. Let δ � 2 be a fixed posi-
tive integers. For any ε′ > 0, there is an
O

(
n2δ+ε′

+ (n/ε)δ+2 logδ+2(n/ε)
)

time algo-

rithm for the L1-sphere fitting problem in R
δ.

When δ = 2, the time bound improves to
O

(
n4+ε′

+
(

n
ε

)3 log4
(

n
ε

)
β

(
m
ε

))
for any ε′ > 0.
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When δ = 3, the time bound improves to
O

(
n6+ε′

+
(

n
ε log n

ε

)4+ε′)
for any ε′ > 0.

4.2 Maximizing the overlap of two polyhedras
under rigid motions. In this section, we give an ap-
proximation algorithm for finding the maximum volume
of overlap of two polyhedras in arbitrary fixed dimen-
sion. When R denotes the set of rigid motion in R

δ, we
prove the following:

Theorem 4.2. Let δ be a constant integer and ε ∈
(0, 1). Let A and B denote two polyhedras in R

δ,
given as unions of na and nb interior-disjoint simplices,
respectively. We can compute a rigid motion ρε such
that (1 + ε)|A ∩ ρεB| � maxρ∈R |A ∩ ρB| in time

O
((

nanb

ε

)δ′
logδ′ (

nanb

ε

))
, where δ′ = δ2/2 + δ/2 + 1.

Proof. A rigid motion ρ can be specified by a matrix M
and a translation vector V , such that for any X ∈ R

δ,
we have ρ(X) = MX + V . (Here points and vectors
are represented by column matrices.) Therefore ρ is
specified by δ2 + δ real parameter, and thus we will
apply Theorem 3.1 with d = δ2 + δ. However, not all
matrix M is the matrix of a rigid motion, and we will
find a smaller value for dq.

Let M = (mij) denote a d by d matrix, and let
V = (vi) be a d-dimensional vector. Then the mapping
X �→ MX+V is a rigid motion if and only if det(M) = 1
and M tM = I, where I is the identity matrix. We
denote by ‖M tM − I‖2 the sum of the squares of the
coefficients of the matrix M tM − I, and we denote
Q = ‖M tM − I‖2 + (det(M) − 1)2. Then Q is
a polynomial in the coefficients mij and vj , and our
mapping is a rigid motion if and only if its coefficients
lie in zer(Q).

The time bound in Theorem 3.1 depends on the
dimension of zer(Q), that is, the dimension of the
space R of rigid motions. Observe that, in order
for ρ to be a rigid motion, we need M to be in the
special orthonormal group, which has dimension δ(δ −
1)/2. In addition, we can choose the translation vector
arbitrarily, so the dimension of zer(Q) is dq = δ(δ+1)/2.

In order to complete the proof, we still need to ar-
gue that we can reduce our maximum overlap problem
to maximizing a sum of O(nanb) nice functions. Re-
member that A is a union

⋃
1�i�na

Ai of na disjoint
simplices. Similarly, B is a union

⋃
1�j�nb

Bj of nb dis-
joint simplices. For any i, j, and any ρ ∈ R, we denote
by μij(ρ) = |Ai∩ρBj | the area of overlap of Ai and ρBj .
We will show that each function μij can be written as
a sum of O(1) nice functions, using as parameters the
coefficients (mij) of the matrix M of ρ and the coeffi-
cients (vi) of its translation part V . Then the area of

overlap |A ∩ ρB| is equal to
∑

ij μij(ρ), and thus it is a
sum of O(nanb) nice functions.

We fix a pair i0, j0, and we distinguish between the
different combinatorial structures of Ai0 ∩ ρBj0 . So we
fix a combinatorial structure, and we denote h0(ρ) =
μi0j0(ρ) for this particular combinatorial structure, and
h0(ρ) = 0 when the combinatorial structure is different.
We will show that the function ρ �→ |h0(ρ)| is a
nice function, and as there are only O(1) possible
combinatorial structures for this fixed pair (i0, j0), it
will prove that μi0j0 is a sum of O(1) nice function.

The polytope Ai0 ∩ ρBj0 is convex, and its vertices
are intersection points of δ supporting hyperplanes of
Ai0 or ρBj0 . Hence, the coordinates of these vertices
are degree-δ rational functions in the parameters (mij)
and (vi). For each given combinatorial structure,
we consider a triangulation of Ai0 ∩ ρBj0 into O(1)
simplices. The volume h0(ρ) is the sum of the volume
of the simplices in this triangulation, and since the
coordinates of its vertices are degree-δ rational functions
of (mij) and (vi), the volume of each simplex is a degree-
δ2 rational function of (mij) and (vi). Besides, the
combinatorial structure only changes when one of these
vertices appears (or disappears) on Ai0 ∩ ρBj0 ; there
are a constant number of such conditions, and each of
them reduces to solving a constant size linear system.
Therefore, the support of h0 is a constant description-
complexity semi-algebraic set, and thus h0 is a nice
function.

4.3 Improved algorithm for maximum overlap
in the plane. In this section, we give an algorithm for
maximizing the area of overlap of two polygons. It is
faster than the algorithm that we gave in Theorem 4.2
when δ = 2. The main difference is that we apply the
faster algorithm from Theorem 3.2 for maximizing a
sum of nice functions in 3D. We obtain the following
result, where β is a very slowly growing function as in
Theorem 2.4.

Theorem 4.3. Let δ be a constant integer and ε ∈
(O, 1). Let A and B denote two polygons, given as
unions of na and nb interior-disjoint triangles, re-
spectively. Let R denote the set of rigid motions
in R

2. We can compute a rigid motion ρε such
that (1 + ε)|A ∩ ρεB| � maxρ∈R |A ∩ ρB| in time

O
((

nanb

ε

)3 log4
(

nanb

ε

)
β

(
nanb

ε

))
.

Proof. Let ρ ∈ R denote the rigid motion with angle
θ and whose translational part is the vector (u, v). We
denote t = tan(θ/2), then cos(θ) = (1− t2)/(1+ t2) and
sin(θ) = 2t/(1+t2). Then for any point (x, y), its image
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(x′, y′) = ρ(x, y) is given by the equation
(4.8)[

x′

y′

]
=

1
1 + t2

[
1 − t2 −2t

2t 1 − t2

] [
x
y

]
+

[
u
v

]
.

For each pair consisting of the ith triangle Ai of A
and the jth triangle Bj of B, we define the function
μij : R → R such that ∀ρ ∈ R, we have μij(ρ) =
|Ai ∩ ρBj |. From the discussion in Section 4.2, and by
Equation (4.8), each function μij can be seen as the
sum of O(1) nice functions with variables (t, u, v). We
complete the proof by applying Theorem 3.2 with d = 3.

4.4 Largest axially symmetric subset. In this
section, we give an approximation algorithm for finding
the largest axially symmetric polygon contained in a
given polygon. The algorithm is similar with our
algorithm for maximizing the overlap of two polygons
under rigid motions in Section 4.3, but the time bound is
better as this problem has only two degrees of freedom.

Theorem 4.4. Let A denote a polygon with n vertices,
and let ε ∈ (0, 1). In time O

(
n4

ε2 log2(n
ε )

)
, we can

find a polygon Bε ⊂ A with axial symmetry such that
max

{
|B|

∣∣∣ B is axially symmetric and B ⊂ A
}

� (1 +
ε) · |Bε|.

Proof. For any line � ⊂ R
2, we denote by σ� the

reflexion with axis �. Then the largest inscribed axially
symmetric subset of A is the polygon A ∩ σ�(A) with
largest area [3, 7]. We use the same parameter t =
tan(θ/2) as in Section 4.2. When � is the line that
makes an angle θ/2 with horizontal, and contains the
point (0, h), then for any point (x, y), its image (x′, y′) =
σ�(x, y) is given by the following equation:

(4.9)
[

x′

y′

]
=

[
c s
s −c

] [
x
y

]
+

[ −sh
h + ch

]
.

with c = (1 − t2)/(1 + t2) and s = 2t/(1 − t2).
We triangulate A, and we denote by Ai the ith

triangle. For each pair i, j, we denote σij(�) = |Ai ∩
σ�Aj |. With the same argument as in the proof of
Theorem 4.2, and using Equation (4.9), each function
σij is a sum of O(1) nice functions with variables t, h.
As our problem is to maximize

∑
i,j σij , we conclude by

applying Theorem 3.2.

4.5 Minimizing the symmetric difference under
rigid motions. We are given two polygons A and B
with at most n vertices, and we want to find a rigid
motion that minimizes the area |AΔρB|, where AΔρB
denote the symmetric difference (A ∪ ρB) \ (A ∩ ρB).

We denote by L(ρ) the arrangement of the support
lines of the edges of A and ρB. The combinatorial
structure of L(ρ) is the set of incidence relations between
the vertices, edges, and faces of L(ρ), as well as the
cyclic order of the edges around each face. We separate
between different cases, according to the combinatorial
structure of L(ρ). Then within each equivalence class,
we can use one triangulation of AΔρB that works for
all polygons ρB, so we are left with the problem of
minimizing the sum of the areas of O(n2) triangles,
which can be done using Theorem 3.3.

We now explain our algorithm in more details.
The combinatorial structure of L(ρ) only changes when
two support lines become equal, or three support lines
intersect at one point. The coefficients in the equations
of the support lines of the edges of ρB are degree-1
rational function in (t, u, v), where (t, u, v) is the same
parameterization of ρ as in Section 4.3. Thus, the
conditions for changing the combinatorial structure of
L(ρ) are a set S1 of O(n3) polynomials in P , with
variables (t, u, v).

Using Shaul and Halperin’s algorithm (Theo-
rem 2.4), we construct a vertical decomposition of
arr(S1) into O(n9β(n)) constant complexity cells. For
each cell C of this decomposition, we pick a rigid mo-
tion ρC in C. Then we compute a triangulation of L(ρC).
This triangulation is still valid for any ρ ∈ C, so we can
express the area |A ∩ ρB| for any ρ ∈ C as a sum of
O(n2) triangle areas, which are nice functions accord-
ing to our definition. We restrict these functions to
C, using the O(1) polynomial constraints that define C.
We apply Theorem 3.4 with m = O(n2) and d = 3,
and so we get in time O

(
n8+ε′

+ n6

ε3 log4(n
ε )β(n

ε )
)

an
ε-approximation of the optimal rigid motion within C.
Repeating this process for each cell of the arrangement
arr(S1), we obtain the following result:

Theorem 4.5. Given two polygons A and B with at
most n vertices, and ε > 0, we can compute a rigid
motion ρε such that |AΔρεB| � (1+ε) ·minρ |AΔρB| in

time O
(
n17+ε′

+ n15

ε3 log4(n
ε )β(n

ε )β(n)
)

for any ε′ > 0.

This result generalizes directly to a FPTAS for minimiz-
ing the symmetric difference of two polyhedras under
rigid motion in arbitrary fixed dimension. We do not
state the time bound, as it is much higher.

4.6 Computing an optimal ray in a weighted
subdivision. We are given a set of n interior-disjoint
tetrahedra in R

3. We use the Lp metric for some fixed
integer p. Each tetrahedron Ti is associated with a
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positive weight wi. The cost of a ray R is defined as

κ(R) =
n∑

i=1

wi‖R ∩ Ti‖p,

where ‖R∩Ti‖p denotes the length of R∩Ti according to
the Lp metric. The optimal ray problem is to find a ray
with minimum cost that starts at infinity and reaches a
target region, which is the union of a subset of our set
of n tetrahedra. Of course this cost is minimized at the
boundary of the target region, so we can first restrict
the problem to the case where the target region is a
triangle.

The cost function κi(R) = wi‖R ∩ Ti‖p restricted
to a particular tetrahedron Ti can be written as a sum
of a constant number of nice functions. Therefore, we
could just apply Theorem 3.3 with d = 4. We will give
a better time bound using a geometric observation that
reduces the dimension to 2.

Consider a ray R0 with endpoint r0 in the interior
of the target triangle. We first argue that we can
reduce to the case where R0 goes through an edge of
a tetrahedron, using the sliding technique of Mitchell
and Papadimitriou [19]. So we assume that R0 does
not cross any edge of any tetrahedron. Pick any line �
through r0 and tangent to the target triangle. Let R
be a ray obtained by translating R0 along �, that is,
R is a ray with the same direction as R0, and with
endpoint r ∈ �. As was observed by Mitchell and
Papadimitriou [19], when r is near r0, the cost κ(R)
is an affine function of r, so it is non-decreasing when
we move R in at least one direction. So we move R in
this direction until it first hits an edge of a tetrahedron,
and thus we obtain a ray R1 going through an edge with
κ(R1) � κ(R0).

We repeat this sliding process along the edge that
intersects R1, and we obtain a ray R2 with cost at
most κ(R0), such that R2 goes through a vertex of a
tetrahedron, or through two tetrahedra edges. Hence,
we have proved that the optimal ray contains a vertex,
or goes through two edges. So, in order to find the
optimal ray, we solve the problem separately for the rays
through each vertex, and the rays through each pair of
edges. We also need to consider all the possible target
triangles that form the boundary of the target region.
Thus, we have reduced the problem to O(n3) instances
of a minimization problem with two degrees of freedom.
Applying Theorem 3.4, we obtain the following result:

Theorem 4.6. We can compute a (1 + ε)-factor ap-
proximation of the optimal ray among n tetrahedra in
time O

(
n5+ε′

+
(

n5

ε2

)
log2

(
n
ε

))
for any ε′ > 0.

This result generalizes to an FPTAS in arbitrary
fixed dimension. We do not state the time bounds, as

they would be considerably higher, and it is unclear
whether there is any application in dimension higher
than 3.

4.7 Minimum area hulls. Given a polygon A ⊂ R
2

with n vertices, the minimum area star-shaped hull of
A is a star-shaped polygon A∗ with minimum area that
contains A. For any x ∈ R

2, we denote by SH(x) the
smallest polygon which is star shaped around x and
contains A. Arkin et al. [6] showed that there is an
arrangement of n lines such that, within each cell of this
arrangement, the combinatorial structure of SH(x) does
not change. So we triangulate this arrangement and
obtain O(n2) triangles, such that in any such triangle
Ti, the combinatorial structure of H(x) is fixed. For
each Ti, and for each x ∈ Ti the area |SH(x)| is the
sum of the areas of O(n) triangles with one fixed edge,
and the opposite vertex is x. It means that |SH(x)|
restricted to Ti is a sum of O(n) nice functions.

Therefore, we can apply O(n2) times Theorem 3.4
with d = 2 and m = n, and we obtain:

Theorem 4.7. Given a polygon with n vertices, we can
compute a (1 + ε)-factor approximation of its minimum
area star-shaped hull in time O

(
n4+ε′

+
(

n4

ε2

)
log2

(
n
ε

))
for any ε′ > 0.
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