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ABSTRACT LAI, FAPAR and FCOVER variables are required for the monitoring, understanding
and modelling of land surfaces at the global scale. While several products were already
developed from the current medium resolution sensors, the few validation exercises
achieved demonstrated that significant discrepancies and inconsistencies were observed.
The objective of this study was to develop new global estimates of LAl, FAPAR and FCOVER
that will build on the pros and minimize cons of already existing products. In a first step, the
performances of the MODIS, CYCLOPES, GLOBACRBON and JRC-FAPAR products were
reviewed. The MODIS and CYCLOPES products were selected since they provide higher level
of consistency. These products were then fused to generate the ‘best estimate’ of LAI,
FAPAR and FCOVER that were later scaled to better match their expected range of variation.
Finally, neural networks were trained to estimate these best estimates products from SPOT-
VEGETATION top of canopy directionally normalized reflectance values. Performances of the
derived products called GEOV1 were evaluated, showing significant improvements as
compared to previous products. These products will be extended back to 1981 using the
AVHRR series of observation, and continued after the VEGETATION era thanks to AVHRR-
METOP, PROBA-V and Sentinel3 future missions.

transpiration. LAl is defined as half the total
developed area of leaf elements per unit
horizontal ground area (Chen and Black,
1992). FAPAR is defined as the fraction of

1 INTRODUCTION

The importance of continuous
monitoring the Earth’s surface was recently

recognized by GCOS (GCOS, 2006): a set of
Essential Climate Variables was identified as
being both accessible from remote sensing
observations and intervening within key
processes. Among those related to land
surfaces, LAl (Leaf Area Index) and FAPAR
(Fraction of Absorbed Photosynthetic Active
Radiation) may be derived from
observations in the reflective solar domain.
These vegetation biophysical variables play
a key role in several processes, including
photosynthesis, respiration and

radiation absorbed by the canopy in the 400
- 700 nm spectral domain under specified
illumination conditions. It is one of the main
inputs in light use efficiency models
(McCallum et al., 2009). The cover fraction
(FCOVER) defined as the fraction of
background covered by green vegetation as
seen from nadir appears also a very
pertinent variable that can be used when
separating the contribution of the soil from
that of the canopy.
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Table 1. The currently available GLOBAL products.

Few global LAI, FAPAR and FCOVER
products have already been generated from
medium spatial resolution sensors such as
VEGETATION, SEAWIFS, MODIS and MERIS
(Table 1). Recent validation activities have
shown however that significant
discrepancies were existing between them
as well as with ground measurements
(Garrigues et al., 2008; McCallum et al.,
2010; Weiss et al., 2007), calling thus for the
development of new products that would
reconcile these differences.

The Geoland2 project
(http://www.geoland2.eu) intends  to
implement a Land Monitoring Core Service
that corresponds to a  European
contribution to GEOSS (Group of Earth
Observation System of Systems). The Bio-
geophysical Parameters (BioPar) service
within Geoland2 aims at developing pre-
operational infrastructures for providing
global land products both in near real time
and off-line mode with long time series.

The objective of this paper is to describe
the first version of Geoland2 LAI, FAPAR
and FCOVER products that will be called
GEOV1. The principles used to derive the

products will first be presented. Then, the
algorithm development will be described as
long as some validation results.
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Figure 1. Schematic description of the
principle used to develop the GEOV1
product.
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2 ALGORITHM DEVELOPMENT
2.1 Principles

The biophysical algorithm is based on
already existing products to capitalize on
the efforts accomplished and get a larger
consensus from the user community. Figure
1Erreur! Source du renvoi introuvable.
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shows the several steps used for each
product. Following the published literature
on products validation (Garrigues et al.,,
2008; Weiss et al., 2007), the best
performing products were selected and
combined to take advantage of their
specific performances while limiting the
situations where products show
deficiencies. The selected products are re-
projected onto the VEGETATION plate-
carrée 1/112° grid, smoothed through time
and interpolated at the 10 days frequency.
Then the products are combined and
eventually scaled to compute the fused
product that is expected to provide globally
the ‘best’ performances. The fused products
are generated for 2003-2004 over the 420
BELMANIP2 set of sites (Figure 2) that is
supposed to represent the possible range of
surface types and conditions over the Earth
(Baret et al., 2006). Neural networks are
then calibrated over this set of sites to
relate the fused products to the
corresponding VEGETATION L3a top of
canopy directionally normalized
reflectances using the CYCLOPES pre-
processing algorithms (Baret et al., 2007).

90 5

Figure 2. The 420 BELMANIP2 sites used to
sample vegetation types and conditions.
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Figure 3. Cumulated frequency of rcover
CYCLOPES (dashed line) and GEOV1

products as observed over the 420
BELMANIP2 sites during years 2003-2004.

2.2 Generation of the training data base

FCOVER product on one side and LAI and
FAPAR products on the other will be
described separately because of the
differences in available products.

a) FCOVER

Since only the CYCLOPES products were
available globally, no fusion with other
products was possible. However, several
evaluations have shown that CYCLOPES
FCOVER products were suffering from a
significant  systematic  underestimation
(Verger, 2008). This was corrected for by
applying a scaling factor to the CYCLOPES
V3.1 products (FCOVEReyqs,). This factor (—)
was corresponding to the inverse of the
rcover  value for the 99% cumulated
frequency (Figure 3) that should be
expected to be very close to 1.0 since it
should correspond to very dense canopies:

1
FCOVERpes, = 55 FCOVERcycys: 1)

Where Frcover,., is the value that will be
used for training the neural networks.
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Figure 4. Example of LAI dynamics of CYCLOPES, MODIS and GLOBCARBON products for 3

typical sites.

b) LAI and FAPAR

The 30 days temporal sampling used for
GLOBCARBON appears not very well suited
to describe the seasonality of vegetation as
shown in Figure 4. This is the reason why
GLOBCARBON products were not selected.
Further, GLOBCARBON LAI products were
showing a significant number of outliers.
MODIS and CYCLOPES LAI products will
therefore be selected.
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Figure 5. Scatterplot between FAPAR
products.
JRC-FAPAR products derived from the
SEAWIFS sensor show very similar

seasonality to that of the MODIS and
CYCLOPES FAPAR products with however
generally lower values as shown in Figure 5.

MODIS and CYCLOPES FAPAR products
were showing a closer agreement,
particularly for the medium to high FAPAR
values. MODIS and CYCLOPES were thus
selected to generate the FAPAR products.
This will further provide better consistency
between LAI and FAPAR products. Note
that the definition of FAPAR products is
not very different between the several
products: MODIS and JRC-FAPAR are
instantaneous black-sky at the time of

satellite overpass (around 10:30), while
CYCLOPES corresponds to instantaneous
black-sky at 10:00 which is a good

approximation of the daily integrated black-
sky FAPAR value (Baret et al., 2007).
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Figure 6. Cumulated frequency of FAPAR
CYCLOPES (green line), MODIS (red line)
products as observed over the 420
BELMANIP2 sites during years 2003-2004.
The dashed black line corresponds to the
fusion product (according to equation 3)
and the solid black line to GEOV1 products.

Investigation of the relationships between
MODIS and CYCLOPES LAI and fAPAR
products show that:

e MODIS FAPAR overestimates CYCLOPES
values for the lower FAPAR values
(Erreur ! Source du renvoi introuvable.).

e Fair agreement is observed for medium
to high FAPAR values with however
slightly lower values for CYCLOPES
products (Erreur! Source du renvoi
introuvable.).

e Fair agreement is observed between
MODIS and CYCLOPES LAI values up to
values around 3.

To benefit from the better performances

observed for CYCLOPES FAPAR products

for the lower FAPAR values, and for MODIS

LAI products for the larger LAI values, it

was proposed to average MODIS and

CYCLOPES products using the following

weighing factor w = min . 2 LAlgycysy):
fAPARfused = fAPARyopcs * W + fAPARcycysr (1 — W)(Z)
LAlpygeq = LAlyopcs-w + LAlcycysy c(1-w)

This parallel processing of LAI and
FAPAR is expected to keep a good
consistency between LAI and FAPAR
products. The fused FAPAR products
showed that the maximum values are
around 0.898 (Erreur! Source du renvoi
introuvable.) although maximum values are
expected to be close to 0.94 (Baret and
Guyot, 1991). Therefore, the fused values
were scaled according to:

0.94
0508 [APARusea (3)
No particular scaling was applied to LAI
since there is no obvious maximum values

fAPARpest =

to set up.

Results show that, as expected, the
relationship between LAI and FAPAR was
keeping very consistent as compared to the
original CYCLOPES and MODIS products
(Erlreur ! Source cllu renvoi intropvable.)
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Figure 7. Relationship between LAl and
FAPAR for CYCLOPES, MODIS and GEOV1
products as observed over the 420
BELMANIP2 sites during 2003-2004 period.

2.3 Training the neural networks

The training was achieved over the 420
BELMANIP2 sites for the 2003-2004 period.
The spatial support was 3 x 3 pixels over
each site to minimize possible geometrical
problems between the several products and
dates used to compute the inputs and
outputs of the neural network.

Figure 8. Structure of the neural network
used to derive LAI, FAPAR and FCOVER
from VEGETATION input reflectance.

a) Neural network architecture
A back-propagation neural network
architecture was selected, with one hidden
layer of 5 tangent-sigmoidal neurons and
one layer with a single linear neuron (Figure
8). Inputs and outputs were normalized
using the minimum and maximum values.
Five networks were trained in parallel. The
one providing the best performances over
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an independent test data set was selected.

b) Inputs
The top of canopy reflectance acquired by
the VEGETATION sensor in the red (B2),
near infrared (B3) and short wave infrared
(SWIR) were used as inputs. The
preprocessing steps are described in (Baret
et al.,, 2007) and include cloud screening,
atmospheric  correction based on a
climatology of aerosols, and BRDF
normalization using a robust fit of the
Roujean model (Hagolle et al.,, 2004;
Roujean et al., 1992). In addition, the cosine
of the sun zenith angle at the observation
time is also used as input.

c) Outputs
Special attention was carried out when
fusing MODIS and CYCLOPES products for
the computation of the ‘best’” LAI and
FAPAR estimates. MODIS products were
re-projected to the CYCLOPES lat-lon grid.
All the valid MODIS data including main,
main  plus saturation and back-up
algorithms available within +10 days around
the CYCLOPES date were considered. This
may correspond to a maximum of three
MODIS products. Then, if the difference
between values at the 70% and 90%
cumulated frequency was lower than 0.2
and 1.0 respectively for FAPAR and LAI,
the 70% cumulated frequency value is
retained for the fusion. Note that because
BELMANIP2 sites are relatively
homogeneous at the 10x10 pixels scale, the
70% cumulated frequency value is very
close to the mean value. However, taking
the 70% cumulated frequency value instead
of the mean or the median value prevents
from being too sensitive to possible
unscreened clouds or cloud shadow that
lead to lower LAI and FAPAR values.

2.4 Associated uncertainties and quality
assessment

Three quality assessment criterions were

provided along with the products:

e Input out of range. This represents the
consistency of the measured
VEGETATION input reflectances with
those used in the training data base. A
flag is raised when observations are
outside the training definition domain.
The definition domain was approximated
by the convex hull formed in the
reflectance feature space by the cases
used in the learning process (Figure 9).
When the input reflectances are outside
the definition domain, a flag is raised.
Table 2. Minimum, Maximum,
Resolution and Tolerance values used to
raise the output of range flag.

Unit Min Max Resol. Tolmin Tolmax
LAl m’m’| 0 8.0 0.01 0.2 7.00
FAPAR - 0 1.0 0.01 -0.05 1.05
FCOVER - 0 1.0 0.01 -0.05 1.05

10

SWIR
SWIR

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
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Figure 9. Definition domain of the input
reflectance. The cells in black correspond to
those where input reflectance were actually
observed. Cells in white are outside the
definition domain.
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Figure 10. Scheme showing how the
uncertainties attached to the products were

computed.
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RMSE = 0.050088 RMSE = 0.037056

RMSE = 0.18683
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Figure 11. Relationship for LAI, FAPAR and
FCOVER products before (actual) and after
(estimated) the training process over a test
dataset not used in the training process.

e Output out of range. This flag is raised
only when the output is outside the
output range enlarged by the tolerance
values [Tolmin, Tolnax] as defined in Table
2. If the outputs of the neural network
falls within the [Tol.,, Min] (respect.
[Max, Tolmal), the values are simply
reset to the Minimum (respect.
maximum) values.

e Estimated uncertainties. This represents
the expected error expressed in RMSE
between the estimated and the actual
biophysical values as derived from the
theoretical performances of the
algorithm evaluated over an
independent data set. The reflectance
uncertainties are used to define a
confidence interval (Figure 10). The LAI,
FAPAR and FCOVER with
corresponding reflectance inside the
confidence interval are then used to
compute the RMSE. A specific network is
finally trained to relate the estimated
uncertainties to the input reflectance
and observation geometry values.

3 PERFORMANCES
3.1 Theoretical performances

Comparison between estimates by the
neural network and the actual ‘best’ LAI,
FAPAR or FCOVER values as evaluated
over an independent test data set show
very good performances without any biases

(Figure 11). The scattering as measured by
the RMSE is also very small.

3.2 Case studies

Three sites were selected to evaluate
qualitatively  the  performances. An
extended validation was concurrently
achieved, based on quantitative metrics as
proposed by CEOS (Morissette et al. 2006;
Garrigues et al. 2009).

Figure 12 shows that GEOV1 products are
very smooth as expected. This is due both
to the quality of the pre-processing steps as
well as to the properties of the neural
network. The seasonality is very consistent
with that of the other products. The range
of variation appears quite realistic, both for
the low vegetation amounts (Figure 12, left)
and the larger ones (Figure 12, left). The
consistency between LAI and FAPAR is
also very strong (Figure 7, right) as
expected.

4 CONCLUSION

The GEOV1 LAI, FAPAR and FCOVER
products capitalize on the efforts
undertaken this last decade in the
development and validation of biophysical
products from medium resolution
observations. It results in robust, consistent
and accurate estimates of these key
biophysical variables that may be used for a
range of applications including those
targeted for the Essential Climate Variables.
These products are currently generated by
VITO for open access to the user
community. The VEGETATION derived time
series starting in 1999 will be completed
backward using the AVHRR series as
processed by Vermote et al. (2010) to get a
long time series of almost 30 years. Further,
the sustainability of services foreseen within
the Land Monitoring Core Service will be
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ensured by adapting the algorithm to
AVHRR-METOP, PROBA-V and Sentinel 3
missions.

Acknowledgments.

This study was funded partly from the
GEOLAND?2 FP7 European project.

« o4 -t
J\;M__. | Pand NI
i} = T T
%o.s— os) osk

C /\ A ) ,

521— 5

Feb04

Fehid

Figure 12. Temporal profiles of LAl (bottom), FAPAR (top) and FCOVER (middle) products:
MODIS (red), CYCLOPES (green), GLOBACARBON (dashed blue), JRC-FAPAR (cyan) and
GEOV1 (black). Gourma grassland (left 15.32°; -1.55°), Fundulea crop land (centre 44.41°;
26.58°) and Tapa evergreen broadleaf forest (right 2.87°; -54.95°) sites are presented for

years 2003-2004.
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