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Cell design in bacteria as a convex optimization problem

Anne Goelzer, Vincent Fromion and Gérard Scorletti

Abstract— In this paper, we investigate the cell design of
bacteria during the exponential growth. To this purpose, we
propose to formulate the problem as a non differentiable convex
optimization problem equivalent to a Linear Programming
feasibility problem. Its resolution predicts for a specific medium
not only the distribution of metabolic fluxes and the maximal
growth rate, but also the concentrations of the ribosomes and
the proteins involved in the metabolic network and thus the
composition of the cell for different growth rates. Moreover, our
model recovers the known modular structure of the regulation
of metabolic pathways for the gram-positive model bacterium
Bacillus subtilis.

I. INTRODUCTION

A challenging question in System Biology is to understand

the organization of the regulations in the cell and to identify

the rules that have led to the emergence of this organization.

In this paper, we present the second step of our in-

vestigations on the metabolic network regulations. Due to

the high complexity of this biological network and to the

interdisciplinary nature of the problem, our approach is based

on a strong interaction between biological and automatic

control concepts.

The first step of our approach was presented in [1] : a model

of the metabolic network of B. subtilis was proposed by the

two first authors with a qualitative (functional) analysis of

the network. In [1], the metabolic network of B. subtilis

was decomposed into elementary functional modules locally

controlled. We revealed that these modules are further coor-

dinated by so-called global regulations in response to phys-

iological changes, leading to a strong modular organization

of the regulation of the metabolic network. In consequence,

we focus in this paper on the investigation of possible design

rules/constraints that led to this modular organization through

the evolution of organisms. To this purpose, we develop a

quantitative mathematical model in order to analyze some

cell behaviors and to identify these structural constraints if

they exist.

Inside the cell, the metabolic network produces the

metabolic precursors and energy necessary for the growth.

For microorganisms, an emerging principle proposed for the

design of the metabolic network is the maximization of

the growth with respect to a given extracellular medium

since this aspect is crucial in the context of the competition
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between bacteria. This principle led to the development of

the so-called Flux Balance Analysis (FBA) approach and the

following Linear Programming (LP) problem [2] :

maximize cT ν
subject to

S.ν = 0

αi ≤ νi ≤ βi.

where the metabolic network is mathematically represented

by the stoichiometric matrix S, linking all the metabolic

fluxes (ν) to the metabolites in steady-state (S.ν = 0).

The objective function c is usually chosen as the mean

composition of the cell at a given level. Although the FBA

approach was experimentally validated on several organisms

[3], [4], the cell design problem is simplified since the cell

composition varies with the growth rate [5].

We then propose in this paper to extend the FBA approach by

considering that the cell is composed of subsystems, whose

role is to carry out some specific functions like the production

of metabolites and proteins, or the DNA duplication, etc.

and by looking at the resource allocation among all these

subsystems. This resource allocation and in particular the

sharing of proteins (i.e. the main building blocks of the cell)

between these subsystems impose new and strong constraints

which are not included in the FBA approach. We capture

this problem of resource allocation into a non differentiable

convex optimization problem, which can be transformed into

a LP feasibility problem, efficiently solved even for large-

scale problems. Interesting properties of the solution are

investigated and discussed from a biological point of view.

In particular, we show that the chosen formulation provides

interesting insights on the strong modularity of the metabolic

network in bacteria.

The paper is organized as follows. In section II, the cell

design constraints are discussed and the mathematical model

is proposed as a convex optimization problem. Section III

presents the analysis of the optimization problem and the

properties that can be deduced. Section IV focuses on the

prediction of the modular structure of the metabolic net-

work in bacteria. Finally, the resolution of the optimization

problem for the gram-positive model bacterium B. subtilis is

presented in section V. For the sake of clarity, all proofs are

reported in the internal note [6].

II. CELL DESIGN CONSTRAINTS

A systemic view of the cell is displayed on Figure 1. The

metabolic network, composed of proteins (i.e enzymes),

degrade the nutrients imported inside the cell in order to

produce the metabolic precursors required for the synthesis
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Fig. 1. A systemic view of the cell

of all the cell components, and for the protein synthesis

in particular. Various assembling processes consume these

precursors to produce all the cell components (proteins, the

cell wall, DNA, the lipid membrane, etc) while producing

metabolites that are recycled by the metabolic network.

These assembling processes are also mainly composed of

proteins and sometimes other cell components. For example,

the ribosome, a key actor of the protein production, is

composed of proteins and rRNA.

So the proteins produced by the ribosomes are a critical

resource that need to be shared by all the cellular processes

inside the cell: the metabolic network (i.e enzymes),

the translation apparatus itself (i.e ribosomal proteins,

elongation factors,etc.), and all the other proteins involved

in the molecular assembling processes or in biological

processes such as stress, or preparation to the stationary

phase. During the exponential growth, in order to increase

the growth rate, the cell has to increase the synthesis

flux of metabolic precursors, by increasing the enzyme

concentration involved in the metabolic network. In

parallel, the capability of the protein production has

also to increase to fulfill the increase of the enzyme

concentration. So the synthesis flux of proteins has to be

sufficient to satisfy the increase of both the enzyme and

the ribosome concentration. This trade-off about the fate

of proteins implies the existence of a bottleneck between

the protein production and the metabolic network. In the

next subsections, we will mathematically formalised this

trade-off during the exponential phase.

Let us first introduce the notations used in the sequel and

on Figure 1 describing all the cell components. Proteins can

be assigned to three main classes of biological processes

(metabolic network, translation apparatus and other proteins),

so let us first introduce the notations for these sets.

The metabolic network is composed of (i) Nm enzymes Ei
∆
=

(E1, . . . ,Em) leading to a flux vector ν
∆
= (ν1, . . . ,νm) of size

Nm. ; (ii) Ni internal metabolites Xi
∆
= (Xi1 , . . . ,XiNi

); (iii) Np

metabolic precursors Xp
∆
= (Xp1

, . . . ,XpNp
) consumed during

the synthesis of proteins; (iv) Nr recycled metabolites Xr
∆
=

(Xr1
, . . . ,XrNr

) produced during the synthesis of proteins. The

concentration of the i-th enzyme in mol/l is noted Ei and we

assume that Ei(t) is linked to the instantaneous flux νi in

mol/l/h by the following relation νi(t) = ±kEEi(t), where

kE > 0 corresponds to the enzyme efficiency at a given

temperature.

The concentration of ribosomes is noted Ra. The set of

proteins of size NG belonging neither to the metabolic

network nor to the translation apparatus, is referred as PG

from here on. We introduced a mean concentration PG for

the proteins in PGi
such that

PG
∆
=

PGi

nPGi

for any i ∈ {1, · · · ,NG}

where PGi
is the concentration of protein PGi

in PG and

nPGi
is the number of protein PGi

inside the cell.

Finally the cell is composed of Nc macro-components

Xc
∆
= (Xc1

, . . . ,XcNc
) such as the cell wall or the lipid

membrane, whose intracellular concentration is independent

of the growth rate.

Let us now discuss the nature of the constraints at which the

system displayed in Figure 1 is submitted.

A. Impact of the volume variation

During exponential growth phase, the volume of the bac-

teria population is increasing exponentially:

V (t) = V0eµ(t−t0),
dV (t)

dt
= µV (t)

where V0 corresponds to the initial volume of all bacteria at

t = t0 and µ corresponds to the growth rate. The concentra-

tion of a protein P (in mol/l) corresponds by definition to

P(t) = p(t)
V (t) where p(t) is the number of the cell component

P in moles. The variation of the component concentration

is given by

dP(t)

dt
=

d p(t)

dt

1

V (t)
︸ ︷︷ ︸

Production
∆
=p(t)

−
dV (t)

dt

p(t)

V 2(t)
︸ ︷︷ ︸

Dilution effect

= p(t)−µP(t)

During the exponential growth (in steady-state regime), P(t)
is constant. So p(t) = µP(t) in order to maintain constant

the concentration P(t) inside the cell despite the volume

variation due to the cell growth.

Hence if αP moles of a specific metabolite Xk are consumed

during the synthesis of the protein P , µαPP(t) mol/l/h are

consumed to maintain the concentration P(t) constant at the

growth rate µ . If the protein P is an enzyme, the flux νk of

metabolite Xpk
required to maintain the concentration E(t)

constant in steady-state corresponds to

νk(t) = µαEE(t) = µαE

|νE(t)|

kE

(1)

Based on these definitions, three design constraints allowing

the bacterium to duplicate itself can be identified.

B. Three design constraints

The different subsets of proteins (metabolic, ribosomal

and PG) has to respect different structural constraints to

ensure their coordination at the growth rate µ > 0.

(C1), the “Metabolic capability constraint”: the metabolic

network capability has to be sufficient
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(a) to produce all metabolic precursors required for cell

growth, including those consumed during the molecular

assembling and translation processes. Basically, the

synthesis flux of the Np metabolic precursors by the

metabolic network has to be more important than the one

consumed during the synthesis of the cell components.

(C1a): for all i ∈ {1, . . . ,Np},

−
m

∑
j=1

Spi j
ν j + µ

(
m

∑
j=1

C
Mp

Mi j
|ν j|+C

Mp

Ri
Ra +C

Mp

Gi
PG

)

+νY ≤ 0

where Sp is the sub-part of the stoichiometric matrix S for

Xp and νY corresponds to free exchange fluxes with the

environment such as the diffusion of metabolites through

the membrane. C
Mp

Mi j
, C

Mp

Ri
and C

Mp

Gi
are nonnegative and

respectively correspond to the number of the Xpi
metabolite

required for the synthesis of one ribosome, one protein in

PG and the j-th protein involved in the metabolic network

(referred as αE in equation 1).

(b) to maintain the concentration of the set of macro-

components Xc constant to X̄c
∆
= (X̄c1

, . . . , X̄cNc
), where X̄ci

is

the target concentration of Xci
. (C1b): for all i ∈ {1, . . . ,Nc},

−
m

∑
j=1

Sci j
ν j + µX̄c ≤ 0

where Sc is the sub-part of S for Xc.

(c) to absorb all recycled metabolites produced during the

synthesis of cell components. (C1c): for all i ∈ {1, . . . ,Nr},

m

∑
j=1

Sri j
ν j + µ

(
m

∑
j=1

C
Mr
Mi j

|ν j|+C
Mr
Ri

Ra +C
Mr
Gi

PG

)

≤ 0

where Sr is the sub-part of S for Xr. C
Mr
Ri

, C
Mr
Gi

and C
Mr
Mi j

are

also nonnegative and respectively correspond to the number

of the Xri
metabolite produced during the synthesis of one

ribosome, one protein in PG and the j-th protein involved

in the metabolic network.

(d) Moreover, the metabolic network has also to satisfy the

mass conservation law. (C1d): for all i ∈ {1, . . . ,Ni},

m

∑
j=1

SIi j
ν j = 0

where SI is the sub-part of S for Xi.

(C2), the “Resource management constraint”: the

translation apparatus capability has to be sufficient to ensure

the concentration maintenance of all the cell proteins at the

growth rate µ .

µ

(
m

∑
j=1

CR
M j
|ν j|+CR

RRa +CR
GPG

)

− kT Ra ≤ 0

where kT is the translation efficiency (around 12 to 20

amino acids per second at 37◦C [5]). CR
R , CR

G and CR
M j

are

positive and respectively correspond to the total number of

amino acid residues per ribosome, per protein in PG and

per protein involved in the metabolic network.

(C3), the “Density constraint”: The cell has also to manage

its intracellular density to ensure the suitable diffusion of all

cell components (proteins, metabolites, DNA, etc) inside the

cell [7], [8].

m

∑
j=1

CD
M j
|ν j|+CD

R Ra +CD
GPG − D̄ ≤ 0

where D̄ is the mean density of the cell components (usually

in g/ml but can be converted in mol/l). CR
D, CD

G and CD
M j

are

equal to CR
R , CR

G and CR
M j

.

C. A non smooth optimization problem

The satisfaction of these previous constraints leads to the

following feasibility problem Pf (µ). For fixed PG ≥ 0, µ ≥ 0,

find Ra ≥ 0,ν ∈ Rm

subject to

(C1a),(C1b),(C1c),(C1d),(C2),(C3).

and let us define the associated set of feasible solutions

Cµ,PG
= {(Ra,ν)∈R

+×R
m|(C1a), (C1b), (C1c), (C2), (C3)}.

Pf (µ) is a nonsmooth optimization problem due to the

presence of the absolute value in the different constraints.

However, some interesting properties with respect to µ can

be underlined and interpreted from a biological point of view.

III. GENERAL PROPERTIES OF Pf (µ)

Let us first define the following sets: Im
∆
= {1, . . . ,m},

Ip
∆
= {1, . . . ,Np}, Ir

∆
= {1, . . . ,Nr}, Ii

∆
= {1, . . . ,Ni} and

Ic
∆
= {1, . . . ,Nc}.

Lemma 3.1: If for µ > 0 and for PG ≥ 0 Pf (µ) is feasible

then any (R̄a, ν̄) ∈ Cµ,PG
is such that R̄a > 0 and ν̄ 6= 0, i.e.,

there exists a nonempty subset U of Im, such that for all

j ∈U , ν̄ j 6= 0, and for k ∈ Im/U , ν̄ j = 0.

Lemma 3.1 points out that if Pf (µ) is feasible then any

feasible solution is non null. Practically, we prove here that

both the concentration of ribosomes and the concentration of

a subset of enzymes/transporters have to be non null to allow

the growth of the cell. Despite the biological obviousness

of this result, it strongly emphasizes the validity of the

formulation of the cell design.

Let us now investigate the properties of Pf (µ) with respect

to µ .

A. Properties of the solution µ

Proposition 3.2: Pf (µ) has the following properties :

• For any PG ≥ 0 and for any µ ≥ 0, Cµ,PG
is convex.

• If for PG ≥ 0 and for µ+ > 0, Pf (µ+) is feasible then

for any µ ∈ [0,µ+], Pf (µ) is also feasible and Cµ+,PG
⊆

Cµ,PG
.

• For any PG ≥ 0 there exists a finite µ∗ ≥ 0 such

that Pf (µ∗) is feasible and for all µ > µ∗, Pf (µ∗) is

infeasible.
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From a biological point of view, we show here that there

exists a resource distribution between the metabolic network

and the ribosomes for the growth rate value µ and for lower

values (Item 2 of Proposition 3.2). Hence we predict that the

bacterium can grow with the growth rate µ , and of course for

lower growth rate values. Moreover, there exists a maximal

value for the growth rate (µ∗) with respect to a specific

medium (Item 3 of Proposition 3.2).

B. Parameter variation

Proposition 3.3: If for fixed PG > 0 and µ > 0, Cµ,PG
6= /0

then for all δPG > 0 such that δPG ≤ PG there exists δ µ > 0

such that Cµ+δ µ,PG−δPG
6= /0.

Proposition 3.3 indicates that the growth rate is increasing

when the set of proteins PG is decreasing. Proteins involved

in PG depend on the physiological state of the bacterium

and is directly linked to its adaptation to the ecological niche.

Biological experiments available in the literature confirm the

impact of PG proteins on the growth rate. For B. subtilis, the

synthesis of proteins involved in the mobility (present in our

PG set) is active in exponential phase. If the inductor of the

mobility is deleted, the mutant strain grows faster than the

wild type [9]. Moreover, for low growth rates, the weight of

PG is increasing compared to fast growth rates. Indeed, the

strategies developed by the bacteria could be complex during

low growth rates or during the transition between exponential

to stationary phase leading to change the PG set. High level

decisions such as the general stress response, competence,

initiation of sporulation could be induced which could impact

the PG value.

C. A Linear Programming feasibility problem

Pf (µ) then corresponds to a nondifferentiable convex fea-

sibility problem, for which no efficient algorithms currently

exist for their resolution [10]. However, we show in the

sequel that Pf (µ) is equivalent to a LP feasibility problem

for which many polynomial-time algorithms based on the

interior point method are available [11], [10], [12].

Let us introduce the following LP feasibility problem P
l p
f (µ):

find Ra ≥ 0,ν ∈ Rm,νmax ∈ Rm
+

subject to

(Cl p
1a) for all i ∈ Ip,

−∑m
j=1 Spi j

ν j + . . .

µ
(

∑m
j=1 C

Mp

Mi j
νmax

j +C
Mp

Ri
Ra +C

Mp

Gi
PG + X̄c

)

+νY ≤ 0

(Cl p
1b) for all i ∈ Ic,

−∑m
j=1 Sci j

ν j + µX̄c ≤ 0

(Cl p
1c) for all i ∈ Ir,

∑m
j=1 Sri j

ν j + µ
(

∑m
j=1 C

Mr
Mi j

νmax
j +C

Mr
Ri

Ra +C
Mr
Gi

PG

)

≤ 0

(Cl p
1d) for all i ∈ Ii,

∑m
j=1 SIi j

ν j = 0

(Cl p
2 ) µ(∑m

j=1 CR
M j

νmax
j +CR

RRa +CR
GPG)− kT Ra ≤ 0

(Cl p
3 ) ∑m

j=1 CD
M j

νmax
j +CD

R Ra +CD
GPG − D̄ ≤ 0

(Cl p
4 ) for all j ∈ Im,

ν j −νmax
j ≤ 0 and (ν j +νmax

j ) ≤ 0

and the associated set of these inequalities and equalities:

C
l p
µ,PG

= {(Ra,ν) ∈ R+ ×Rm|(Cl p
1a), (Cl p

1b), (Cl p
1c), . . .

(Cl p
1d), (Cl p

2 ), (Cl p
3 )}.

Proposition 3.4: For fixed PG ≥ 0, µ ≥ 0, Cµ,PG
= C

l p
µ,PG

.

Proof: (if) Let us first prove that C
l p
µ,PG

⊆ Cµ,PG
. Let

us assume that for fixed µ ≥ 0, PG ≥ 0, C
l p
µ,PG

6= /0. Let

(R̄a, ν̄) ∈ C
l p
µ,PG

. Then there exists a ν̄max such that (Cl p
1a),

(Cl p
1b), (Cl p

1c), (Cl p
1d), (Cl p

2 ), (Cl p
3 ) and (Cl p

4 ) are satisfied. (Cl p
4 )

imply that for all j ∈ Im, |ν̄ j| ≤ ν̄max
j . Since for (C

l p
1a), (C

l p
1c),

(C
l p
2 ) and (C

l p
3 ), (i) the coefficients multiplying ν̄max

j are

nonnegative, and (ii) R̄a, ν̄ , ν̄max satisfy them, R̄a, ν̄ satisfy

(C1a), (C1c), (C2) and (C3). (C1b) and (C1d) are obviously

satisfied for ν̄ . So (R̄a, ν̄) ∈ Cµ,PG
and C

l p
µ,PG

⊆ Cµ,PG
.

(only if) Let us now prove that Cµ,PG
⊆C

l p
µ,PG

. Let us assume

that for fixed µ ≥ 0, PG ≥ 0, Cµ,PG
6= /0. Let (R̄a, ν̄) ∈ Cµ,PG

and let us introduce for each j ∈ Im, νmax
j ≥ 0 such that

νmax
j = |ν j|. (C

l p
4 ) are obviously satisfied. The other con-

straints defining C
l p
µ,PG

are obtained by the direct substitution

of |ν j| by νmax
j . So (R̄a, ν̄) ∈ C

l p
µ,PG

which concludes the

proof.

Proposition 3.4 emphasizes that Pf (µ) is equivalent to

the LP feasibility problem P
l p
f (µ) [11], [10], [12]. Since

Proposition 3.2 obtained for Pf (µ) can be extended to

P
l p
f (µ), we deduce that for a set of external resources,

µ∗ can be computed by dichotomy through an iterative

resolution of P
l p
f (µ) for each µ value. We also obtain

through the resolution of P
l p
f (µ) the corresponding flux

distribution, the concentration of proteins involved in the

metabolic network and of ribosomes for µ∗.

IV. PREDICTION OF THE MODULAR STRUCTURE OF THE

METABOLIC NETWORK

The feasibility problem Pf (µ) allows to manage the

priority of external resource uptakes according to the cost of

their assimilation pathway or their de novo synthesis pathway

respectively. A metabolic pathway is indeed composed of

several enzymes, each one having distinct characteristics

(amino acid composition, length, etc). Several metabolic

pathways can lead to the production of the same metabolite.

Hence, choosing between two metabolic pathways can be

crucial for the cell if the growth rate is impacted by this

choice. We proved in [6] that the constraints integrated in

Pf (µ) lead to turn off the more expensive metabolic pathway.

Let us consider two alternative metabolic pathways mp1

and mp2 to produce the k-th metabolic precursor Xpk
, for

k ∈ Ip. Each pathway is respectively composed of Nmp1
and

Nmp2
distinct enzymes and such that no other co-metabolites

are solely produced or consumed with the exception of Xpk
.
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Let Imp1
⊆ Im and Imp2

⊆ Im be the index of fluxes associated

to the enzymes belonging to these pathways.

Assumption 4.1: For the two metabolic pathways mp1 and

mp2 previously introduced:

(i) The number of the each metabolic precursor required for

the synthesis of the pathway mp2 is lower than the one

required for the synthesis of mp1, which corresponds to

for all i ∈ Ip, ∑
j∈Imp2

C
Mp

Mi j
< ∑

j∈Imp1

C
Mp

Mi j
,

(ii) The number of the each recycled metabolite produced

during the synthesis of the pathway mp2 is lower than

the one produced during the synthesis of mp1, which

corresponds to for all i ∈ Ir, ∑
j∈Imp2

C
Mr
Mi j

< ∑
j∈Imp1

C
Mr
Mi j

,

(iii) The number of ribosomes required for the synthesis of

all proteins belonging to mp2 is lower than the one

required for the synthesis of all proteins belonging to

mp1, which corresponds to ∑
j∈Imp2

CR
M j

< ∑
j∈Imp1

CR
M j

,

(iv) The intracellular space occupied by all proteins

belonging to mp2 is lower than the one occupied by

all proteins belonging to mp1, which corresponds to

∑
j∈Imp2

CD
M j

< ∑
j∈Imp1

CD
M j

.

Proposition 4.2: Let Assumption 4.1 be hold. For all

PG ≥ 0 and all µ ≥ 0 if Pf (µ) is feasible and (R̄a, ν̄) is such

that ν̄ j 6= 0 for j ∈ Imp1
∪ Imp2

then there exists δ µ > 0 such

that Pf (µ +δ µ) is feasible too.

Proposition 4.2 indicates that choosing a “cheap” synthesis

pathway in terms of metabolic precursors instead of an

“expensive” one allows to increase the growth rate. For

example, solving the optimization problem leads to activate

an amino-acid transporter instead of inducing the entire de

novo pathway when this amino acid is present in the medium.

However, the choice between two metabolic pathways is usu-

ally much more difficult to evaluate analytically since most of

metabolic pathways also include cofactors or co-metabolites

(contrary to the chosen example). In particular, some re-

source distribution solution of Pf (µ) could induce both the

“cheap” and the “expensive” pathway if the production cost

of one co-metabolite produced by the expensive pathway is

cheaper than the produced by an alternative pathway. The

global flux distribution of the metabolic network obtained

during the resolution of Pf (µ) is thus strongly dependent

both on the stoichiometry of the metabolic network, and on

the cost in metabolic precursors of the induction of of the

whole metabolic network. To conclude, we predict that the

bacterium can develop strategies such as genetic regulations

to modulate the flux of the expensive metabolic pathway.

V. VALIDATION FOR B. SUBTILIS

A complete quantitative validation would require the iden-

tification of all kP parameters for the enzymes, which seems

unreasonable due to the lack of available data. However, the

choice of the included design constraints can be validated

by comparison with the existing knowledge in the literature.

In particular, (i) the predictions of the regulation structure of

the metabolic network can be compared with the known reg-

ulatory network for one specific organism; (ii) the predicted

resource repartition between enzymes and ribosomes can be

compared with the known distributions for model-organisms

such as E. coli [13] or S. cerevisiae [14].

We considered the main metabolic pathways of Bacillus sub-

tilis to build S: the central carbon pathway with the glucose

assimilation, aerobic respiration, amino-acids metabolism,

the synthesis of nucleotides, fatty-acids, phospholipids, pep-

tidoglycan and teichoic acids [15], [1]. Xc corresponds to the

concentrations for phospholipids, peptidoglycan and teichoic

acids during exponential growth. These metabolic pathways

include 301 genes, coding for 250 enzymes, 31 transporters,

which represents 325 reactions. We considered that a ribo-

some is composed of one rRNA of 4593 nucleotides and

52 ribosomal proteins, with kT = 15aa/s. For each protein,

all coefficients C
j
i of Pf (µ) are deduced from the exact

amino acid length and the mean composition in amino acids

proposed in [16]. The exact composition in rRNA nucleotides

is used to compute the coefficient CM
R . We also used (i) for

X̄c, the mean concentrations available in [15]; (ii) the same

turnover kP = 50s−1 for all enzymes; (iii) D̄ = 1.117g/ml

[17]; (iv) PG is used as a scaling parameter, and is set to

around 45% of all cell proteins.

A. Recovery of the known functional modules

We solved P
l p
f (µ) for a set of various media. We obtained

the groups of enzymes (modules) that are switched on/off

according to the media composition, and thus that could be

controlled by a common regulator. We compared our predic-

tions with the results in [1]. All the known modules have

been recovered except for one, for which the known genetic

regulation is quite unclear. Moreover, we also predicted the

existence of 11 additional modules in the metabolism of

amino acids. Among them, 6 can be found for the gram-

negative model bacterium E. coli.

B. Predictions of the resource repartition

We displayed on Figure 2 the predictions of the number of

amino acid residues used for ribosomes and for the metabolic

network obtained for various media (and so different growth

rate). The ribosome concentration is increasing with the

growth rate, while the protein concentration involved in

the metabolic network is decreasing. We obtained the same

qualitative behavior as the resource repartition in E. coli

[13] and in S. cerevisiae [14], for which three set of genes

can be distinguished. The expression of two is growth-rate

dependent (induction or repression) while the third one is

growth-rate independent and corresponds to our PG set [14].

Following our results and [13], [14], for a given set of

environmental conditions, every protein saved through the

repression of a metabolic pathway for example, reduces the

amount of metabolic precursors allocated to the metabolic

network. This saved set of metabolic precursors can be

shared between the three sets of proteins (PG, metabolic

and ribosomal) in order to increase the concentration of
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Fig. 2. Resource repartition between ribosomes and metabolic enzymes

ribosomes, and thus to increase the growth rate. Reciprocally,

every metabolic precursors unused to increase the ribosome

concentration leads to decrease the growth rate.

Hence, the cell can develop strategies such as the genetic

regulations to turn on/off the synthesis of proteins and

entire metabolic pathways when they are dispensable and

thus to save the corresponding metabolic precursors. We

proved in this paper through the feasibility problem Pf (µ)
the biological fact usually observed: the genetic regulations

appear to save proteins.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we demonstrated that the problem of re-

source management in bacteria for a fixed growth rate can

be formalised into a nondifferentiable convex constraint-

based feasibility problem Pf (µ) through the integration of

three structural constraints. This feasibility problem can be

easily transformed into an equivalent LP feasibility problem

P
l p
f (µ), for which many classical polynomial-time solvers

are available [10], [18]. The resolution of the LP feasibility

problem leads to predict not only the flux distribution and

the maximal growth rate, but also the concentrations of

ribosomes, and of the proteins involved in the metabolic

network and thus the composition of the cell for differ-

ent growth rates. Moreover, the modular structure of the

metabolic network can also be predicted with respect to the

medium composition.

Another major conclusion of this paper is the successful

use of tools and methods based on convex optimisation in

biology. The formalisation of the cell behavior is suitable

for convex optimisation and strong structural properties

have been obtained allowing to explain the emergence of

functional modules in the metabolic network. The links

between these two fields (biology and optimization) have to

be strengthened in order to investigate fundamental questions

such as the evolution of regulatory networks of organisms

with respect to the ecological niche.
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