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Abstract. We introduce an Information Extraction (IE) system which
uses the logical theory of an ontology as a generalisation of the typical
information extraction patterns to extract biological interactions from
text. This provides inferences capabilities beyond current approaches:
first, our system is able to handle multiple relations; second, it allows to
handle dependencies between relations, by deriving new relations from
the previously extracted ones, and using inference at a semantic level;
third, it addresses recursive or mutually recursive rules. In this context,
automatically acquiring the resources of an IE system becomes an on-
tology learning task: terms, synonyms, conceptual hierarchy, relational
hierarchy, and the logical theory of the ontology have to be acquired.
We focus on the last point, as learning the logical theory of an ontology,
and a fortiori of a recursive one, remains a seldom studied problem. We
validate our approach by using a relational learning algorithm, which
handles recursion, to learn a recursive logical theory from a text corpus
on the bacterium Bacillus subtilis. This theory achieves a good recall and
precision for the ten defined semantic relations, reaching a global recall
of 67.7% and a precision of 75.5%, but more importantly, it captures
complex mutually recursive interactions which were implicitly encoded
in the ontology.

1 Introduction

The elucidation of molecular regulations between genes and proteins, as well as
the associated physical interactions, is essential in the understanding of living
organisms, as they underlie the control of biological functions. However, their
knowledge is usually not available in formatted information from widely accessed
international databanks, but scattered in the unstructured texts of scientific
publications.

For this reason, numerous works in recent years have been carried out to
design Information Extraction (IE) systems, which aim at automatically ex-
tracting genic interaction networks from bibliography (see e.g. [1] for a review).



To perform extraction, a possible method is to start with a model of the domain,
i.e. an ontology, which defines concepts (e.g. gene, protein) and an interaction
relation [2]. Then, an ontology population procedure is achieved [3]: concepts
and relations mentioned in the text are recognized and instantiated. To do so,
after a preliminary terms and named entities recognition step, which leads to
the instantiation of main concepts, semantic relations are usually extracted by
applying so-called extraction patterns, or rules. For instance, in the following
sentence:

Production of sigmaK about 1 h earlier than normal does affect Spo0A
[. . . ]

the protein concepts are first instantiated (sigmaK, Spo0A); subsequently, an
interaction relation is instantiated between the sigmaK and Spo0A proteins.
Rules applied to identify the former relation exhibit syntactico-semantic features
(e.g., syntactic relations between sigmaK and Spo0A words) originated from
NLP (Natural Language Processing) modules.

Designing rules in order to capture the relevant knowledge underlying the
concept of genic interaction is a very difficult challenge, as this concept covers a
wide variety of interdependent phenomenons (protein and gene regulations, DNA
binding, phosphorylation, etc.). For instance, the previous example implies an
unspecified regulation (sigmaK is only stated to “affect” Spo0A), whereas in the
following sentence:

Here, we show that GerE binds near the sigK transcriptional start site
[. . . ]

something very specific, a physical binding between the GerE protein and a DNA
site, is described; furthermore, a more generic relation, an interaction between
GerE and sigK, can be deduced from this binding, on which it depends. Despite
this variety of relations, and their interrelations, most rules of IE systems are
limited to extract a unique type of interaction relation. Consequently, they face
a trade-off between recall and precision. Some favour precision by focusing on
very specific and well-defined interactions, like protein-protein interactions (e.g.
[4–8]), but neglect other biological phenomenons; whereas other stress on recall
by extracting general relations (e.g. [9, 10]), but face precision issues originating
from the important lexical diversity.

To overcome this trade-off and to be able to model more accurately the
biological field, IE systems require more expressive extraction rules. Firstly, it
is not sufficient to address one single interaction relation: rules have to involve
multiple relations, defined within an arbitrarily complex ontology [3], in order to
model, for instance, that GerE binds to (first relation) a site included in (second
relation) the sigK gene. Secondly, syntactico-semantic rules alone are inadequate.
Semantic reasoning is needed to express semantic relations dependencies, and to
deduce, for instance, that if GerE binds to a site included in sigK, then GerE
interacts with sigK. Such a reasoning requires to be able to infer new relations
(interacts with) from the previously instantiated ones (binds to, included in),



something beyond the inference capabilities of the current approaches. Thirdly,
recursive or mutually recursive rules have to be handled; recursion is indeed
intrinsic to natural language (see, for instance, [11, 12]), as illustrated by the
transitive nature of several relations: if the DNA site A is included in another
site B itself included in C, then A is included in C.

We propose an integrated approach to address these three points, in which
the logical theory of an ontology generalises regular IE patterns and is responsi-
ble for the extraction. We denote by ontology both a conceptual and a relational
hierarchy (the thesaurus), along with a logical theory (see e.g. [13]), which ex-
presses constraints and dependences between concepts.

The logical theory is able to refer to any concept defined in the ontology, and
as such, to handle multiple inter-dependent relations, in accordance with our first
point; these dependences may be recursive, in agreement with the third. Further-
more, ontologies exhibit inference capabilities of current knowledge representa-
tion languages, like OWL(-DL), Flogic or Datalog (see e.g. [14, 15]), which allow
to achieve semantic reasoning, as required by the second point. For instance,
semantic knowledge may be expressed in Datalog by the following type of rules
of the logical theory:

interact(A,B)← bind to(A,C), included in(C,B),
protein(A), gene(B), dna site(C)

which means that: “A interacts with B, if A binds to a DNA site C, which
is included in the gene B”.

Extraction rules may be crafted by the domain expert as part as background
knowledge, or automatically learnt with machine learning techniques. We choose
the latter alternative, which has been well-motivated in IE as a generic compo-
nent easily adaptable to new domains [16, 17]. In our context, rule acquisition
becomes part of an ontology learning task: terms, synonyms, the conceptual hi-
erarchy (e.g. [18]), the relational hierarchy (e.g. [2]) and the logical theory of the
ontology have to be learnt from a domain corpus. We focus on this latter point
which has been seldom addressed, although it is an important prerequisite to
complex knowledge-based systems, and we used the multiple predicate learning
system Atre [19] to produce recursive rules with the suitable expressiveness.
This work extends our previous work [3] in several ways. First, it motivates the
use of the logical theory of the ontology as a proper generalization of the extrac-
tion rules or patterns. Second, neither relation dependencies nor recursion were
taken into account during learning, which limited the expressiveness of the IE
system: this is the key element that allows to conduct semantic reasoning and
derive new relations from previously extracted ones. Finally, the corpus has been
enriched with recursive and interdependent biological phenomena not processed
previously, and is made publicly available3.

The plan of the article is as follows. We discuss related works on IE and ma-
chine learning in section 2. We recall our ontology-population based IE plateform
in section 3. We present our ontology learning strategy in section 4. In section
5, we report and comment our learning results on the bacterium corpus. Finally,

3 http://www-lipn.univ-paris13.fr/~alphonse/IE/genic_interaction



in section 6, we discuss our approach and propose some perspectives in IE from
text.

2 Related works

Whereas we aim at automatically acquiring inference rules of an ontology, [20]
notes that, in the ontology learning field, very few works are related to this task,
as most researches focus on taxonomy and non-hierarchical relations learning.
Work of [21] is loosely connected to it, as they learn simple association rules
to handle paraphrases; more recently, [22] focus on learning non-domain-specific
rules, like inclusion or disjointness statements between concepts, while we acquire
domain-specific relations, like binding or regulatory interaction.

These rules cannot be acquired by machine learning techniques usually ex-
ploited to learn IE extraction patterns. Binary classification is indeed mostly
used (e.g. [23, 16]), and is limited to learn a single relation, whereas we need
multiple conceptual relations. Furthermore, if multi-class learning is occasion-
ally involved [4, 24], this strategy does not yield to the required expressivity
level, as they assume independence between target predicates, which forbids re-
cursion. In the same way, a multi-class algorithm is used in [3], which only learns
non-recursive syntactico-semantic patterns: in contrast to our approach, recur-
sive clauses or rules based on previously deduced relations are not learnable. It
was proposed to make use of stratified learning where recursive phenomena were
identified, isolated and left to the expert: recursive rules were manually input
during the ontology design. However, this approach does not scale well as it is
too difficult to identify in the text those phenomena, implicit in the ontology.

To be able to produce recursive or mutually recursive target predicates, we
chose to take advantage of a relational learning algorithm in the multiple pred-
icate setting. To the best of our knowledge, the only other IE application of
multiple predicate learning is found in [25], but is limited to named entities
recognition, whereas we focus on extracting relations between recognized enti-
ties.

3 Information Extraction platform

Our information extraction platform architecture is presented in figure 1. During
production (right of the figure), it involves two main stages: firstly, a preliminary
ontology population step, during which outputs of NLP modules are normalized
in the ontology language by an ontology population module, and secondly, in-
ference made by a query module based on the logical theory of the ontology in
order to derive new instances.

3.1 Ontology Population Module

The first phase, the ontology population, is the extraction from text of instances
of concepts and relations defined in the ontology. As it requires complex map-
pings between expressions in natural language to ontology structures [26], going



Fig. 1. Ontology-based IE platform.

beyond mere class/label linking (like the rdf:label property of RDF4, or the
more complex properties of SKOS5, some authors introduce lexicon models [26,
27] to ground the semantic information to the linguistic domain, even though
they do not employ it in an IE context. We follow this approach by providing a so-
called Lexical Layer (LL) along with the ontology. However, where the previous
authors follow a linguistic point of view, by proposing a model to link ontology
structures to lexical descriptions, we adopt an application-oriented perspective.
Our LL is a task-dependent parameter: it comprises classes and relations re-
quired to link the output of NLP modules to the ontology, so it is designed
with respect to those NLP modules. Its purpose is to provide a representation
with sufficient expressiveness for efficient inference. These classes and relations
define normalizations of text in intermediate stages of abstraction, between raw
text and conceptual level. For instance, a LL relation may associate a syntactic
label with an instance, or a syntactic relation between two instances (subject
(“subj”) and object (“obj”) relations in figure 3). The LL is described in the
same language as the ontology, so the inference rules can benefit from it.

Figure 2, in plain lines, exemplifies an output of the ontology population
module. Instances of the protein concept (GerE, sigmaK) have been instanti-
ated by a terminological module. They have been properly linked with existing
domain knowledge, through the product of semantic relation, which states that
the protein sigmaK is encoded by the sigK gene. Subject (subj ), object (obj ),
comp from, and comp by relations belong to the lexical layer, and their instan-
tiations originate from a parser. A fragment of the corresponding ontology is
shown in figure 3. Dashed lines exemplify the declarative definition of the lexical
layer (e.g. subj, obj ). “stimulate” is an instance of the concept regulation, and
“use” is an instance of the dependence concept. Both are required to understand
the presence of a regulation between proteins, and were thus added to the lexical
layer. A transcription event occurs from (t from) a promoter, and results from
the action (t by) of a protein. Therefore, promoters may be dependent (p dep) of

4 http://www.w3.org/TR/rdf-schema/
5 http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102



Fig. 2. Ontology Population output (plain lines), and some relations derived from the
logical theory (dashed lines).

proteins. Finally, a protein complex results from the assembly of several proteins
(“complex with”): the protein complex EsigmaK is formed by a RNA polymerase
complexed with the protein sigma K.

Fig. 3. Fragment of an ontology of biological interactions (lexical layer in dashed lines).

3.2 Query Module

The output of the ontology population module results from NLP modules and
from domain knowledge (the latter allows us to know, for instance, that the
sigma K protein is the product of the sigK gene, see figure 2). In opposition
to traditional IE systems in which new facts are extensively extracted, here,
knowledge is intensively encoded into the ontology structure, both within the
conceptual hierarchy and within the logical theory, and is available through the



mean of user queries. To benefit from the inference capabilities of our system,
the logical theory of the ontology is used to derive more instances from those
previously extracted. This is done through our query module. Figure 2, in dashed
lines, exemplifies such deduced instances. Consider the following user query,
related to the sentence in figure 2:

?- p_dep(A,B).

which means “is there a promoter A dependent on a protein B?”. An answer of
the query module will be:

A = promoter,

B = GerE

The promoter was inferred to be dependent on the GerE protein thanks to the
logical theory of the ontology, encoded as a clausal theory written in Datalog.
The following rules was used:

p dep(A,B)← t by(C,B), t from(C,A)

It means that “if a transcription event C is due to a protein B and occurs from
a promoter A, then A is dependent on B”. In the example, the promoter depen-
dence relations between promoter and GerE (p dep(promoter, GerE)) is true as
both the relevant transcription by (t by(transcription, GerE)) and transcription
from relations (t from(transcription, promoter)) are true.

Note that the former rule involves semantic attributes, whereas the other
dashed relations have been deduced from syntactico-semantic inference, based
on features belonging to the lexical layer.

The transciption by relation (t by) was deduced from a rule like this:

t by(A,B)← subj(A,C), obj(B,C),
regulation(C), transcription(A), protein(B)

which asserts that the transcription A is caused by protein B, if A is sub-
ject of a regulation event C, and if an object relation links B to C. In fig-
ure 2, t by(transcription, GerE) is true, as subj(GerE, stimulate) is true and
obj(transcription, stimulate) is true.

The transcription from relation (t from) was inferred from the following type
of rule:

t from(A,B)← comp from(B,A),
transcription(B), promoter(A)

which asserts that the syntactic relation comp from has the semantic value
of a transcription from relation if the arguments of the relation are respectively a
transcription instance and a promoter instance. In the figure, t from(transcription,
promoter) is true as comp from(promoter, transcription) is true.

The previous examples illustrate how rules of the logical theory form a major
part of our system; the next section describes the approach that allowed to
automatically acquire them.



4 Learning the Logical Theory of the Ontology

As opposed to previous approaches (see section 2), learning takes place in the
ontology language to produce a logical theory that holds true in the domain on-
tology and the lexical layer. From a machine learning point of view, the learner
uses the ontology as the hypothesis language and instantiations of the ontology
as the example language. During the acquisition of the theory, as illustrated in
figure 1 (left part), the domain expert has to provide learning examples defined
as instantiations of the ontology. He creates instances of concepts and relations
of the ontology from a corpus, some instances being output by the ontology
population module. Figure 2 exemplifies such annotation, the dashed lines cor-
responding to relations to learn.

Learning from such a relational language is known as Inductive Logic Pro-
gramming (ILP) [28], where the hypothesis and the example languages are sub-
sets of first-order logic. We encode the logical theory as a clausal theory, in Dat-
alog. This is a knowledge representation language expressive enough for the task
(as expressive as multi-relational databases), and theoretically well-understood
in ILP, that most learners handle as learning language.

To learn from this relational language, we used the Atre system [19], which
handle recursive logical theories. A definition of a recursive theory, founded on
the notion of dependency graph, is given by [19]. The dependency graph of a
theory T is a directed graph γ(T ) = 〈N,E〉, in which (i) each predicate of T is
a node in N and (ii) there is an arc in E directed from a node a to a node b,
iff there exists a clause C in T , such that a and b are the predicates of a literal
occurring in the head and in the body of C, respectively.

This notion makes easier the characterization of multiple predicate learning
relatively to multi-class learning: the dependency graph of a theory learned in
the multi-class ILP setting will only comprise nodes, whereas in the multiple
predicate case, it will include nodes and edges. Multiple predicate ILP may
allow to learn recursive theory, i.e. a theory T where γ(T ) will contain at least
one cycle.

The main problem to learn such a theory is related to the non-monotonicity
property of the normal ILP setting [19]. In normal ILP setting, theories are
induced thanks to a separate-and-conquer strategy: clauses are learnt one by
one, covered examples are removed from the training set, and the process iterates
until no more positive examples remained; in the multiple predicates paradigm,
whenever two individual clauses are consistent in the data, their conjunction need
not be consistent in the same data. Atre addresses these issues by generating
clauses all together, using a separate-and-parallel-conquer strategy.

Atre represents examples as ground multiple-head clauses, called objects,
which have a conjunction of literals in the head (because of space requirements,
we refer the reader to [19] to an extensive description of Atre). In our case,
each sentence matches an object, and negatives examples were generated using a



closed-world assumption. For instance, the previous example will be equivalently
represented as6:

t by(id2, id1), p dep(id4, id1), t from(id2, id4),

¬t by(id1, id2),¬t by(id1, id3), [. . .]←

subj(id1, id3), obj(id2, id3), comp from(id4, id2),

transcription(id2), protein(id1),

regulation(id3), promoter(id4).

Note that all the ontological knowledge is given as background knowledge
to the ILP algorithm, like the generalisation relation between concepts. For in-
stance, specifying that a protein complex is a protein etc. will be represented as
a clausal theory:

protein(A)← protein complex(A).
gene product(A)← protein(A).
gene product(A)← rna(A).

Processing an example involving a protein complex or a RNA, the learning
algorithm chooses the most relevant generality level (e.g. “protein complex”,
“protein” or “gene product”) to learn the logical theory.

5 Results

As previously stated, extracting a regulation network in other works is mostly
restricted to the extraction of a unique binary interaction relation. Consistently,
recent trends regarding the application of machine learning to biological IE head
toward the development of public annotated corpora, targeting such binary rela-
tions to compare systems’ performances (e.g. AIMed [29], Bioinfer [30], HPRD50
[10], LLL [9]). In this paper, the ontology does not limit us to the extraction of
a single relation, but allows the definition of numerous relations. We present a
way to encode extraction patterns in order to infer new knowledge from them.
Seemingly, public corpora are inadequate to validate the inference capabilities of
the logical theory, as well as the relevance of multiple predicate ILP to acquire
it.

We used the ontology of gene transcription in bacteria introduced in [3]. It
describes the structural model of a gene, its transcription, and associated regu-
lations, to which biologists implicitly refer in their texts. The ontology includes
some forty concepts, mainly about biological objects (gene, promoter, binding
site, RNA, operon, protein, protein complex, gene and protein families, etc.),
and biological events (transcription, expression, regulation, binding, etc.). We
focus on the ten defined conceptual relations: a general, unspecified, interac-
tion relation (i), and nine relations specific to some aspects of the transcription
(binding, regulons and promoters). The specific relations are the following: pro-
moter dependence (p dep), promoter of (p of ), bind to (b to), site of (s of ),

6 Some negative examples have been omitted.



Name Example

p dep sigmaA recognizes promoter elements

p of the araE promoter

b to GerE binds near the sigK transcriptional start site
s of -35 sequence of the promoter

rm yvyD is a member of sigmaB regulon

r dep sigmaB regulon

t from transcription from the Spo0A-dependent promoter
t by transcription by final sigma(A)-RNA polymerase
et expression of yvyD
i KinC was responsible for Spo0A˜P production

Table 1. (From [3]) List of relations defined in the ontology, and phrase examples
(sub-terms of the relation are shown in italic and bold).

regulon member (rm), regulon dependence (r dep), transcription from (t from),
transcription by (t by), event target (et). As an illustration of their semantics,
table 1 gives, for each relation, an expression where the relation is needed to
normalise it. For instance, the third line in the table states that, in the sentence
“GerE binds near the sigK transcriptional start site”, the protein “GerE” (in
bold font) binds to (b to) the site “transcriptional start site” (in italics).

The lexical layer encompasses syntactic relations between classes, and syntactico-
semantic classes aimed at factorizing entities, which may share the same syn-
tactical context (gene and protein, gene family and protein family, transcription
and expression events).

We validate the interest of multiple predicate ILP in an ontology learning
context by reusing the corpus presented in [3]. This corpus is a reannotation of
the LLL corpus [9]: 160 sentences, provided with dependency-like parsing with
resolved coreferences, have been reannoted with terms, concepts and relations
according to the ontology. This corpus have been curated and augmented with
new relations that were left out in [3] because they were matching expert rules
with recursion or dependencies with other rules. In total, 711 relations were
available for learning.

We used a ten-fold cross-validation to evaluate recall and precision of the IE
process. In order to evaluate the gain of recursive rules, we ran Atre with and
without recursive learning enabled. The results are shown in table 2 and table
3, respectively. Although recursion allows to model more complex interactions,
it is interesting to note that the recursive theory also yields better results on
this corpus, with a global recall of 67.7%, compared to 65.6%, and a precision
of 75.5%, compared to 71.7%. The scores are satisfactory, and corroborate the
relevance of our ontology learning approach. More specific relations (et, t from,
r dep) have little lexical variability, and reach high scores; on the contrary, more
general ones, like i, exhibiting greater variability, are noticeably harder to learn.
The poor score of rm may be due to an unbalanced distribution of this relation
through Atre’s objects.



In the following, we will illustrate the benefit of the multiple predicate learn-
ing paradigm by outlining a typology of the learned rules. First of all, some rules
only exhibit semantic attributes, allowing to exclusively reason on a semantic
level.

i(X2,X1)← t by(X2,X3), et(X3,X1). (1)

s of(X2,X1)← t from(X3,X2), et(X3,X1). (2)

For instance, (1) expresses that if X1 is transcribed by X2, then they interact
(e.g. “gspA” and “sigma B” in “transcription of gspA is sigma B dependent”);
(2) asserts that if the X1 gene is transcribed from the X2 promoter, then X2 is
a site included in X1 (e.g. “spoVD” and “promoter” in “spoVD transcription
appears to occur from a promoter”).

Relation Recall (%) Prec. (%) Number

i 50.2 70.6 225
rm 33.3 41.7 15
r dep 100.0 100.0 12
b to 69.6 75.3 79
p dep 69.8 71.2 53
s of 61.2 61.2 67
p of 69.8 55.6 43
et 95.7 96.9 164
t from 73.3 84.6 15
t by 52.6 62.5 38

Global 67.7 75.5 711

Table 2. Results for multiple predicate learning (with recursion). Last column shows
the number of examples.

Relation Recall (%) Prec. (%) Number

i 57.3 74.5 225
rm 33.3 62.5 15
r dep 100.0 100.0 12
b to 67.0 72.6 79
p dep 67.9 61.0 53
s of 73.1 54.4 67
p of 69.7 44.1 43
et 76.8 96.1 164
t from 60.0 81.8 15
t by 47.3 69.2 38

Global 65.6 71.7 711

Table 3. Results for multi-class learning (without recursion). Last column shows the
number of examples.



Multiple predicate setting is especially well-fitted to the hierarchical structure
of ontologies:

s of(X2,X1)← p of(X2,X1). (3)

p of(X2,X1)← s of(X2,X1), promoter(X2), (4)

gene entity(X1).

Rule (3), given by the expert as domain knowledge, encodes an is-a relation
between p of and s of, whereas learned rule (4) allows to specialise a s of relation
into a p of relation, if X2 is a promoter and X1 a gene. This is illustrated by the
last example of the previous paragraph: thanks to (2) and (4), the system will
deduce a p of relation between the promoter and the spoVD gene. Note that
the rules (2), (3), (4) constitute a recursive theory.

Previous kind of rules are grounded to NL through predicates that involve
LL-defined literals (i.e. syntactico-semantic attributes), like:

i(X2,X1)← subj v n(X3,X1), (5)

obj v n(X3,X2), term(X3, require).

i(X2,X1)← subj v n(X3,X2), (6)

obj v n(X3,X1), regulation(X3).

Rules (5) and (6) allow to derive semantic relations from syntactic relations.
(5) is related to expressions like “A activates B”, while (6) handles phrases like
“B requires A” (note the argument order). These two rules show that Atre is
able to learn classes of terms not explicitly defined by the expert to derive the
argument order.

Our approach has the capacity to combine various abstraction levels in order
to deduce new relations. For instance, the recursive rule (7) expresses that if
protein X2 binds to (semantic level relation) site X3, included in (semantic level
relation) site X4, then a comp n n of (syntactic level relation) between X4 and
X1 implies that X2 binds to X1 (e.g. “GerE” and “promoter” in “GerE binds to
two sites that span the -35 region of the cotD promoter”). Previously inferred
semantic relations may also be useful as contextual disambiguation clues. In
(8), the et relation ensures that a comp v pass n from syntactic relation has the
semantic value of a t from.

b to(X2,X1)← b to(X2,X3), s of(X3,X4), (7)

comp n n of(X4,X1).

t from(X2,X1)← et(X2,X3), (8)

comp v pass n from(X2,X1).

Moreover, reasoning on multiple abstraction levels allows to factorize various
lexical variations into a single semantic label. As a result, the learner produces
more compact theories. Rule (9) clarifies this point. It will match expressions
either like “the cwlB operon is transcribed by E sigma D” or like “transcription
of cotD by sigmaK RNA polymerase”, as the two forms “transcription of A”
and “A is transcribed” are factorized by rules (10) and (11). In the multi-class
ILP setting, two rules would have been required.



i(X2,X1)← comp n n by(X3,X2), (9)

et(X3,X1).

et(X2,X1)← comp n n of(X2,X1), (10)

event(X2).

et(X2,X1)← subj v pass n(X2,X1), (11)

transcription(X2).

6 Conclusion and perspectives

Automatic extraction of genetic pathways from scientific litterature involves the
modelling of a wide variety of semantic relations that are intrinsically interre-
lated. However, interrelations are neglected by traditional IE approaches, which
only focus on the mapping of syntactico-semantic structures and semantic rela-
tions, and assume independence between semantic relations. In this paper, we
introduced an IE platform that overcomes these limitations and exhibits infer-
ence capabilities going beyond existing systems by generalizing traditional IE
patterns with the logical theory of an ontology. In particular, it allows to define
multiple relations and to derive new relations from previously instantiated ones,
when the former depend on the latter. Dependencies and recursive dependencies
required by the logical theory are learnt from an annotated corpus by taking ad-
vantage of ILP in the multiple predicate setting, using the Atre system, which
does not suffer from the independence assumption of usual machine learning
approaches. We validated our system by learning a recursive logic theory from
a bacterium corpus, and discussed its relevance for IE, especially its capacity to
combine syntactic and semantic reasoning, and to benefit from the hierarchical
structure of the ontology (specialisation and generalisation rules).

In the future, the declarative nature of our platform will allow its easy ex-
tension. Specifically, we plan to handle regulations, like inhibition and activation
relations, a very important demand from biologists yet to be fulfilled. It may be
due to the fact that these relations are inherently mutually recursive: only when
we know that A inhibits B, which in turn inhibits C, that we can derive that A
activates (or participates in the activation of) C.

Furthermore, we plan to survey the capacity of ILP tools, learning in the
multiple predicate setting, to scale up and to handle noise, as this is a crucial
requirement for NLP applications.

References

1. Ananiadou, S., Kell, D.B., Tsujii, J.: Text mining and its potential applications in
systems biology. Trends in Biotechnology 24 (2006)

2. Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervised learning
of semantic relations between concepts of a molecular biology ontology. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI2005),
Edinburgh, UK (2005)



3. Manine, A.P., Alphonse, E., Bessiere, P.: Information extraction as an ontology
population task and its application to genic interactions. In: 20th IEEE Inter-
national Conference on Tools with Artificial Intelligence, ICTAI 2008. Volume 2.
(2008) 74–81

4. Craven, M., Kumlien, J.: Constructing biological knowledge bases by extracting
information from text sources. In: Proceedings of the Seventh International Con-
ference on Intelligent Systems for Molecular Biology, AAAI Press (1999) 77–86

5. Rindflesch, T., Tanabe, L., Weinstein, J., Hunter, L.: EDGAR: extraction of drugs,
genes and relations from the biomedical literature. In: Proceedings of the Fifth
Pacific Symposium on Biocomputing (PSB’03). (2000) 517–528

6. Blaschke, C., Andrade, M., Ouzounis, C., Valencia, A.: Automatic extraction of bi-
ological information from scientific text: Protein-protein interactions. In: Proceed-
ings of the Seventh International Conference on Intelligent Systems for Molecular
Biology, AAAI Press (1999) 60–67

7. Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated extraction of informa-
tion on protein-protein interactions from the biological literature. Bioinformatics
17 (2001) 155–161

8. Saric, J., Jensen, L., Ouzounova, R., Rojas, I., Bork, P.: Large-scale extraction of
protein/gene relations for model organisms. In: First International Symposium on
Semantic Mining in Biomedicine 2005. (2005)

9. Nédellec, C.: Learning language in logic — Genic interaction extraction challenge.
In Cussens, J., Nédellec, C., eds.: Proceedings of the Fourth Learning Language in
Logic Workshop (LLL05). (2005) 31–37
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