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ABSTRACT -  A  state  of  the  art  review  of  data  assimilation  techniques  is 
presented, with emphasis and examples related to vegetation modelling. Easy-to-
read theoretical papers have been selected in all area of data assimilation, most of 
them  however  coming  from  the  oceanography  field.  Examples  illustrate  the 
different  techniques.  Perspectives  regarding errors  assessment  and their  use  in 
assimilation schemes are given.
 

1. INTRODUCTION
Increasing efforts have been devoted to vegetation modelling during the last decades. Mechanistic 
models of plant canopies structure and function are now essential for i) Pastures and crops yields 
monitoring and forecast, ii) Carbon cycle studies and projections iii) Climate system research and, 
to a lesser extent,  weather forecast,  iv) hydrology and water ressources assesment and forecast. 
Common observations clearly show that plant canopies change with time, especially at the seasonal 
scale and also display a strong interannual variability. More rapid changes can also occur at shorter 
time  scale,  following extreme events  and disturbances  for  instance.  Common observations  also 
reveal  the  strong  spatial  variability  of  terrestrial  vegetation,  wether  induced  by  human  impact 
(landscape scale), or reflecting soil, climate, or life-history variability. Vegetation growth models 
are expected to reproduce these temporal and spatial variabilities, which will impact plant biomass, 
crop  yield,  water  and  carbon  exchanges.  This  is  a  challenging  task,  as  soon  as  regional  to 
continental scales are considered. At these scales, ground data related to vegetation properties, like 
biomass, leaf area index temporal evolution, physiological properties etc., are sparse at best, and 
most often nearly lacking. Remote sensing is viewed as the only way to scale models from the site-
scale up to the region. Different approaches may be used to combine remote sensing and vegetation 
modelling: model validation, biophysical variables inversion followed by model forcing. There is 
also a recent trend to assimilate satellite data into models, as it is widely done in atmospheric and 
ocean science. The idea is to make full use of both model knowledge and data information. As far 
as ecosystems are concerned, the objectives are either to have the best simulation over a given 
period of time (e.g. estimation of carbon fluxes for the last decade), or to prepare a forecast by 
assessing the best initial conditions for the model, or the best parameters (e.g. short term prevision 
of crop yield,or floods). Because these two objectives are different, and because there are important 
differences in models (in terms of accuracy, robustness, errors) as well as in the satellite datasets (in 
terms of  noise,  sampling etc.),  a  whole suite  of assimilation  methods can be investigated.  The 
objectives  of  this  paper  are  to  summarize  or  give references  to  the main  assimilation  methods 
suitable for vegetation-related studies, to give examples of what has been used so far, and to draw 
some perspectives for future works.

2. ASSIMILATION TECHNIQUES OF REMOTE SENSING DATA 
In this review, recent papers have generally been preferred to classical and pioneering papers, since 
the  formers  are  generally  simpler  and  clearer,  and  also  benefit  from a  larger  view,  including 
comparison between methods and links to other inverse problem issues. 

Data  assimilation  refers  to  a  number  of  techniques  aimed  at  using  optimally  all  available 
information  regarding a  system,  generally  composed of  a  dynamic  model  (imperfect),  a  set  of 
measurements  (with  noise)  and an  observation  model  (imperfect).  The objective  is  to  obtain  a 

2001, 8th international congress on  Physical measurements and signatures in remote sensing,  8-12 
janvier 2001, Aussois, France, CNES Ed., pp. 645-658.



representation  of  reality  (i.e. outputs  of  the  model)  taking  into  account  all  the  features  above. 
Alternative methods are known as ‘observation model’ inversion and dynamic model calibration. In 
the case of basic inversion of an observation model, no information from a dynamic model is taken 
into account,  while in the case of basic dynamic model calibration,  measurements and dynamic 
model are taken into account, but the dynamic model is supposed to be perfect in its equations 
during the assimilation interval and only the parameters and/or initial conditions are updated. 

In  both  cases  (observation  model  inversion  and  dynamic  model  calibration),  measurements 
errors may or may not be taken into account, and observation model errors may or may not be taken 
into account. 

We will first review assimilation schemes where no dynamic model is taken into account so that 
the data are assimilated independantly one from another in time and space. Then we will move 
towards more complete problems, for which the assimilation scheme takes a dynamic model as an 
additional constraint :  the data must then fit  with the dynamic of the model,  in a certain sense 
related  to  the  uncertainty  of  this  model.  Some  definitions  or  classifications,  relevant  to  data 
assimilation with a dynamic model, are given. In Appendix A the Kalman filter formalism is briefly 
developed since numerous allusions are made in this paper to this method.

2.1 From observation model inversion to advanced observation assimilation 
In  observation  model  inversion  the  information  from the  dynamic  model  is  not  taken  into 

account (e.g. inversion of a radiative transfer model using satellite data to derive LAI), or simply no 
dynamic model is available that would predict the observed quantity (e.g. inversion of a radiative 
transfer model using satellite data to derive mean leaf inclination). In some cases however, other 
sources  of  information  are  available:  e.g. a  most  probable  value  with  a  given  uncertainty  as 
background information, or an output from a model taken as a single information (as opposed to a 
model taken as a constraint over a whole period of time, see section 2.2). The advantage of using 
background  observation  (i.e. one  advantage  of  data  assimilation  over  ‘observation  model’ 
inversion) is that the inverse problem is never ill-posed : the existence, stability and uniqueness of 
the solution is guaranteed by the background information (see Tarantola and Valette, 1982). The 
drawback is that the ‘inverse’ part of the assimilation scheme may be less efficient than what can be 
done with specific observation model inversions (neural network, simplex method, …) : in the case 
of the extended Kalman filter for instance (see Appendix A), the observation model is linearized 
around the background information  : if the reality is far from the background information and if the 
observation model is highly non-linear, then the extended Kalman inversion will not be optimal, 
and may even by totally erroneous (Evensen, 1997b, Miller et al., 1999). 

If the problem is posed in least-square terms as in the variational formulation, and if the problem 
is solved with a direct minimization of the cost function (no linear tangent model nor its adjoint) 
then  the  problem  is  generally  considered  optimally  solved  regarding  the  non-linearity  of  the 
observation model.  This is  not  so true,  because the noise in  the observation is  only taken into 
account to balance between the different observations and the background information. Let's take an 
example, the estimation of the LAI with a single NDVI observation:

The least square or variational formulation is in this case :

( ) ( ) ( )( )
2
NDVI

2
obs

2
LAI

2
0

obs

LAINDVILAILAI
LAIJ

σ
−+

σ
−= h

(1)

where J is the cost function to be minimized with respect to the LAI and  h is the non-linear 
‘observation model’ simulating the NDVI from the LAI (other parameters are not considered here 
for sake of simplicity). LAI0 is the background information, coming from a vegetation model for 
instance, and σlai its associated uncertainty. σNDVIobs is the noise associated with the observed NDVI. 
One can also include the error of the observation model h, so that Eq. (1) writes :
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Note that here the inversion is performed using the mean value of NDVIobs, and the mean value of 
h(LAI)  :  h(LAI)  is  actually  a  mean  value  if  the  uncertainty  in  h is  taken  into  account.  This 
uncertainty  in  h arises  from uncertainties  in  its  parameters  and  inexactitudes  in  its  equations, 
parameterizations and hypothesis that do not necessarily represent the reality. Since h is non-linear, 
it is well known that the inversion using the mean values may largely differ from the average of an 
ensemble of inversions performed using the noisy NDVIobs and h(LAI) (according to their respective 
noise  σNDVIobs and  σh).  The word  ensemble is  the name given by Evensen (1999a)  to a method 
introduced in 1994 and fully described in Evensen (1997b). Evensen proposed in fact an Ensemble 
Kalman Filter to solve the problem of predicting a dynamic model uncertainty in the case of a non-
linear dynamic model, as will be seen in the next section about dynamic model. This idea has been 
adapted to overcome the above problems linked to non-linearities in the observation model (see 
Viovy et al., this issue). 

An  ensemble  scheme  with  the  variational  approach  given  in  Eq.  (2)  would  include  the 
minimization of a great number of cost functions Ji given by :

( ) ( ) ( )( )
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with ( )LAI0
i
0 ,0LAILAI σ+= N

( )NDVIobsobs
i
obs ,0NDVINDVI σ+= N       (3)

( ) ( ) ( )hhh σ+= ,0LAILAIi N

where ( )σ,0N  is a gaussian noise of mean 0 and standard deviation σ. Any other distribution 
may be chosen : for instance one may estimate that the background information LAI0 is only known 
with a uniform distribution. This is an advantage of ensemble simulations:  freely designing its own 
ensemble to come closer to the actual available information.

Each minimization will lead to an estimated LAIi. The final estimation will then be the average 
of these LAIi, and the corresponding uncertainty will be the standard deviation of the ensemble. 
Therefore  one  will  not  only  get  the  best  estimate  of  the  LAI,  but  also  its  whole  probability 
distribution function (which may not be a gaussian, so in this case the standard deviation would not 
be a valuable information). The price to pay for this optimal observation model inversion scheme is 
to estimate σlai, σNDVIobs and σh. The other price is computation time, an ensemble of size O(100) or 
O(1000) being reasonable. This is the reason why ensembles are generally used with a Kalman filter 
approach, which avoid the time needed for the minimization of the cost function (the price here is 
the linearization of the observation model as mentioned above, see Appendix A). Research has still 
to  be  done  to  find  a  way  of  integrating  the  advances  of  Ensemble  simulations  to  avoid  the 
linearization in the observation model.

The first  point here that  allowed to improve the optimality  of the inversion scheme was the 
introduction  of  the  background  information  (and  associated  noise).  The  second  point  was  the 
introduction of uncertainties and noises in both observations and observation model. The technique 
that is used (Kalman filter or variational) is of secondary importance. One could as well use any 
classic  inversion  scheme.  To  illustrate  this  point  and  show  that  the  ensemble  approach  is 
independent of the assimilation technique, we suppose that one has an inverse scheme f to obtain 
the LAI from a NDVI value : LAIinv=f(NDVI) (through a neural network for instance). Although 
this inversion scheme could already give an uncertainty by itself, we will not use this property here 
since we need to get the final uncertainty after the background information has been processed. The 
ensemble inversion scheme would look like the following :
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with the same notations as Eq. (3). The result, as above, would be the probability distribution  
function of the LAIi, possibly reduced to its mean and standard deviation values. 

The same preoccupation - the addition of a first-guess estimate to constrain and/or improve the 
inversion - is of interest in many problems : in a study related to atmospheric parameter estimation, 
Aires et al. (2000) went one step further than Eq. (4) : they used a neural network to perform the 
inversion,  but  they  did  include  the  background  information  into the  neural  network  inversion 
scheme, and not after the inversion as in Eq. (4). This the first study to propose this very promising 
approach.  Furthermore  their  paper  provides  conceptual  bridges  between  the  neural  network 
approach (with background information) and the variational approach. 

A last  point, related to the scale problem, can be addressed by observation model inversion. 
Another source of noise and uncertainty comes from the intra-pixel variability. A consequence is 
that the background LAI0 itself will not have a unique and determined value, but will vary around a 
mean  value,  noted  LAIpix.  This  means  again  that  )(LAItrueh will  differ  from  )LAI( trueh .  The 
solution to take this variability into account is again to perform an ensemble method with :

( )LAI
i
pix

i
0 ,0LAILAI σ+= N and ( )pixpix

i
pix ,0LAILAI σ+= N (6)

Note that this is equivalent to write : 

( )2
pix

2
LAIpix

i
0 ,0LAILAI σ+σ+= N (7)

See Viovy et al. (this issue) for an application of this approach with an Ensemble  Kalman filter. 

As a conclusion of this section, the ensemble approach provides a theoretical and practical frame 
to  optimally  solve  the  observation  model  inversion  problem.  It  is  easy  to  implement  and very 
intuitive. It takes into account all non-linearities in the model and can deal with all types of error 
(gaussian,  uniform or  others).  The  drawback  is  that  it  needs  1000  inversions  (Eq.  8)  or  1000 
minimization (Eq. 10) for each pixel. An approach using Look-Up tables may sometimes be used, 
where all calculations are performed once. The Ensemble Kalman Filter needs only 1000 runs of the 
direct observation model (no inversion, no minimization) but the non-linearities in the observation 
model are still not totally taken into account, because it relies on local linearization.  

2.2 From dynamic model calibration to advanced data assimilation into dynamic model 
Classical  model  calibration  aims  at  adjusting  a  set  of  parameters  (adequatly  chosen through  a 
sensitivity  study)  to  fit  observed  data  to  the  dynamic  model  (generally  coupled  to  obervation 
models). We are therefore one step ahead compared to § 2.1 since an additional constraint is added 
through the dynamic  model  (over  the whole simulation  period,  as  opposed to  a single isolated 
information as in § 2.1). 

A recent review of such applications for SVAT models is presented in Olioso et al. (1999), the 
historical paper being Delecolle et al. (1992). Recent studies involving calibration of SVAT and 
vegetation models with optical and/or radar data are presented in Clevers and Van Leeuwen, 1994 
(calibration of 3 parameters of a growth model with LAI estimated from optical and radar data. The 
calibration includes the uncertainty linked to the inversion of the observation models giving the 
LAI), Kergoat et al., 1995 (calibration of a growth model with SPOT data and impact on the CO2 

fluxes for a natural vegetation), Cayrol  et al., 2000 (calibration of a coupled SVAT and growth 
model with optical AVHRR data and in situ radiometric temperatures),  and Prévot  et al.,  2001 
(extensive sensitivity study of a canopy functioning model and calibration of four parameters using 
optical and radar data). 

Uncertainties on observed data and background information about the fitted parameters have 
rarely been taken into account so far in the cited calibration studies, which makes a difference with 
advanced  assimilation  methods  (e.g. Evensen,  1998  or  Natvik  et  al.,  2000).  Other  differences 
between calibration  and data  assimilation  will  appear  more  clearly  in  the following paragraphs 
where some definitions  and optimal  data  assimilation  formulation  (with sometimes  sub-optimal 
techniques of resolution) are presented.
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2.2.1 strong constraint/weak constraint
Let us assume that LAI series are directly observed (with uncertainty σLAI) and that we want to 

use it to update or correct a vegetation growth model. The growth model serves as a constraint. If  
the growth model is supposed to be perfect, and only its parameters and initial conditions are prone 
to errors, then we are in the strong constraint case. If we take into account imprecision and errors in 
the  model,  we  are  in  the  weak  constraint case.  These  are  the  first  two  categories  of  data 
assimilation. Model calibration for instance relies most of time on the strong constraint hypothesis. 

In the strong constraint  case the model  is  supposed perfect  during the assimilation window, 
which therefore must be as short as possible. Otherwise, we are trying to fit  parameters with a 
wrong model, which would not result very efficient. The weak constraint case is more general and 
therefore better (more optimal) than the strong constraint case (see Evensen et al., 1998).

The variational or least square formulation fits well to the strong constraint problem. Such an 
approach is presented in Knorr (1999) for an application with a vegetation model (see also Knorr, 
1997 and Knorr, 1998). The cost function to be minimized in his case is :

( ) ( ) ( )∑∑
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where x1,x2 and x3 are the model parameters to be determined, fobs are the observed fAPAR (with 
associated uncertainty σf),  gsim (and associated uncertainty σg) the simulated fAPAR (that depends 

on model parameters x1,x2,x3), and 0
ix the background values of parameter xi with uncertainty 

ixσ .
In  Knorr  (1999),  x1 is  the  maximum  plant-available  soil  water,  x2 the  leaf  onset/shedding 

temperature and x3 the fractional vegetation cover. Knorr tested his method on both local and global 
scales. He shows that the assimilation procedure is superior to both the control run (no assimilation)  
and hard updating (fAPAR is simply replaced in the model by its remote sensing estimate). Such a 
finding was also demonstrated  in  François  et  al. (1999)  and Quesney (1999) in  the context  of 
Extended Kalman filtering and a hydric balance model.

The  problem  in  Knorr  application,  apart  from  the  strong  constraint  hypothesis,  is  the 
determination of  σg (which may actually vary with time). The other problem is the choice of the 
parameters to be fitted. Knorr (1997) addresses these problems, together with the difficult problem 
of remote sensing data quality and recalibration before comparison with simulations.

In fact, the cost function J in Eq. (8) should include all parameters and their covariance (and not 
only their variance) (see Evensen 1998). The problem becomes very complicated because it is more 
difficult to estimate 100 variances than 3 (if the model has 100 parameters), and still more difficult 
to  estimate  the associated 50000 covariances.  At this  point,  a sensitivity  study may reduce the 
number of parameters of interest to 10, 5 or 3, but the variance and covariance calculation remains a 
problem. This problem has been solved for linear models and gaussian errors with the Kalman 
filter,  approximately  solved for  non-linear  models  with the  extended Kalman filter,  and totally 
solved for non-linear models with non-gaussian errors with the Ensemble Kalman filter (Evensen, 
1997b). In this sense the problem is easier than the inversion of non-linear observation models that 
is still pending (as seen previously).

Natvik et al. (2000) present an application of the weak constraint problem for a zero dimensional 
marine ecosystem model : the problem is very similar to vegetation models, which are also zero 
dimensional models. The method presented in this paper may therefore be transposed to vegetation 
models. The variational formulation is minimized using gradient descent methods (gradient steepest 
descent and nonlinear conjugate gradient) and these methods are fully presented and described.

2.2.2 sequential/multiple/smoother
In the sequential assimilation, the model is updated whenever an observation is available. If the 

sequential assimilation technique allows to update prognostic variables of the model, we are in the 
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weak constraint case : Kalman filter, Ensemble Kalman filter, weak constraint sequential variational 
assimilation (3D-Var). If the result of the assimilation must be an output of the model  we are in the 
strong constraint case (only parameters are updated) : sequential parameter identification with the 
Kalman filter, strong constraint sequential variational assimilation. A – still simple – example of 
sequential data assimilation in vegetation model is presented in Cayrol (2000) : this study shows the 
advantage of allowing the model to deviate from its prediction. It also shows that a prior calibration 
is necessary before the sequential assimilation to correctly perform. The complete solution to this 
problem would be the weak constraint problem formulation as presented in Evensen et al., 1998, 
(see below), allowing the determination of both the parameters and the dynamic variable LAI with a 
weak constraint.

In the multiple assimilation, all observations are processed together. This terminology (multiple  
assimilation) is  not official  since,  for historical  reasons, variational  assimilation was sometimes 
seen as the opposite of sequential assimilation (see for instance the title of the otherwise excellent 
paper by Ide  et al.,  1997),  and therefore variational  assimilation was employed in the sense of 
multiple  assimilation.  3D-Var,  however,  is  a  sequential  variational  assimilation  technique  for 
instance  (Zou  et  al.,  1997).  Symmetrically,  as  both computer  capacities  and theoretical  studies 
advances, optimal multiple assimilation schemes based on other techniques than the variational one 
are  appearing  (e.g. Miller  et  al.,  1999).  Since  assimilation  history  in  the  continental  biosphere 
community  is  nearly  virgin,  we  may  use  new words,  so  that  multiple  assimilation means  the 
opposite of sequential assimilation. 

Since all observations are considered as a whole (i.e. all information are considered), one may 
think that multiple assimilation is preferable to sequential assimilation. On a theoretical point of 
view this is true. For linear models with gaussian errors however, it is also proved that optimal 
sequential assimilation (i.e. Kalman filter) gives the same result than 4D-VAR assimilation at the 
end  of  the  assimilation  window (e.g. Li  and  Navon, 1999),  so  that  the  advantage  of  multiple 
assimilation is not so evident. Basically the advantage of sequential assimilation is that model errors 
are easily processed and accurately estimated (through Extended Kalman filter or, better, through 
Ensemble  techniques,  see  Evensen,  1997a,b  or  Miller  et  al.,  1998  for  wilder  cases),  while  in 
multiple  variational  assimilation,  nothing  exists  that  allows  to  estimate  the  variances  and 
covariances of the errors of the models (except adaptation of Kalman filter-like schemes). 

A smoother is simply the combination of two filters, one integrated forward in time, and the 
other processing the observations backward in time, so that the trajectory is optimal not only at the 
end of the observation period, but also all along it (see Bennet, 1992, Tanizaki, 1996). Evensen and 
Van Leeuwen (2000) present a general ensemble smoother for nonlinear dynamics formulated as a 
sequential method (the observations can be assimilated sequentially during a forward integration). 
They also present a general and easy to read presentation of what is a smoother (compared to a 
filter).

In  a  terminological  way,  Natvik  et  al. (2000)  distinguish  between  sequential  methods  and 
smoothing  methods  in  the  way  we  distinguished  between  sequential  and  multiple  methods. 
Therefore, smoothing assimilation and multiple assimilation may be seen as synonymous, with a 
slight connotation of weak constraint problems for the term smoothing assimilation.

 We won't go any further in the presentation of the different solutions of the strong and weak 
constraint problems with sequential, multiple or smoother methods, involving variational, Kalman, 
Ensemble or Bayes techniques, since numerous quality papers already present them (and most of 
them were already cited in the previous paragraphs). In a very complete and easy to read paper, 
Evensen  et al. (1998) present the generalized parameter estimation problem, for both strong and 
weak constraint cases, including the determination of the model bias (together with the parameters 
estimation);  The  problem is  formulated  in  terms  of  the  Euler-Lagrange equations.  An iterative 
solution is proposed for weakly non-linear models using the gradient descent method. In the strong 
constraint  case,  they obtain the well  known "adjoint method".  As an alternative the representer 
method is  presented,  which allows to solve the problem without iterations.  Finally a sequential 
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scheme is presented to correct the bias of the model "on the flight". This last scheme however is 
only useful is one already has a complex assimilation scheme and wants an additional feature of 
bias  estimation.  If  one can develop its  own assimilation  scheme,  the bias estimation should be 
included in the principal scheme, either in its variational (Euler-Lagrange) or sequential form. More 
details about these methods can be found in Bennet (1992) for the Euler-Lagrange and representer 
methods,  and Tanizaki  (1996)  for  the  non-linear  filters  and smoothers.  The  paper  by  Evensen 
(1998) is nicely completed by Evensen (1994a), which includes simulation-annealing methods.

An  overview  of  different  assimilation  techniques,  together  with  a  unified  notation  is  also 
presented in Ide et al. (1997). Van Leeuwen and Evensen (1996) in a fundamental paper present the 
data assimilation and inverse methods in terms of a probabilistic formulation that gives more insight 
into  data  assimilation  basis  (Bayesian  statistics,  Maximum-Likelihood  estimator  vs.  Minimum-
Variance estimator, …). The Maximum-Likelihood vs. Minimum-Variance problem is also clearly 
posed in Evensen (1997a).

A clear and nice presentation of the adjoint method to solve the strong constraint variational 
formulation (3D-VAR and 4D-VAR), together with links to the Kalman filter and basics in Bayes 
statistics is presented in the hard to find but inestimable technical note by Zou et al. (1997). In the 
same domain,  the  paper  by Navon (1996) is  helpful  and includes  a  state  of  the  art  review of 
parameter estimation in oceanography (but basics are basics and also apply to vegetation models).

If  we investigate  the  hydrological  field,  we find that  numerous studies  are  related  to  model 
calibration : one very interesting recent paper by Xiong and O'Connor (2000) introduces techniques 
to adequately represent a n-dimension objective function (which is the Nash-Sutcliffe criterion in 
their case, but could be a variational cost function J) in a 2-D space.

2.3 Estimation of model error 
A very important point in data assimilation method is related to the technique employed to estimate 
the model error : all the methods presented above include the covariance matrix of the model error, 
either  in  the  observation  model  inversion  or  in  the  dynamical  model  calibration.  This  issue  is 
addressed in the above-mentioned papers, but no practical method is given.

Concerning vegetation models, we should be able to refine the estimation of model error through 
ensemble technique : each line of model code should be associated with a process error (either 
uniform or gaussian), assuming that all parameters and quantities (e.g. evaporation) in this line are 
known and exact. The scheme begins with the estimation of parameter uncertainties, and goes on 
until  the  prognostic  equations.  Such  an  idea  is  an  extension  of  previous  works  by  Spear  and 
Hornberger (1980), cited and applied in Franks et al. (1999). Only the parameters are affected with 
errors in these works however (not the equaations), and uniform errors are always retained (instead 
of gaussian, uniform or others).

To illustrate the method, we can take the example of hydric balance. Suppose that we are at the 
final hydric balance equation of the surface layer (involving precipitation, evaporation, transpiration 
and exchanges  with a sub-layer).  We should evaluate  the  error  of  this  equation,  assuming that 
precipitation, evaporation, transpiration and exchanges are correct (their respective errors have been 
taken into account in the preceding code lines). The error to be evaluated may include for instance 
lateral exchanges if they have been neglected (1D model) and all physical processes that have not 
been taken into account in the equation. The final step is to run the model with all errors to create an 
ensemble of simulations (say 1000 simulations). For each simulations, at each line code, an error 
will  be  added  according  to  its  statistical  properties.  Finally,  one  obtains  the  whole  probability 
distribution function (pdf) of the model state, which represents all the available information. One 
can see whether the obtained pdf is gaussian or not : most of the time, it will not be, because of 
uniform  noises  that  have  been  chosen  for  poorly  modelized  processes  and  poorly  known 
parameters, and because of the non-linearities in the model. 

This method allows to obtain the exact information available from the model, together with the 
exact variance-covariance matrix of model errors (if relevant, i.e. for gaussian pdf's), provided that 
the errors were correctly estimated for each code line. A similar concern about error estimation in 
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SVATs  is  expressed  by  Franks  and  Beven  (1997),  and  they  also  propose  Monte-Carlo  based 
simulations. 

In most papers, this method is replaced with a less practical one : one is supposed to find out the 
variance and covariance of the prognostic equations (q in Eq. (12) in Evensen (1998), or Q in the 
Kalman filter, see for instance Eq. (3) in Ide et al., 1997). Less code lines are concerned than in the 
above-proposed  method  (only  the  prognostic  equations),  but  this  is  absolutely  impossible  to 
correctly guess what could be the sequential model error on one time step. Furthermore, most of the 
time  the  matrix  Q is  supposed to  be  diagonal  (no error  covariance)  because  this  is  still  more 
impossible to guess error covariances than error variances : the consequence of the hypothesis of 
null covariance in  Q is to consistently underestimate the final covariance errors in the variance-
covariance matrix  P of the model (computed with Eq. (4b) in Ide  et al. 1997, Eq. 44 in Evensen 
(1994b) with the Kalman filter).  The same problem occurs in the ensemble methods (Evensen, 
1997b) : to compute the samples, one has to estimate the q's or Q. In the variational assimilation the 
corresponding problem is the estimation of background covariance  B0 (Eq. 8 in Li  and Navon, 
1999, Eq. 11 in Ide, 1997, Eq. 2.45 (3D-VAR) or 2.60 (4D-VAR) in Zou et al., 1997).

3. CONCLUSION

To conclude, we shall quote the last paragraph in Miller  et al. (1999), about nonlinear filtering, 
which in our case refers to both the ensemble method and the associated method that we suggest in 
§2.3 to estimate the variance-covariance matrix of the model (in gaussian cases), or more generally 
the pdf's (by "nonlinear filtering" the Miller et al. refer to the use of pdf's) :

"It is not our purpose to advocate nonlinear filtering as a competitor to other data assimilation  
methods for operational use. At this time, it is far too resource intensive for that, but we propose it  
as a conceptual tool, to be used to gain insight into the performance of approximate schemes in  
highly nonlinear settings. The reader should be reminded that this was the status of the Kalman  
filter a decade ago. While this remains so to a large extent today, the most cursory glance at the  
literature shows application of the Kalman filter and other weak constraint schemes to problems of  
complexity far beyond anything envisioned by the early investigators of those methods."

In the continental biosphere domain, and more specifically in the vegetation model domain, our 
models are simple (0D) and do not include a huge number of variables, so that we are very favored 
with respect to oceanographers and meteorologists. In our case, advanced data assimilation are not 
far  too  resource  intensive,  and  rather  we  have  the  opportunity  of  using  the  most  advanced 
techniques for our data assimilation schemes, and also gain invaluable insight into our models by 
studying and predicting  their  errors  evolution.  The citation  by Miller  is  well  completed  by the 
citation  from Franks  et  al. (1999)  about  Monte-Carlo  simulations  (which  applies  to  the  error 
prediction scheme as discussed in §2.3, and also to assimilation with ensemble methods) : 

"While [the method] contains a number of subjective elements (for example, the prior choice of  
parameter ranges) it forces those choices to be made explicit. A large number of computer runs is  
also  required,  particularly  for  models  with  a  large  number  of  parameters.  (…)  In  practice,  
sampling efficiency has not proven to be a particular  constraint,  especially  since Monte-Carlo  
simulation is well suited to parallel computer systems. Against the disadvantage of computer run  
times is the considerable advantage that the approach is conceptually very easy to understand and  
easy to implement". 

APPENDIX A : THE KALMAN FILTER SCHEME

The Kalman filter (see for instance Grewal and Andrew, 1993, Zou  et al. 1997, and Evensen 
papers) is a weak constraint sequential assimilation method (to be compared to the 4D-VAR which 
is a strong constraint multiple assimilation method; both are based on minimum variance estimation 
for  gaussian errors,  see Zou  et  al. 1997 or  Li  and Navon,  1999).  In  this  appendix  the general 
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formulation is given, first illustrated by the simple LAI-NDVI example (Eq. 2) completed with the 
inclusion of a dynamic model constraint to form the complete Kalman filter.

The equivalent of Eq. (2) for the Kalman filter would be :

LAInew = LAIsim + Klai * (NDVIobs – NDVIsim) (A1)

with
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where LAI, x1 and x2 are the dynamic model variables.  All these variables will  be corrected 
through an analogous of Eq. (A2) for Kx1 and Kx2.

If the vegetation growth model is taken as a (weak) constraint, then the background information 
LAIsim  is an output taken from the model, and its uncertainty is computed through the following 
equation derived from the Fokker-Planck (or forward Kolmogorov) equation (Miller et al., 1999) :

k
T
kkk1k QMPMP +=+ (A4)

where Pk+1 is the model error covariance matrix at time k+1, calculated from the covariance matrix 
Pk at time k, the Jacobian matrix Mk of the dynamic model m, and the sequential error matrix Qk. 

The equation to compute the Kalman gain K whenever observations are available is :

( ) 1TT −+= RHPHPHK (A5)

where H is the Jacobian of the observation model h, and R is the variance of the observations.
The general form of the updating equation (A1) in the Extended Kalman Filter then writes :

( )[ ]−−+ −+= XKXX hz (A6)

where  X+ refers  to  a  priori estimates,  X- refers  to  a  posteriori (updated)  estimates,  z  the 
observations and  h the observation model. The term between brackets in Eq. (A6) represents the 
innovation vector. X may contain all prognostic variables and/or parameters of the dynamic model.

One additional equation allows to update P after the assimilation of the observation in (A6), 
before going back to the error propagation equation (A4) : 

( ) −+ −= PKH1P (A7)

The term extended in Extended Kalman Filter means that partial derivatives are taken to form the 
model matrix M and the observation model H (see Eqs. A2 and A3 for an example with h). These 
local linearizations are valid only for weakly non-linear models, as discussed above. The Ensemble 
method of Evensen avoids the linearization M of m (Eq. A4), but not the linearization H of h.
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