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Abstract— The paper deals  with  the  estimation  of  biophysical 
variables  in the  frame of  a precision farming project.  N-trials 
were  performed  on  wheat  crops  for  2  years,  providing  a 
calibration  and  a  validation  dataset.  Airborne  radiometric 
measurements  were  acquired  over  the  trials.  Biophysisical 
variables were retrieved from inversion of the radiometric signal 
through radiative transfer models.  To minimize the number of 
solutions and constrain the inversion,  a priori knowledge about 
the parameters was introduced in the cost function.  Using this 
technique,  green  leaf  area  index  and  leaf  chlorophyll  content 
were estimated with a 10% accuracy.
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I.  INTRODUCTION 

In the frame of a precision farming project [1], we attempt 
to assess the nitrogen status of a wheat crop. Remote sensing 
measurements can help with assessing the plant nitrogen status 
through indicators. The indicators are based on the retrieval of 
biophysical  variables  of  the  crop  as  green  leaf  area  index 
(gLAI) and leaf chlorophyll content (Cab), which give access 
to the nitrogen status of the plant [2]. A method was developed 
to  estimate  gLAI  and  Cab  by  using  the  complementarity 
between hyperspectral  remote sensing and radiative transfer 
modeling.  The models  and field experiment  were described 
and the formulation of the merit function was discussed.

II. MATERIAL

A. Models

PROSPECT model [3] was used to describe the radiative 
transfer in the leaf. This model assumes that the leaf is built up 
with  N  elementary  layers  separated  by  air.  Each  layer  is 
characterized  by  a  refraction  index  (n)  and  an  absorption 
coefficient K(λ). The SAIL canopy reflectance model [4] was 
used  to  simulate  crop  bi-directional  reflectances.  SAIL is  a 
physically  based  radiative  transfer  model  that  considers  an 
homogeneous  infinitely  extended  canopy  with  randomly 
distributed  leaves.  The  hot-spot  effect  is  taken  into  account 
according  to  [5].  The  model  computes  spectral  canopy 
reflectances  depending  on  leaf  spectral  reflectance  and 
transmittance as calculated by PROSPECT. In SAIL, the soil is 

characterized by a lambertian soil reflectance spectrum ρsoil(λ). 
The  leaf  distribution  is  assumed  to  be  elliptical  and 
characterized by a mean leaf angle ALA. The plant structure is 
also described by the green leaf area index and by the hot-spot 
parameter h. The external parameters are the solar (s) and view 
(v) zenith angles, the relative azimuth between view and sun 
(∆),  and the fraction of  diffuse skylight in the incident  flux 
(SKY (λ)). After coupling PROSPECT and SAIL, PROSAIL 
was obtained.

B. Field experiment

An experiment  was  conducted  at  Laon (France,  latitude 
49°38N,  longitude  3°40E)  on  2  winter  wheat  (Triticum 
aestivum L.) fields (F1 and F2), Shango variety [1]. Two field 
trials were conducted. Five nitrogen levels were used, from 0 
to 300 kg N.ha-1

 on F1 trial and from 0 to 280 kgN.ha-1 on F2 
trial. The N fertilizer was supplied at 5 dates for F1, 4 dates 
for  F2,  each  of  them  differentiating  a  new  treatment.  The 
2001-F2 data were the calibration dataset, whereas the 2000-
F1 data was used for validation.
Biological measurements
Destructive samplings were performed on the nitrogen field 
trials as well as indirect measurements in 2000 and 2001 to 
estimate  the  green  leaf  area  index  and  the  leaf  chlorophyll 
concentration of the wheat at different dates. Measurements of 
gLAI  were  performed  using  a  LICOR® LAI-2000  and 
chlorophyll concentration was estimated with Hydro N-tester 
device.  The relation between N-tester measures and Cab on 
one hand and between LAI-2000 measures and gLAI on the 
other  hand  were  calibrated  thanks  to  destructive 
measurements.

Radiometric measurements

Ground targets were characterized using 2 field radiometers 
either  to  estimate  some  PROSAIL  inputs  (ρsoil(λ)  and 
SKY(λ)),  to  calibrate  airborne  sensor  measurements  or  to 
validate the airborne sensor calibration. They consisted in bare 
soil  surfaces,  reference  targets  and  N-test-sites.  4  and  3 
airborne images were acquired over F1 and F2 during 2000 



and  2001  wheat  growing  period,  respectively,  using  an 
hyperspectral  sensor.  Images were acquired with a Compact 
Airborne  Spectrographic  Imager  (CASI,  ITRES,  Canada) 
onboard an aircraft flying at a 1500m altitude and providing 
data in 32 spectral bands of 10nm width in the 350-1050nm 
range with a  ground spatial  resolution of  2m. Images  were 
acquired in sunny sky conditions around 12:00 HTU. 

III. METHOD

The set of PROSAIL input parameters are Xv={N, Cbp, Cw, 
Cab, Cdm, ALA, gLAI, h,  ρsoil(), SKY(),s,  v,  ∆}. Some of those 
parameters  can  be  set  and  do  not  require  to  be  estimated 
through  inversion.  After  calibration,  the  set  of  PROSAIL 
parameters to be adjusted was Xv={N, Cbp, Cw, Cab, Cdm, ALA, 
gLAI, sb, h}.
Reference [6] has shown the importance of introducing a prior 
knowledge in the merit function to solve the ill-posed problem 
due to model and measurements uncertainties.  It  consists in 
adding  a  second term in the  merit  function,  the  first  being 
commonly  the  rmse  (root  mean  square  error)  between 
observed and modeled radiometric signal. The second term is 
the rmse on canopy parameters prior information (1).
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where Ys

λ is the simulated reflectance in wavelength λ, Yo
λ is 

the observed reflectance in wavelength λ, εy
λ both account for 

measurements  and  model  uncertainties,  n  is  number  of 
observations, i.e. of spectral bands. Xp

v is the prior value for v 
parameter  and  εx

v is  the  associated  uncertainty  on  the 
parameter v, m is number of retrieved parameter.
By  definition,  prior  information  is  information  obtained 
independently  of  the  results  of  measurements  [7].  This 
information was found thanks to the calibration dataset  (for 
Cw,  Cdm,  median  of  2001 calibration  measured  values  were 
used),  from  literature  (N,  ALA,  h),  or  the  radiometric 
measurements (sb, Cab and gLAI). We used the same set of 
Xp

v for the 4 dates except for gLAI and Cab, which showed 
strong time variability. 
The  quasi-Newton algorithm was  used  to  solve  the  inverse 
problem.  We tested  the impact  of  :  the  second term of  the 
merit function i.e. the prior information, the number n and the 
position  of  wavebands,  the  given  prior  information  Xp

v  , 
uncertainties on variables εx

v, impact of the first guess values 
X1st

v.

For  the  different  tests,  the  quality  of  the  inversion  was 
evaluated by computing the rmse and r² on the gLAI and Cab 
estimates  versus  2000  indirect  measurements  (validation 
dataset).  A reference configuration was defined by setting a 
default value of the mentioned variables (n=9, εx

v=50%, X1st
v= 

Xp
v, εy

λ= Yo
λ). The subscript  ref corresponds to the results of 

inversion  using  the  default  values.  The  importance  of  each 
variables (n, εx

v, X1st
v, εy

λ) is discussed through next section.

IV. RESULTS

The  inversion  was  performed  for  the  reference 
configuration using eq. (1). The results of the inversion were 
evaluated in terms of investigated variables (gLAI, Cab) by 
comparing  predicted  variables  with  indirect  measurements 
performed on the validation dataset. The following statistical 
parameters  were  obtained:  rmseref

gLAI=0.449,  r²  ref
gLAI=0.931, 

rmseref
Cab=0.141, r² ref

Cab=0.601. 

C. The a priori information

The inversion procedure was run by considering only the term 
on radiometric information in the merit function. The rmse on 
estimated gLAI was 2.2 (rmseref

gLAI=0.449) with a r² of 0.4 (r² 
ref

gLAI=0.931), while it was 0.16 for Cab (rmseref
Cab=0.141) with 

a  r²  of  0.31  (r²  ref
Cab=0.601).  This  result  confirmed  the 

improvement obtained when taking into account some a priori 
information on the retrieved variables, especially for the gLAI. 
For Cab estimation, the results were not drastically improved; 
the radiometric signal alone provided a satisfactory estimation. 
However, if gLAI is not well estimated and if we consider that 
some  compensations  between  variables  are  possible,  it  is 
important to obtain a good estimation of both variables.
The residual rmse on reflectances is obviously smaller (less 
than 1%) without prior knowledge, and 1.% to 2.4% with prior 
knowledge except for one case where the inversion result is a 
local minimum and the resulting reflectance spectrum does not 
fit well to the measured one.

D. Test on the number of wavebands 

The maximum number of wavebands is 32. We took 1 of 2, 
1of  3  etc  up  to  1  of  8  wavebands  and  run  the  inversion 
procedure.  The  best  configuration  was  obtained  for  8 
wavebands. Rmse on Glai was about 0.6 for n=3 or n=32, as 
compared to 0.45 for 8 bands. Rmse on Cab was about 0.12 
when increasing or decreasing n, as compared to 0.09 for n=8. 

1 r² of estimated gLAI and Cab according to uncertainties on the a 
priori information.

E. Test on the impact of εx
v, Xp

v and X1st
v

The  optimization  procedure  was  run  for  7  levels  of 
uncertainties (from 10 to 70 % of the prior values). Rmse on 
gLAI went up to 0.9 when increasing  εx

v (rmseref
gLAI=0.449) 

and  rmse  on  Cab  went  up  to  0.16  (rmseref
Cab=0.141).  We 



noticed  that  the  correlation  coefficient  is  always  better  for 
gLAI that for Cab. The best  configuration was obtained for 
40% uncertainty. 
As  for  the  test  on  uncertainties,  the  accuracy  on  the  prior 
knowledge was found to be of first importance. A variation of 
more than 20% from the «actual» prior values decreases the 
estimation of 20% for gLAI and 30% for Cab. The correlation 
coefficient  if  always  better  for  LAI  than  for  Cab  when 
modifying Xp

v from +/-40% of the actual values (Fig. 1). 
The last test consisted in considering that Xp

v and X1st
v were 

independent. X1st
v was randomly chosen in the range between 

lower  and  upper  boundaries. The  difference  between  the 
estimated variables when using random X1st

v and the reference 
estimated variable is negligible (less than 1%). The probability 
to fall in a local minimum when using prior information in the 
merit function is very small.

V. CONCLUSION

The results were drastically improved by introducing the a 
priori information in the merit function (gLAI and Cab root 
mean square error improvement equal 2 m²/m² and 10µg/cm² 
respectively).  These  results  confirm  the  importance  of 
introducing  prior  knowledge  on  the  retrieved  parameters  as 
suggested by [6]. Results have shown that taking account the 
prior  information  prevent  from falling  in  a  local  minimum. 
This prior information can be deduced from an independent 
dataset or from a crop model in particular for LAI prior value 
estimation. 
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