Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Sentence filtering for information extraction in genomics, a classification problem

Abstract : In some domains, Information Extraction (IE) from texts requires syntactic and semantic parsing. This analysis is computationally expensive and IE is potentially noisy if it applies to the whole set of documents when the relevant information is sparse. A preprocessing phase that selects the fragments which are potentially relevant increases the efficiency of the IE process. This phase has to be fast and based on a shallow description of the texts. We applied various classification methods — IVI, a Naive Bayes learner and C4.5 — to this fragment filtering task in the domain of functional genomics. This paper describes the results of this study. We show that the IVI and Naive Bayes methods with feature selection gives the best results as compared with their results without feature selection and with C4.5 results.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inrae.fr/hal-02764043
Déposant : Migration Prodinra <>
Soumis le : jeudi 4 juin 2020 - 07:38:48
Dernière modification le : vendredi 12 juin 2020 - 10:43:26

Fichier

44074_20111116035734131_1.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-02764043, version 1
  • PRODINRA : 44074

Collections

Citation

Claire Nédellec, Mohamed Ould Abdel Vetah, Philippe Bessières. Sentence filtering for information extraction in genomics, a classification problem. 5. European conference, PKDD'2001, Sep 2001, Freiburg, Germany. ⟨hal-02764043⟩

Partager

Métriques

Consultations de la notice

10

Téléchargements de fichiers

25