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Abstract. In some domains, Information Extraction (IE) from texts
requires syntactic and semantic parsing. This analysis is computationally
expensive and IE is potentially noisy if it applies to the whole set of
documents when the relevant information is sparse. A preprocessing phase
that selects the fragments which are potentially relevant increases the
efficiency of the IE process. This phase has to be fast and based on a shallow
description of the texts. We applied various classification methods — IVI, a
Naive Bayes learner and C4.5 — to this fragment filtering task in the
domain of functional genomics. This paper describes the results of this
study. We show that the IVI and Naive Bayes methods with feature selection
gives the best results as compared with their results without feature selection
and with C4.5 results.

1. Introduction

As an increasing amount of information becomes available in the form of
electronic documents, the need for intelligent text processing makes shallow text
understanding methods such as Information Extraction (IE) particularly useful. Up to
now, IE has been restrictively defined by DARPA's MUC (Message Understanding
Conference) program [10] as the task of extracting specific, well-defined types of
information from natural language texts in restricted domains with the specific
objective of filling pre-defined template slots and databases. We claim that in many
domains, IE systems have to rely on deep analysis methods local to the relevant
fragments. They should combine the semantic-conceptual analysis of text
understanding methods and information extraction by pattern matching; in a first step
the relevant textual fragments are filtered based on shallow criteria; in a second step, a
representation of the content of the fragments is built by successive interpretation
operations based on syntactico-semantic lexicon following a classical approach in text
understanding, finally, extraction rules are applied to the resulting interpretations in
order to identify the relevant information and store it in a database in the suitable
format, usually by filling forms in the MUC case. These three steps differ by the

mailto:cn@lri.f
mailto:ould@lri.f
mailto:philb@biotec.jouy.inra.fr


nature of the knowledge that they exploit and by the complexity of the methods
applied. The second step, that is, the syntactico-semantic parsing is the most
expensive in terms of resources. The first step, i.e. the filtering of the relevant
fragments, allows to limit that analysis to what is needed only, by focussing it on the
fragments that potentially contain relevant information. This selection is even more
crucial as the information to be extracted is sparser. The sparseness problem had been
pointed out in previous research in IE [15] and [16] but no practical solution has been
proposed. The main consequence is that the first step must be fast, even if this
implies some lack of precision. It must thus be based on a shallow description of the
text. The application of learning to the filtering of relevant fragments has received
little attention in IE compared to other tasks such as learning for name entity
recognition or learning extraction patterns [15, 16]. This lack of interest is due to the
type of texts that are generally handled by IE, which are those proposed in the MUC
competition. Those texts are usually short and the information to be extracted is
generally dense, so that prefiltering is less or not needed at all. The type of
information to be extracted such as company names or a seminar starting times often
requires only a shallow analysis, the computational cost of which is low enough to
avoid prefiltering. This is not the case in other IE tasks such as identifying gene
interaction in functional genomics, the application that we describe here.

From a Machine Learning point of view, filtering can be viewed as a classification
problem. Textual fragments have to be classified in two classes: potentially relevant
for IE or not. The learning examples represent fragments, (sentences in this
application) and the example attributes are the significant and the lemmatized words
(in a canonical form) of the sentences. We compared experimentally the classification
method IVI proposed in [12] for IE in functional genomics, a Naïve Bayes (NB)
method [9], and a decision tree-based method, C4.5 [14], on three different datasets in
functional genomics described in section 2. As a consequence of the example
representation, the datasets are very sparse in the attribute space; the examples are
described by few attributes. Thus, in addition to the basic methods, we studied the
effect of feature selection as a preprocessing step. The objective of this study is to
identify the best classification methods for filtering sentences in functional genomics
and to characterize the corpora with respect to these methods. This paper reports our
results on comparing classification methods. The methods and the evaluation protocol
are detailed in section 3. Section 4 reports and discusses the experimental results.
Future work is presented in section 5.

2. The application domain: functional genomics

2.1 A genomics point of view on IE

The application problem to which applying IE is here about modeling the gene
interactions from text, in the domain of functional genomics. This problem has been
previously described in [1, 12, 11, 18] among others. The existence of numerous
scientific and technical domains sharing strong common aspects with functional



genomics, from a document point of view, will allow adapting the methods developed
here to other application domains. This is typically the case for related domains in
biology, but more generally, the methods will be transposable and exploitable in any
application of knowledge extraction from scientific and technical documents.

Modeling interactions between genes is of significant interest for biologists,
because it is a prerequisite step towards the understanding of the cell functioning. To
date, most of the biological knowledge about these interactions is not described into
databanks, but only in the form of scientific summaries and articles. Therefore, their
exploitation is a major milestone towards building models of interactions between
genes. Actually, genome research projects have generated new experimental approaches
like DNA chips at the level of the whole organisms. A research team is now able to
quickly produce thousands of measurements. This very new context for biologists is
calling for automatic extraction of knowledge from text, to be able to interpret and
making sense of elementary measurements from the laboratory by linking them to
scientific literature. The bibliographic databases can be searched via Internet using
keyword queries that retrieve a superset of the relevant paper abstracts. For example,
the query "Bacillus subtilis transcription" related to the gene interaction topic
retrieves 2209 abstracts.

Extract of a MedLine abstract on Bacillus subtilis.

UI  - 99175219 [..]
AB  - [..] It is a critical regulator of cot genes encoding
proteins that form the spore coat late in development. Most cot
genes, and the gerE gene, are transcribed by sigmaK RNA polymerase.
Previously, it was shown that the GerE protein inhibits
transcription in vitro of the sigK gene encoding sigmaK. Here, we
show that GerE binds near the sigK transcriptional start site, [..]

Then the biologist has to identify the relevant fragments, (in bold-face in the
example) in the abstracts and to extract the useful knowledge with respect to the goal
of identifying gene interaction. Then, he has to represent it in a structured way so that
it can be recorded in a database for further querying and processing. The more general
goal is to identify all the interactions and molecular regulations and to build a
functional network.

Example of a form filled with the information extracted from the sentence in the example.

Type: negative
Agent: GerE protein

Interaction

Target: Expression Source: sigK gene
Product: sigmaK protein

This domain is representative of the scope of our study on automatizing filtering of
relevant fragment for IE: the information to be extracted is local, mainly located in
single sentences or part of sentences. It is very sparse in the document set. For
instance, only 2.5 % (470) of the 20000 sentences contain relevant information on
gene interaction in the 2209 Bacillus subtilis abstracts mentioned above. We contend
that the information extraction has to rely on a deep analysis. Indeed previous
approaches based on shallow descriptions of the texts (e. g. IE techniques such as
transducers defined manually and based on significant verb and gene names [1, 11, 18])



or on statistic measures of keywords co-occurrences [12, 17] (e.g. information
retrieval-based techniques) yield limited results with either a bad recall or a low
precision. The following example illustrates some of the problems encountered:

"GerE stimulates cotD transcription and inhibits cotA
transcription in vitro by sigma K RNA polymerase, as expected from in
vivo studies, and, unexpectedly, profoundly inhibits in vitro
transcription of the gene (sigK) that encode  sigma K.".

The IE methods based on keywords or gene names (bold-face) and interaction verbs
(framed) are not able to identify the inhibition interaction between GerE and sigK gene
transcription (28 words far) or, if they will, also erroneously identify interactions
between cotD and sigK and between cotA and sigK. Extracting relevant knowledge
in the selected documents thus requires more complex IE methods such as syntaxico-
semantic methods based on lexical and semantic resources specific to the domain1. The
characteristics of this application thus perfectly fit the requirements for applying
classification methods for filtering relevant text as an IE preprocessing step.

2.2 Textual corpora and learning sets

The robustness of the classification methods has been evaluated with respect to
different writing styles, different biological species, and then different gene interaction
models. The classification methods chosen have been applied, evaluated and compared
on three different datasets. These sets have been built from paper abstracts about three
species: the first set, denoted Dro, is about a fly, Drosophila melanogaster2, the
second, denoted Bs, is about a bacterium, Bacillus subtilis3 and the third, denoted
HM, is about the mouse and the human4. They come from two bibliographic
databases with different writing styles. The Dro dataset is from FlyBase, the database
devoted to Drosophila genes. Its abstracts are concise, 2 or 3 sentences long, the
sentences short and the syntax quite simple. The two others are from MedLine, the
generalist biology bibliographic database. The abstracts of MedLine are longer, around
10 sentences, in more complex syntactic forms than those of FlyBase. The abstracts
have been selected by the queries "Bacillus subtilis transcription" for Bs dataset and
Telomere, Apoptose, DNA replication, DNA repair , cell cycle control, two-hybrid
and interaction for HM. The examples sets have been selected in the abstracts under
the locality assumption that the sentence level is the suitable granularity degree in this
IE application, as it is often the case in Machine Learning for IE applications, [15]
and [16]. It is assumed that the potentially relevant sentences in the Bs and HM sets
contain at least two gene or protein names denoting the agents of the interaction as in
previous work. In the Dro set as it has been provided to us, the sentences contain
exactly two gene or protein names. This difference should not affect the filtering phase
but the extraction phase only. The identification of gene names identification for the

                                                
1 This is the goal of the Caderige project of which this research is part.
2 The Dro example set has been provided as such by B. Jacq and V. Pillet  from LGPD-IBDM.
3 This set has been built by P. Bessières (MIG, INRA) in the Caderige project.
4 It has been provided as such by the LGPD-IBDM and the ValiGen company.



Dro and HM set has been done manually by LGPD-IBDM biologists. This manual
selection results in 530 abstracts Dro set, and 105 abstracts and 962 sentences for HM
set that have been provided to us as such. This manual processing affects the
classification results as it will be shown in section 4. The sentence selection for the
Bs set has been automatically done with the help of a list of gene and protein names
of Bacillus subtilis and their derivations provided by MIG and manually completed by
new derivations observed in the corpus. The problem of the automatic identification of
gene names in genomics document has been recently studied and recognized as a
prerequisite for any further automatic document processing because of the lack of
exhaustive dictionary and because of the varying notation [2, 5, 6, 13].

Table 1. Features of the example sets.

Dro Bs HM
Document data base FlyBase MedLine
# bibliographic references > 100 000 around 16 Millions
# sentences per abstract 2, 3 approximatively 10
species Drosophila Bacillus subtilis mouse - human
#  biblio. references to the species 20 300 15 213 4 067 879
# abstracts selected (queries) 20 300 2209 32448
# abstracts selected after manual step 530 Not relevant 105
# sentences in the abstracts 5 244 around  20 000 962
# sentences filtered (at least 2 gene names)
= # examples 1197 932 407

# attributes 1701 2340 1789
# positive examples (PosEx) 653 470 240
# negative examples (NegEx) 544 462 167

Training example of Bs dataset built from the sentence, which illustrates section 2.1.

Example : addition stimulate transcription inhibit transcription
vitro RNA polymerase expected vivo study unexpectedly profoundly
inhibit vitro transcription gene encode
Class : Positive

The attributes that describe the learning examples represent the significant and
lemmatized words of the sentences. They are boolean in the case of C4.5 and they
represent the number of occurences in the sentence in the other cases, i.e, IVI and NB.
The examples have been classified into the positive and the negative categories, i.e.
describing at least one interaction (positive) or none at all (negative). The HM and Bs
sentences have been lemmatized using Xerox shallow parser. Stopwords such as
determinant have been removed as non-discriminant with the help of the list provided
by Patrice Bonhomme (LORIA). It initially contains 620 words and it has been
revised with respect to the application. After stopwords removal, the three example
sets remain very sparse in the feature. Half of the attributes describe a single example.
The capacity to deal with data sparseness was thus one of the criteria for choosing the
classification methods.



3. Classification methods

3.1 Method descriptions

The classification method IVI had been applied to Dro dataset [12]. It is based on
the example weight measure defined by (2), which is itself based on the attribute
weight measure defined by (1) where occ(Atti,exj) represents the value, (i.e., the

number of occurrences)  of the attribute i for the example j. The class of the example
is determined with respect to a threshold experimentally set to 0. Examples with
weights above (resp. below)  the threshold are classified as positive (resp. negative).

Weight(Att i) =

occ(Att i ,ex j
+)

ex
j

+ ∈PosEx
∑  − occ(Att i ,ex j

−)
ex

j
−∈NegEx
∑

occ(Att i ,ex j)
ex j ∈Ex
∑

(1)

IVI(ex)= Weight(Atti)
i =1

Att(Ex)

∑ (2)

The Naïve Bayes method (NB) as defined by [9], seemed to be suitable for the
problem at hand because of the data sparseness in the attribute space. As IVI, NB
estimates the probabilities for each attribute to describe positive examples and
negative examples with respect to the number of their occurrences in the training set.
The probability that a given example belongs to a given class is estimated by (4), the
product of the probability estimations of the example attributes, given the class. The
example is assigned to the class for which this probability is the highest.

Pr(Att j Classi ) =
occ(Attj,exk )

ex
k

∈Class
i

∑

occ(Attj ,exk )
exk ∈Class l

∑
l=1

Class

∑  +  Class

(3)

Pr(ex Classi ) = Pr(Att j
j=1

Att(ex)

∏ Classi)
(4)

The Laplace law (3) yields better results here as compared with the basic estimate
because its smoothing feature deals well with the data sparseness. The independence
assumption of the attributes is obviously not verified here also previous work has
shown surprisingly good performances of NB despite of this constrain [4]. The third
class of methods applied is C4.5 and C4.5Rules. Compared to NB and IVI, the
decision tree computed by C4.5 is more informative and explicit about the
combination of attributes that denote interactions, and thus potentially on the phrases
that could be useful for further information extraction.

3.2 Feature selection

The data sparseness is potentially a drawback for C4.5 Feature selection appears
here as a good way to filter the most relevant attributes for improving classification
[19] but also for selecting the suitable corpus for other IE preprocessing tasks such as



semantic class learning (section 5). This latter goal has motivated the choice a
filtering method for feature selection instead of a wrapper method selection [7], where
the classification algorithms would be repeatedly applied and evaluated on attribute
subsets in order to identify the best subset and the best classifier at the same time [8].
The measure of attribute relevance used here is based on (5). It measures the capacity
of each attribute to characterize a class, independently of the other attributes and of the
classification method. The attributes are all ranked according to this measure and the
best of them are selected for describing the training sets (section 4).

DiscrimP(Att)=
Max Pr(Att,Cli ),1 −Pr(Att,Cli ){ }

i=1

Class

∑
Class

(5)

3.3 Evaluation metrics

The methods have been evaluated and compared with the usual criteria, that is,
recall (7), precision (8), and the F-measure (9), computed for the three datasets.

Recall(Classi ) =
Ex ∈Classi  and assigned to Class i

Ex ∈Classi

(6)

Precision(Classi ) =
Ex ∈Classi  and assigned to Class i

Ex classified in Class i

(7)

F = (β 2 + 1)* Precision * Recall

(β2 * Precision) + Recall
(8)

More attention is given to the results obtained for the positive class because the
examples classified as positive only will be transferred to the IE component. The
recall rate for this class should therefore be high even if this implies some lack of
precision. The β factor of the F-measure has been experimentally set to 1.65 in order
to favor the recall. IVI and BN have been evaluated by leave-one-out on each dataset.
For performance reasons, C4.5 and C4.5Rules have been only trained on 90 % of the
learning sets and tested on the remaining 10 %. The results presented here are
computed as the average of the test results for ten independent partitions.

4. Evaluation

4.1 Comparison of the IVI, C4.5 and BN methods

The first experiments allow the comparison of C4.5, C4.5Rules, NB and IVI on
the three datasets (Table 2). As recall and precision computed for two classes yields to
the same rates, they appear in a same line. NB has been applied here with the Laplace
law. In the three cases, NB and IVI results are better than C4.5 and C4.5Rules results.
This can be explained by the sparseness and the heterogeneity of the data. The global
precision rate is 5 to 8 % higher and the precision rate for the positive class is 4 to



12 % higher. However, the good behavior of the IVI-BN family is not verified by the
recall rate for the positive on the Dro dataset: C4.5 recall rate is better than NB and
IVI on this set (13 %) but worse on Bs' and HM's ones (-12 to -13 %). The origin of
Dro dataset could explain these results: it comes from FlyBase where the sentences are
much shorter than those of MedLine, from which Bs and HM are extracted. Thus Dro
examples are described by less attributes although the ratio of the number of
attributes to the examples is similar to Bs one. This could explain the overgenerality
of C4.5 results on Dro set illustrated by the high recall and bad precision rates. The
analysis of NB and IVI results shows that NB behaves slightly better at a global level.

Table 2. Comparison of C4.5, C4.5Rules, IVI and BN on the three datasets.

Corpus Dro Bs HM
Method C4.5 C4.5

R
BN IVI C4.5 C4.5

R
BN IVI C4.5 C4.5

R
BN IVI

Recall Positive 88,9  
±2.4

86,8
±2.6

75,3
±2.9

69,1
±3.5

63,9
±4.3

71,4
±4.1

85,7
±3.2

82,6
±3.4

88,3
±4.1

84,5
±4.1

97,1
±2.1

90
±3.8

Precision Positive 68,1
±3.6

70,5
±3.5

82
±3.2

83,1
±2.8

63,4
±4.3

62,8
±4.4

66,6
±4.3

67,4
±4.2

63,7
±6.1

64,2
±6.1

68,5
±5.9

70,3
±5.8

Recall-precision
for all

72
±2.5

73.6
±2.5

77,5
±2.4

75,4
±2.4

62,4
±3.1

62,9
±3.1

71,1
±2.9

71   
±2.9

63,7
±4.1

63,4
±4.7

72     
±4.4

71,5
±4.4

However, their behaviors on the positive examples are very different: NB achieves a
higher recall than IVI (3 to 7 %) while IVI achieves a better precision than NB (1 to 2
%) but the difference is smaller. The higher recall and precision rates for positive on
HM compared to Bs is explained by the way the HM set has been built. The selection
of the sentences in the abstracts has been done manually by the biologists among a
huge number of candidate sentences (Table 1) and the bias of the choice could explain
the homogeneity of this dataset compared to Bs which has been selected automatically.
This hypothesis has been confirmed by further experiments on the reusability of the
classifiers learned from one corpus and tested on others. As a better recall is preferred
in our application, the conclusion on these experiments is that NB should be preferred
for data from MedLine (Bs and HM) while for FlyBase (Dro), it would depend on how
much the IE component would be able to deal with sentences filtered with a low
precision. C4.5 should be chosen if the best recall is preferable while BN should be
chosen for its best recall-precision tradeoff.

4.2 Feature selection

As described in section 3, the attributes for each dataset have been ranked according
to their relevance. For instance, the best attributes for the Dro set are, downstream,
interact, modulate, autoregulate, and eliminate. The effect of feature selection
on the learning results of IVI, NB and C4.5Rules methods has been evaluated by
selecting the best n attributes, n varying from hundred to the total number of
attributes, by increments of hundred.



4.2.1 Effect of feature selection on NB results
For the three sets, the recall noticeably increases and the precision noticeably

decreases with the number of relevant attributes selected, which is what is expected,
(Fig. 2, Fig. 3 and Fig. 4). The F-measure increases in the first quarter, more or less
stabilizes on a plateau on a half, slightly increasing since recall is predominant over
precision in our setting of F-measure (section 3), and then decreases in the last quarter
or fifth, after a small pick in the case of Dro and Bs sets. According to the F-measure,
the best attribute selections in terms of the recall - precision compromise are thus at
the end of the plateau around 3/4 - 4/5  of the total number of attributes. For the Dro
set, it is around 1400 attributes and for Bs set it is around 1900 attributes. One can
notice that the recall for positive examples for the Dro and Bs sets is 10 to 15 %
higher than the global recall and that is the opposite for the precision, which is
exactly what is desirable in our application.
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Fig. 2. NB classification results after feature selection on Dro set.
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Fig. 3.  NB classification results after feature selection on Bs set.

For the HM set, this phenomenon is even more noticeable: the recall of the
positive is very high, close to 100 %, and 20 % higher than the global recall (Fig. 4).
Compared to the other sets the plateau is more horizontal between 400 et 1900
attributes after a slight increase between 400 and 800, and there is no pick before the
decrease, then the global recall-precision rate is stable between 800 and 1400 and all
points are equivalent in this interval. This could be explained by the homogeneity of
the HM dataset that affected the initial classification results in the same way (4.1).
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Fig. 4. NB classification results after feature selection on HM set.

Table 3 presents a summary of the results obtained with NB without and after
feature selection for the best attribute. NB results are improved by feature selection.
The gain is very high for HM, around 10 %, less for Bs (6-7 %), and 4-5 % for Dro.

Table 3. Comparison of NB results with the best feature selection level.

Dataset Dro Bs HM
# attributes all att. 1701 1400 all att.

2340
1800 All att.

1789
900-1300

Rec. Positive 75,3 ± 2.9 79±3.1 85,7±3.2 90,8±2.6 97,1±2.1 99,6±0.8
Prec. Positive 82 ±3.2 86,4±2.6 66,6±4.3 74,1±4.00 68,5±5.9 76,1±5.4
Prec.-Rec . for

all classes
77,5 ±2.4 Rec. 81,8 ±2.2

Prec. 82,1 ± 2.2
71,1±2.9 Rec. 77,5±2.7

Prec. 79,9±2.6
72±4.4 Rec. 81,1 ±3.8

Prec. 81,3 ±3.8

4.2.2 Effect of feature selection on C4.5 and IVI results
Similar experiments have been done with C4.5. There are summarized in Table 4.

Table 4. Comparison of C4.5 results with the best feature selection level.

Dataset Dro Bs HM
# attributes all at. 1701 1400 all at.  2340 1600 All at. 1789 1300
Recall Pos. 86,8 ±2.6 84,5 ±2.8 71,4 ±4.1 70,1 ±4.2 84,5 ±4.6 84,6 ±4.6

Precision Pos. 70,5 ±3.5 75±3.33 62,8 ±4.4 71,4 ±4.13 64,2 ±6.1 78,8 ±4.6
Prec-Recall for all 73.7 ±2.5 75,3 ±2.4 62,9± 3.1 71,1±3 63,4 ±4.7 74,9 ±5.2

The conclusions are similar to NB ones: feature selection improves the global
classification results for all sets, the global improvement is important for Bs and HM
(9 %), and less for Dro (1,6 %) for the same reasons related to the origin of the
corpora as previously pointed out.

The similar experiments done with IVI are summarized in Table 5. The
improvement is higher for IVI than for the two other methods. Its range is between
approximately +6 % for Dro, +10 % for Bs to +16 % for HM.



Table 5. Comparison of IVI results with the best feature selection level.

Dataset Dro Bs HM
# attributes all at. 1701 1300 all at.  2340 1900 all at. 1789 1400
Recall Pos. 69 ±3.5 77,9 ±3.2 82,6 ±3.42 91,5±2.5 90 ±3.8 98,3 ±1.6
Prec. Pos. 83,6 ±2.9 88,4 ±2.5 67,4 ±4.23 78,3±3.7 70,3 ±5.8 83,4 ±4.7
Prec.-Rec .

for all
75,4±2.4 Rec. 81,9±2.2

Prec. 84,1±2.1
71±2.9 Rec. 82,8±2.4

Prec. 83,2±2.4
71,5±4.4 Rec. 87,5±1.6

Prec. 87,5±4.7

4.2.3 Conclusion on the effect of feature selection on classification
The comparison between the experimental results with C4.5, NB and IVI for the

best feature selection shows that IVI globally behaves better than the two others do.
With respect to the recall rate for positive, NB behaves slightly better or similarly to
IVI (1 to 2 %) while IVI precision rates are better than NB ones (2 to 7 %). Therefore,
in the case where the good positive recall is preferred NB with feature selection should
be chosen for all datasets except for those like Dro that are less sparse and more
homogeneous and where C4.5 without feature selection is better. In the case where a
best recall-precision compromise is preferred, IVI with feature selection should be
applied.

5. Future work

This research focuses on the classification of sentences represented by their significant
and lemmatized words. The methods studied yield global recall and precision rates
higher than 80 % and high recall rates for the positive class with feature selection by
prefiltering. Other criteria should be tested for selecting the attributes, such as
information gain and mutual information. Better results should also be obtained with
classification with more information gain global measures that would take into
account the dependency between the words which form significant noun phrases. For
instance the results of the ongoing work at LIPN on the acquisition of terminology
for gene interaction should reduce both the number of attributes and their dependency.
We also plan to study the reduction of the number of attributes by replacing in the
examples, the words by the concept (the semantic class) they belong to as learnt from
a biological corpus. Moreover, classification should be improved by reducing the data
heterogeneity by pre-clustering the examples; one classifier would then be learned per
example cluster. From an IE point of view, the assumption that relevant sentences
contain at least two gene or protein names should be relaxed. The attribute ranking
will be used to identify automatically other potentially relevant sentences. Finally
learning extraction rules requires semantic class acquisition. The attribute ranking will
be also used to select the most relevant syntagms in the training corpora for learning
semantic classes. Learning will thus focus on the potentially most relevant concepts
with respect to the extraction task.

Acknowledgement

                                                



This work is financially supported by CNRS, INRA, INRIA and INSERM through Caderige contract. The
authors thank V. Pillet, C. Brun and B. Jacq for the Dro and  HM sets.

References
1. Blaschke C., Andrade M. A., Ouzounis C. and Valencia A., "Automatic Extraction of

biological information from scientific text: protein-protein interactions", in Proc. of
ISMB'99, 1999.

2. Collier N., Nobata C. and Tsujii, "Extracting the names of genes and gene products
with a hidden Markov model. In Proc. COLING'2000, Saarbrück,, July-August 2000.

3. Craven M. and Kumlien J., "Constructing Biological Knowledge Bases by Extracting
Information from Text Sources.", In Proc. of  ISMB’99 , 1999.

4. Domingos P. and Pazzani M., "Beyond independence: conditions for the optimality of
the simple Bayesian classifier", in Proc. of ICML'96, Saitta L. (ed.), pp. 105-112,
1996.

5. Fukuda  K., Tsunoda T., Tamura A. and Takagi T., "Toward Information Extraction:
Identifying protein names from biological papers". In Proc. PSB'98, 1998.

6. Humphreys K., Demetriou G, and Gaizauskas R., "Two applications of information
extraction to biological science article: enzyme interaction and protein structure". In
Proc. of PSB'2000, vol.5, pp. 502-513, Honolulu, 2000.

7. John G. and Kohavi R., "Wrappers for feature subset selection", in Artificial
Intelligence Journal, 1997.

8. Langley P. and Sage S., "Induction of selective Bayesian classifiers", in Proc. of
UAI’94, Lopez de Mantaras R. (Ed.), pp. 399-406, Morgan Kaufmann, 1994.

9. Mitchell, T. M., Machine Learning, Mac Graw Hill, 1997.
10. Proceedings of the Message Understanding Conference (MUC-4-7), Morgan Kaufman,

San Mateo, USA, 1992-98.
11. Ono T., Hishigaki H., Tanigami A., and Takagi T., “Automated extraction of

information on protein-protein interactions from the biological literature”. In
Bioinformatics, vol 17 no 2 2001, pp. 155-161, 2001

12. Pillet V., Méthodologie d'extraction automatique d'information à partir de la littérature
scientifique en vue d'alimenter un nouveau système d'information, thèse de l'Université
de droit, d'économie et des sciences d'Aix-Marseille, 2000.

13. Proux, D., Rechenmann, F., Julliard, L., Pillet, V., Jacq, B., "Detecting Gene Symbols
and Names in Biological Texts: A First Step toward Pertinent Information Extraction".
In Genome Informatics 1998, S. Miyano and T. Takagi, (Eds), Universal Academy
Press, Inc, Tokyo, Japan, pp. 72 - 80, 1998.

14. Quinlan J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1992.
15. Riloff E., "Automatically constructing a Dictionary for Information Extraction

Tasks". In Proc. of AAAI-93, pp. 811-816, AAAI Press / The MIT Press, 1993.
16. Soderland S., "Learning Information Extraction Rules for Semi-Structured and Free

Text" in Machine Learning Journal, vol 34, 1999.
17. Stapley B. J. and Benoit G., "Bibliometrics: Information Retrieval and Visualization

from co-occurrence of gene names in MedLine abstracts". In Proc. of  PSB'2000, 2000.
18. Thomas, J., Milward, D., Ouzounis C., Pulman S. and Caroll M., "Automatic

Extraction of Protein Interactions from Scientific Abstracts". In Proc. of PSB'2000,
vol.5, p. 502-513, Honolulu, 2000.

19. Yang Y. and Pedersen J., "A comparative study on feature selection in text
categorization.", in Proc. of ICML’97,1997.


