

Exploration of somatotropic axis, leptin, insulin and blood biochemical parameters in ewes naturally affected with scrapie

V. Gayrard¹, N. Picard-Hagen¹, C. Viguié¹, C. Delavaud², P.L. Toutain¹ and Y. Chilliard²

¹UMR INRA de Physiopathologie et Toxicologie Expérimentales, Ecole Nationale Vétérinaire de Toulouse, 31076 Toulouse, France et ²Unité de Recherche sur les Herbivores, INRA Theix, 63122 St Genès-Champanelle, France

Introduction Scrapie is an ovine sub-acute transmissible spongiform encephalopathy (TSE) caused by unconventional transmissible agents. In several species, TSE are associated to major endocrinopathy, such as hyperinsulinemia and hypercorticism (Carp *et al*, 1990, Gayrard *et al*, 2000). Cachexia is commonly observed in the clinical phase of the prion disease. Our objective was to investigate if scrapie is associated to alterations of GH axis, leptin, insulin and metabolic parameters. In addition, central adrenergic system being affected in TSE (Braun *et al*, 1999), we investigated a possible alteration of α 2-adrenergic control of GH axis associated to the prion disease.

Materials and methods Blood samples were collected every 30 min to determine the 24-h spontaneous pattern of GH plasma concentrations. GH response to intravenous administration of xylazine, an alpha2-agonist (0.15mg/kg) was determined in seven control and seven scrapie-affected ewes. For other determinations blood, samples were obtained before and 3 hours after morning meal. The ewes were tied in metabolism cages and received hay *ad lib* and two meals of 260 g of concentrates daily. Feed intake was not modified by the disease. The scrapie diagnosis was performed by histopathology. Body weights (mean \pm SD) were 37 \pm 4 kg and 40 \pm 5 kg for scrapie-affected and control ewes, respectively. Plasma biochemical parameters and leptin were assayed by enzymatic methods or radioimmunoassay, respectively (Ferlay & Chilliard, 1999, Delavaud *et al*, 2000). In a separate period, in addition to plasma leptin concentrations, we assayed leptin in CSF sampled through a cannula inserted into a lateral ventricle. The influence of the disease and of meal on hormone and metabolite concentrations was assessed using ANOVA.

Results Plasma GH concentrations of scrapie-affected ewes tended to be greater than those observed in healthy ewes (mean \pm SD, 27.6 \pm 14.7 versus 16.8 \pm 12.6ng/ml), but the difference was not significant ($P>0.1$). Xylazine induced a transient and low increase in GH concentrations, with large interindividual variations. Mean plasma concentrations of some metabolites are given in Table 1. Plasma glucose and urea concentrations of scrapie-affected ewes were greater than those observed in healthy ewes ($P\leq0.05$ and $P=0.07$ respectively). Mean insulin concentrations from diseased ewes were 2 fold higher compared with that of healthy ewes ($P=0.07$), whereas plasma IGF-1, leptin and 3-OH-butyrate concentrations were not affected by the prion disease. Post-prandial plasma NEFA concentration was lower in diseased ewes ($P<0.05$). CSF leptin concentrations were related to plasma leptin ($r=+0.87$; $P<0.05$) and unaffected by the prion disease (mean \pm SD, 1.6 \pm 0.9 and 1.3 \pm 0.4 ng/ml in 3 scrapie affected ewes and in 5 control ewes, respectively).

Table 1 Plasma concentrations (mean \pm SD) of IGF-1, leptin, insulin, glucose, NEFA, 3-OH-butyrate and urea in 7 scrapie-affected ewes and in 7 control ewes, sampled before and 3 hours after morning meal

	scrapie		control		Effect of scrapie
	before	after	before	after	
IGF-1 (ng/ml)	133 \pm 61	ND	101 \pm 51	ND	NS
leptin (ng/ml)	3.7 \pm 0.31	3.6 \pm 0.27	4.3 \pm 1.1	4.2 \pm 0.9	NS
Insulin (μ UI/ml)	24 \pm 13	28 \pm 19	11 \pm 3	15 \pm 7	0.07
Glucose (g/L)	0.74 \pm 0.1	0.74 \pm 0.08	0.58 \pm 0.06	0.57 \pm 0.07	0.005
NEFA (mmol/l)	0.36 \pm 0.19	0.13 \pm 0.07	0.29 \pm 0.19	0.30 \pm 0.28	NS ¹
3-OH-butyrate (mmol/l)	0.34 \pm 0.11	0.41 \pm 0.09	0.42 \pm 0.24	0.43 \pm 0.17	NS
Urea (g/l)	0.32 \pm 0.06	0.33 \pm 0.06	0.23 \pm 0.11	0.24 \pm 0.11	0.07

¹ Interaction meal*disease ($P<0.005$) ND : not determined

Conclusions Collectively, these results suggest that scrapie does not change plasma nor CSF leptin concentrations but induces different hormonal and metabolic disorders, in particular, hyperinsulinemia, hyperglycemia, hyperuremia and a trend to higher GH secretion. The increase of urea concentrations could be related to myolysis or to renal disturbance. Hyperglycemia and hyperinsulinemia could be a consequence of the major hypercorticism shown in scrapie affected ewes (Gayrard *et al*, 2000) and could reflect a syndrome of resistance to insulin.

References

Carp R.I., Kim Y.S. and Callahan S.M. 1990. *J. Infect. Dis.* **161**:462-466.
Braun U., Abgottspoon S., Gubler E. and Schweizer T. 1999. *Vet. Rec.* **144**:715-717.
Delavaud C., Bocquier F., Chilliard Y., Keisler D.H., Gertler A. and Kann G. 2000. *J. Endocrinol.* **165**:519-526.
Ferlay A. and Chilliard Y. 1999. *Reprod. Nutr. Dev.* **39**: 409-421.
Gayrard V., Picard-Hagen N., Grino M., Sauze N., Grandjean C., Galea J., Andreoletti O., Schelcher F. and Toutain P.L. 2000. *Endocrinology* **141**: 988-994.

*Proceedings
of the
British Society
of Animal Science
2002*

Published by
British Society of Animal Science

*The Proceedings of the British Society of Animal Science
constitute summaries of papers presented at the Society's
Annual Meeting in York in April 2002.*

*The summaries have not been edited and the Society can
accept no responsibility for their accuracy. Views expressed
in all contributions are those of the authors and not those
of the British Society of Animal Science.*

*This publication contains all the summaries that were
available at the time of going to press.*