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Abstract  
 
This paper is a contribution from the PROTEJE project. It presents an approach which makes uses 
in a sire model of annual information (= average daughter yield deviations per year of performance 
and lactation number) for each sire. It is shown that with a suitable sire model (including a year x 
country effect, a lactation x country effect and a within country regression on age of the sire when 
his daughters are born), the genetic parameters and the sire solutions obtained are robust to over- or 
under-estimation of genetic trend in the national models. The approach has other benefits: 
validation of genetic trends is no longer critical (although obviously desirable), deregression 
becomes obsolete. An extension to categorical or survival traits is briefly described and a general 
strategy for the computation of equivalent daughter contributions and daughter yield deviations and 
their validation is proposed.   
  

 
 
1. Introduction 
 
The objectives of the PROTEJE (PROduction 
Traits European Joint Evaluation – Canavesi et 
al., 2002) project is to develop an alternative 
methodology for international evaluation, 
applicable to both bulls and cows, maintaining the 
modelling of environmental effects at the national 
level. One of the directions envisioned is the use 
of pre-corrected records, defined as performances 
adjusted for all fixed effects estimated in national 
evaluations. Admittedly, an international 
application of the project is not foreseeable in the 
short term. But pre-corrected records are not so 
different from another tool that has been proposed 
to summarise sire information: daughter yield 
deviations or DYD’s (VanRaden and Wiggans, 
1991). DYD’s and their associated weighing 
factors, the EDC’s (equivalent daughter 
contributions) are elements that could be used in 
multiple trait sire models for international MACE 
evaluations.  
 
 Over time, international evaluation methods 
have been improved but have been found highly 
sensitive to quality of national proofs and to 

changes in genetic correlations. The will to extend 
international evalua-tions to new traits described 
by complex, sometimes nonlinear models is also 
an incentive to look for a better, more robust 
approach. This paper presents a general strategy 
to compute characteristics similar to DYD’s and 
EDC’s, even for nonlinear models that could be 
used in more robust MACE evaluations. 
 
 
2. Method 
 
In this section, we will first look at a simple 
situation in which a linear trait with no repeated 
records is analysed nationally with an animal 
model. More complex situations will be 
considered afterwards.  
 
 The following procedure will be used: starting 
with a national animal model evaluation, the 
information needed to run an equivalent 
univariate sire model will be identified. Isolating 
the components that may be biased when national 
models are misspecified will lead to the splitting 
of DYD’s and EDC’s in items that can be 
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analysed with more robust international sire 
models that reveal and correct for inconsistencies.  
 
 
2.1. From an animal model to a sire model in 

national evaluation 
 
Consider the following simple animal model: 
 

eaZbXy ++=    [1] 
 
with the classical notations: X and Z are incidence 
matrices relating the observation vector y to the 
fixed and random effects vectors b and a. For any 
daughter f of a particular sire s with observation yf 
and associated vector of (fixed) explanatory 
variables xf: 
 

ff'ff eay ++=   bx  [2] 
 
 The following notations are needed: let gs and 
gd represent the (possibly group of unknown) sire 
and the (group of unknown) dam of the sire s. Let 
mf be the (group of unknown) dam of the cow f (= 
mate of sire s). Let di represent the fraction of the 
total genetic variance of animal i which is not 
explained by parental information (=1, ¾ or ½ 
depending on whether 0, 1 or 2 parents of i are 
known). Let α = 2 2

e aσ σ be the ratio of residual to 
genetic variance and A the numerator relationship 
matrix between all animals. Finally, let ui = 0.5 ai 
be the genetic transmitting ability of animal i.  
 
 For later use, consider the fixed effect 
solutions of the mixed model equations in the 
national animal model evaluation.  We have: 
 

[ ] )ˆ'ˆ' aZyXbXX  (   −=  [3] 
 
 Hence, for a particular level p of fixed effect q 
that affects a group Ω of animals i, i=1, … npq: 
 

     ( ) âyb̂b̂ n ii
qj

jpqpq ∑∑ ∑
ΩΩ ≠

−=













+        [4] 

 
 Also, after absorption of the equations for 
other effects into the equations for the additive 
genetic value:  

ˆˆ'      '  ( )α + = − 
-1Z MZ A a Z M y Xb

 [5] 
 
where M is the absorption matrix. A close look at 
this equation leads to the following expressions: 
 
• for the equation corresponding to sire s: 
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dâ d
4

d

mf
f

f

1
f

gdgs1ss
f

1
f

1s

=




 −α−






 +
α−











 α+α

∑

∑
−

−−−

  [6] 

 
i.e., after some manipulations, assuming that all 
daughters have a known (df = ½) or an unknown 
(df = ¾) dam: : 
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or, if Ns is the total number of daughters of sire s:  
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 [8] 
 
•  for a particular daughter of sire s, with no 

progeny herself; ignoring the off-diagonal 
elements of M: 

 

( ) ( ) ˆ- yw
2
ââdâ dw 'fff

mfs1
ff1

ff bx=




 +α−α+ −−

 [9] 
 
where fw  is the diagonal element of M for the 
daughter f, that is, the weight of her performance 
accounting for the estimation of other effects. 
Often, the only effect that will be taken into 
account is the size ncg of the contemporary group 

and 
cg

f n
11w −= .  

 
 The summation of the equations [9] over all 
the daughters of sire s leads to: 
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 Subtract half the dam estimated breeding value 
multiplied by fw  on both sides. Still considering 
that all daughters have either a known or an 
unknown dam: 
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of the records of the daughters of sire s. We will 
assume the following approximation: 
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Therefore: 
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Plugging [8] into [13], we get, after some manip-
ulations: 
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âˆ- y(w                            

2
ûû
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equivalent daughter contribution EDCs for sire s.  
Define the average daughter yield deviation as   
 

s
f
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2
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[14] becomes: 
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ûû
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 Expression [15] can be regarded as a typical 
equation of the mixed model equations for a sire 
model: 
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where r is a vector of daughter yield deviations 
DYDf, D is a diagonal matrix of equivalent 
daughter contributions, Zs is the incidence matrix 
relating observations to sires, As is the numerator 
relationship matrix between sires. 
 
 Although not directly related to the topic of 
this paper, it is interesting to note that 
 

  
2a

2afs2e
2a

2
e

1
f

s

4
1

dw

d

w 4
σ

σ+σ
=















σ

σ+=γ
−

 [17] 

 
 When all daughters have an unknown dam (df 
= ¾) and contemporary groups are large ( 1ws ≈ ), 
γ  is the usual variance ratio for sire models, 
with =fsdw ¾, but this is not  the case when 
contemporary groups are small or when all 
daughters have a known dam (df = ½), because 
part of the genetic variance in the daughters’ 
observations not accounted for through the sire 
genetic effect “has been used” to compute the 
daughter yield deviation. 
 
 
2.2 Incorrect  national genetic trend  
 
Suppose that there is a problem in the national 
evaluation such that the “national” estimation of 
the genetic gain in the population is incorrect. If 
true and estimated average genetic merits coincide 
for a particular reference year Y0, this is no longer 
the case for animals i born in year Y(i)= Y0 + t(i): 
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        ∆+=  tââ )i(Tii  [18] 
 

In [18], Tiâ  refers to the (“true”) estimated 
breeding value under the correct model and ∆ 
represents the over- or under- estimation of the 
annual genetic trend. In equation [4], this implies: 

  ( ) tâyb̂b̂ n )i(Tii
qj

jpqpq ∑∑ ∑
ΩΩ ≠

∆−−=













+  

 
Obviously, the incorrect genetic trend will be 

associated with incorrect estimates of the fixed 
effects. The ones that are defined “globally”, that 
is, irrespective of the time when the animals have 
their  performance are certainly the least affected, 
because  t )i(∑

Ω
∆  combines deviations from the 

true situation over a long period of time: these 
deviations are “averaged” out over the time axis. 
Conversely, all fixed effects defined on a time 
basis (contemporary groups or, say, age x year 
effects) will be biased, as they will be associated, 
for a given year, to one (or very few) values of t(i). 

Let  *τ∆ represents the average over- or under- 

estimation of  ˆ'f bx for a typical record observed in 
year Y0+τ, as a consequence of the under- or 
over-estimation of the genetic trend or of missing 
important environmental factors that change 
annually. Note that nothing constrains *τ∆  to be a 
simple function of ∆. 

 
For consistency, equation [14] will now be 

rewritten on the additive genetic value scale, i.e. 
working with 0.5 as instead of us. Also, daughter 
yield deviations and equivalent daughter 
contributions will be grouped by year Y0+τ of 
performance. Let  τ,sn  be the number of 

daughters of sire s with performance on year Y0 + 
τ. This leads to: 
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âˆ- y(w                 

4
ââ
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â dwn

0Yf

mf'ff,s

gdgs1
s

s1
s,s,s

∑∑
∑

τ+∈τ
τ

−−
τ

τ
τ

−=






 +
γ−












γ+

bx
[19] 

 
Explicitly revealing the biases, we have: 
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 [20] 
 

Indeed, we are looking for a sire model 
making use of the “national” DYD’s in [15] but 
with sire solutions as close as possible to the true 
ones, that is, such that:   
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 [21] 
 

We will call Qs the difference between the 
right hand sides in [19] and [21], i.e., between the 
available and “correct” right hand sides for sire s:  
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Using [20] and [21] to compute Q,  it follows that 
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 [23] 
 
Qs is composed of three terms: 
 
- The first term is a function of the generation 
interval on the male side. This information is 
usually available and could be directly included in 
what follows. But its contribution is probably 
small as it is not a function of the number of 
daughters of sire s. As the average generation 
interval is not very variable from year to year, this 
term will be regarded as a constant; 
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- The second term is a weighted sum of yearly 
biases, i.e. errors specific to all cows having a 
performance on a given year. The weights are the 
equivalent daughter contributions EDCs,τ  related 
to all daughters of sire s with a performance in 
year τ.  
- The third term is a weighted sum of generation 
intervals on the female side, with weights EDCs,τ 
again. Let λ=0=τ0, … ,τlast represent the 
successive years of use of a bull in AI, starting at 
year Y0+τ0 when his initial first crop daughters 
are born. The generation interval increases by 0.5 
year when λ increases by 1. 
 
As a consequence, if EDC’s and DYD’s are 
available for each year of production of the 
daughters of each sire, the sire solutions 
obtained considering the system with the 
following typical equation should be robust to 
improper genetic trends: 
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  [24] 
 

In [24], the usual sire model equations are 
expended to include an effect of the (country by) 
year of production of the daughters and a 
regression term on the number of years of use of 
sire s, both weighted by the equivalent daughter 
contributions per year of production. From the 
knowledge of δ and the ϕr‘s, it is theoretically 

possible to compute ∆ and *τ∆ .   
 
 
2.3 Extension to a repeatability model 
 
Consider now a repeatability model, for which the 
kth performance of cow f is analysed in the 
national evaluation as: 
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The existence of repeated records introduces 
two important differences with the previous 
model. First, the computation of EDC’s is 
obviously modified. In equation [5], the matrix M 
is now obtained after absorption of the 
contemporary group effects and the permanent 
environment effect. A typical diagonal element of 
M for an animal with L records indexed by k 
(k=1,..L) is: 
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where 2

peσ  is the permanent environment 
variance and kcgn is the contemporary group size 

for lactation k. The variance 2
*eσ of the residual 

term *
fke in [25] does not include the variance of 

the permanent environment and therefore, an 
adjustment of fw should be made before its use in 

[15] or [16] for which γ is a function of 2eσ , not 
2
*eσ . The adjustment factor is a scale factor equal 

to 2
*e

2
e σσ  The adjusted weight .)adj(fw  can be 

decomposed as a sum over all lactations of a 
contribution m,fw  per lactation: 
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For example, assume 

2aσ =0.3, 2
peσ =0.2, 2

*eσ =0.5 and L=3 and the size 
of the contemporary groups is large enough so its 
effect on the weight can be ignored. Then, 

fυ =0.455, k,fw = 0.636 and .)adj(fw =1.909.  
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The second difference with respect to the 
initial simple model is that the right hand side in 
[11] is now: 
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In principle, the development presented in 

section 2.1 can be repeated here to obtain formula 
[15] with a definition of EDCs and DYDs adapted 
to the repeated records situation. However, 
looking at DYD’s over all lactations impairs the 
analysis made in section 2.2 on two aspects: 

 
- the daughter yield deviations are no longer 
available on a yearly basis: the contribution to the 
computation of DYDs of one daughter with three 
lactations will be scattered over year Y0+τ, 
Y0+τ+1 and Y0+τ+2. The estimation of ϕτ in [24] 
is no longer directly possible without extra 
approximations. 
- often, some fixed effects in the model are 
defined on a lactation basis. Examples are 
corrections for age or for days open. A wrong 
specification of these will affect their estimate 
which in turn will lead to  biased estimates of the 
genetic trend (see Bonaiti et al., 1993, for a 
concrete example). Working with DYD’s 
averaged over several lactations prevents us from 
explicitly representing the fixed effect biases in 
the right hand side of [20]. 
 

Instead, define DYD’s and EDC’s within year 
τ and lactation K as: 
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Then [24] can be extended to: 
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 [32] 
 

Now, the variables associated with the 
(country x) year of production of the daughters 
are now the desired ones and the estimation of the 
bias kθ  between lactations and for each country 
becomes feasible. 

 
Expression [32] corresponds to a typical sire 

equation for the following sire model: 
 

k,,ss0kk,,s e u  )(DYD τττ ++δτ−τ+θ+ϕ=            
 [33] 
with var( k,,se τ ) = 2eσ / EDCs,τ,k 
 
 
2.4 Relationship with methods to validate 

genetic trend 
 
It is possible to relate the fixed effect in [33] to 
the first two methods recommended for trend 
validation (see http://www-interbull.slu.se/service 
_documentation/ or Boichard et al (1995)). 
 
- kθ is a measure of what Boichard et al (1995) 
called the “difference between contemporary 
performance of pseudo-contemporary animals 
performing in the same environment but born on 
different years”. With the “testing method 1”, it is 
hoped  to find that kθ =0 for all k. 
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- the regression parameter δ is related to “the 
difference between performances of “true” 
contemporary daughters born from parents of 
different ages”. The year effects ϕr should be all 
equal and δ should be 0 if DYD’s are independent 
from the year of calving of the bulls’ daughters, as 
expected with the Interbull ‘testing method 2’. 
- However, nonzero estimates of ϕr’s, kθ ’s or δ 
in the sire model [33] should still lead to unbiased 
international sire  proofs. 
 
 
3. A simple illustration 
 
Consider a simulated international population as 
in Delaunay et al. (2001). Data over 5 generations 
with 10000 cows per generation in each of 4 
countries (= a total of 200000 records) were 
simulated with a simple model combining a herd 
effect (100 herds x 5 generations x 4 countries, 
normally distributed with variance 1 but analysed 
later as the only fixed effect), an additive genetic 
effect and a residual. The chosen genetic and 
residual variances were 0.25 and 0.75. 
 

At each generation, proven sires and dams of 
the next generation of cows were selected based 
on the results of a simulated national evaluation. 
The male population was structured in the 
following way: for each generation and each 
country, 80 young bulls sired 50 daughters each, 
20 proven sires had 250 second-crop daughters 
each in their country. Connection between 
countries was simulated through the use of 8 sires 
of sons at each generation, selected after a 
simulated (MACE) international evaluation. Also, 
exchanges of semen were modelled: in each 
country, 10 foreign sires from “neighbouring” 
countries were picked – again based on MACE 
results - to generate 100 daughters each. It was 
assumed that the genetic correlation between any 
pair of countries was 0.9. 

 
The data set was analysed first with an animal 

model (AM) with the full pedigree, without 
groups of unknown parents and assuming either a 
genetic correlation of 0 between countries 
(=national evaluations) or the “true” correlation of 
0.9 between countries (correct international 
evaluation). Figure 1 represents the average 
genetic trends for both evaluations and the 
average herd solutions per generation in the 
national evaluations. Obviously, the herd effects 
are biased with an increasing bias for later 

generations. A likely reason is that selection 
taking place in other countries was not properly 
accounted for. As a result, the genetic trend in the 
national evaluations was systematically under-
estimated. This was so despite the fact that these 
national evaluations would “pass” the validation 
tests, as the true model and the true genetic 
parameters were used.  
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Figure 1: Average genetic trends and herd 
solutions in a simulated population of four 
countries and five generations when an animal 
model is used 
(True BV: simulated breeding values, National and 
International AM EBV: Average estimated breeding 
values using an animal model and assuming a 
correlation of 0 (National ) or 0.9 (International) 
between countries).  
 

From the national evaluations, pre-corrected 
data were computed by simply subtracting the 
herd solution. These pre-corrected records were 
prepared for an animal model international 
evaluation in a study part of the PROTEJE project 
(Canavesi et al., 2002). But here, these pre-
corrected record were considered as incorrectly 
computed DYD’s, since there was no correction 
for the dam genetic effect, herd effects were 
biased and selection on the other countries was 
not properly accounted for. These DYD’s were 
used in sire models comparable to [24], but 
without the regression on year of use of the bull as 
generations were barely overlapping. The more 
complete model [32] was not considered as there 
were no repeated records. Figure 2 presents the 
resulting estimated genetic trends. When a 
country effect was included as the only fixed 
effect as in the current deregression procedures, 
the absence of DYD’s correction for the dams 
EBV led to a gross overestimation of the genetic 
trend.  
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 Figure 2: Average genetic trends and 
generation solutions in a simulated population 
of four countries and five generations when an 
improper sire model is used 
(International AM EBV: as in Figure 1; Sire model: 
International sire model based on daughter yield 
deviations without correction for the dam EBV. Sire 
model 1: with a country effect and groups of unknown 
parents (GUP), Sire model 2: with a generation effect; 
Sire model 3: with a generation effect and GUP; 
generation solutions: for Sire model 3) 
 

When the country effect was replaced by a 
country by generation effect equivalent to the ϕr’s 
in [24], the genetic trend was much less biased, 
especially when groups of unknown parents were 
also included.  

 
It was also found (results not shown here) that 

the REML estimation of genetic variances and  
correlations and residual variances with sire 
model 3 (with a generation effect and groups of 
unknown parents) gave virtually unbiased results 
(based on only 20 simulated data sets). This is in 
contrast with the results of, e.g., Madsen et al 
(2001), who found estimated genetic correlations 
biased downwards, even with DYD’s instead of 
deregressed proofs, something they attributed to 
an inadequate estimation of the genetic trend. 

 
 

4. Extension to more complex models 
 
4.1 A simple rule for the computation of EDC’s 

and DYD’s 
 
The use of deregression for traits described by 
complex, sometimes nonlinear models is ques-
tionable. A proper definition of EDC’s for such 
traits has to be agreed upon as EDC’s may greatly 
influence the right hand side values that will be 
calculated by deregression. When EDC’s are 

incorrect, right hand sides are also incorrect and 
both the estimation of genetic parameters (genetic 
variances and correlations) and the international 
evaluation become dubious. Furthermore, there is 
no obvious extension of the genetic trend 
validation methods to apply to such traits.  
 

The approach developed above may help to 
find a consensus on how to proceed: we started 
from the equations used in the national evaluation, 
considering an animal model (here). By 
“massaging” these equations, we were able to find 
an expression for EDC’s and DYD’s (equation 
[15]) suitable to run a national sire model with the 
same bull EBV’s for bulls as for the animal 
model. These EDC’s and DYD’s can then be 
included in an international (multiple trait) sire 
model robust to shortcomings of national models, 
without requiring deregression nor strict trend 
validation (although the later is obviously still 
desirable). 
 

Our conjecture is that in most cases, it is 
possible to “massage” the initial equations used in 
national evaluations to make apparent EDC’s and 
DYD’s that can be used in the international 
evaluation. The critical point here is that the 
national sire model evaluation based on these 
EDC’s and DYD’s should lead to bull EBV’s as 
close as possible to the ones obtained with the 
complex, possibly nonlinear (and possibly 
“animal”) initial model. 
 

We will illustrate this approach with two 
examples: 
 
4.2  EDC and DYD calculation for a survival 

analysis model 
 
The approach was already described in Ducrocq 
(2001) and Ducrocq et al (2001). If length of 
productive life data are analysed using a Weibull 
proportional hazards model, the hazard function 
h(t) of a cow f is written: 
 

h(t ; xf) = ρtρ−1 exp{ xf’b+ af} [34] 

 
Estimates of b and a={af} are obtained 

maximising the logarithm of the joint posterior 
density of all location parameters (Ducrocq and 
Casella, 1996). In practice, a sire-maternal grand-
sire model is used but for the sake of simplicity, 
we will ignore this here (see Ducrocq, 2001 for 
details). At the joint mode of this joint posterior 
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density, its first derivative with respect to af is 
equal to 0, i.e., 

 

    ( )        01e y -  f2a

fa'f
ff =

σ
−δ −+ρ aA 1bx  [35] 

 
where y f is the censored (δf =0 ) or uncensored 
(δf =1) length of life of cow f. The corresponding 
diagonal element of the information matrix (= 
minus the second derivatives of the joint posterior 
density with respect to af ) is: 
 

f2a

1
ffa'f

f a
d

e y  
σ

+
−

+ρ bx   [36] 

 

Define  ey w fâˆ'f
ff

+ρ= bx and  
 

1â  
ey

 y f
fâˆ'f

f

f*f −+δ=
+ρ bx

.  

 
Then [35] can be written as:  
 

 ( )     yw   1â w *f ff2a
f f =

σ
− − aA 1  [37] 

 
The definitions of wf and  y*f are slightly 

different from the ones proposed in Ducrocq 
(2001). They are more consistent as they are 
related to the information matrix but for practical 
purposes, these differences are really minor. 
Using the Normande data set (more than a million 
records), the sire EBVs based on a Weibull 
analysis and on a BLUP sire model using the 
above definitions of wf and  y*f had a correlation 
of 0.994. 
 

Summing the wf‘s and *fy ’s over sires and 
year of first calving leads to definitions of EDC’s 
and DYD’s that can be used in international 
evaluations with model [24].  
 
 
4.2 EDC and DYD calculation for a threshold 

model 
 
Again, in a Bayesian analysis of discrete data with 
a threshold model, the thresholds, fixed effects 
and breeding values are traditionally estimated 
maximising the logarithm of the joint posterior 

density (Gianola and Foulley, 1983; Foulley and 
Gianola, 1996). 
 

The Fisher scoring algorithm used for the 
maximis-ation involves the iterative solution of 
the system (Gianola and Foulley, 1983): 
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at iteration i, where ξ refers to the thresholds; W  
and v are respectively a diagonal matrix and a 
vector with standard elements functions of the 
thresholds, the terms fa'

f +bx  and the probability 
of response in each discrete category. The detailed 
expressions for the matrices W, T and L  and the 
vectors v and p are given in Gianola and Foulley 
(1983). Concentrating on the lower part of system 
[38], we get, at convergence (at iteration i=”*”): 
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 [39] 
 
where *y  is a vector of working variables *fy  
such that, for animal f: 
 
  f

1
fff

*
f v̂ )w(â  ˆ 'y −++= bx  [40] 

 
In [40], wf  and vf are the elements of W*  and 

v relevant for animal f. Once more, summing the 
wf‘s (or even better: the wf‘s obtained after 
absorption of (some of) the fixed effect equations 
in [40] into the genetic effect equations) and the 

*fy ’s over sires and year of performance leads to 
new definitions of EDC’s and DYD’s to use in 
international evaluations. 
 
 
5. Discussion 
 
The strategy described in this paper has a clear 
underlying objective: getting rid of the 
deregression step in international evaluations. 



110 

There has been a debate on whether deregression 
followed by MACE is a reversible process, at the 
national level (Madsen et al., 2001; Madsen and 
Mark, 2002). The conclusion was positive “as 
long as the same pedigree information is used in 
the two steps”. This is almost never the case, in 
particular when animal models or complex sire-
maternal grand-sire (nonlinear) models are used at 
the national level. 
 

The deregression suffers two fundamental 
drawbacks: 

 
- First, it is heavily dependent on the input 
parameters that are used: if one chooses wrong 
variance ratios and/or wrong EDC’s, the right 
hand sides obtained by deregression will be 
inadequate. What we mean by “inadequate” is 
that, if used with the correct EDC’s, these 
deregressed right-hand sides in a univariate sire 
model will not give back the initial (national) sire 
EBV’s, especially when the model used at the 
national level .is not a sire model but an animal 
model or a complex sire-maternal grand-sire 
model.. However, as a deregressed right hand side 
is always easily obtained, the consequences of the 
choice of incorrect EDC’s on the rest of the 
international procedure is easily overlooked. 
Taking an extreme (stupid) example, if ones add a 
(different) random value between 0 and 1000 to 
each EDC, deregression of sire proofs will still 
give a plausible result. Such a huge error is 
fortunately not common for usual linear traits. 
However, for nonlinear traits such as those 
analysed via survival analysis or threshold 
models, the proper EDCs are functions of, 
respectively, cumulated risks or probabilities 
of response that can greatly differ in 
magnitude from simple record counts.  
-  Deregression produces one single figure per 
sire. Consequently, there is no possibility to have 
any insight at potential systematic biases, no 
possibility to disentangle the underlying 
phenomena that may lead to such biases. A single 
safeguard has been proposed: the validation tests 
of national genetic trends. With a simple example, 
it has been shown that, although desirable, valid 
national trends are not always synonymous with 
exact genetic trends. After all, selection taking 
place abroad is accounted for in national 
evaluations only through approximations (usually 
with groups of unknown parents). 
  
 

Two directions for improvement have been 
proposed here:  

 
- First, the systematic supply of EDC’s and 
DYD’s within sire, year of performance - and 
possibly, lactation - is a step towards more 
complex international sire models useful to 
unravel national particularities or limitations. 
Admittedly, this requires more preparation than 
just sending proofs. But the ingredients are almost 
the same as the ones needed for the current trend 
validation procedures anyway. Perhaps more 
importantly, from a “political” perspective, trend 
validations would no longer be felt as an hurdle: if 
a country does not “pass” the trend validation 
tests, its data would not have to  be necessarily 
excluded. Idealistically, it would also alleviate a 
possible climate of suspicion, as under- or over-
estimation of national genetic trends would no 
longer influence international rankings. Finally, 
the more complex international sire model could 
also be used for a better estimation of genetic 
correlations between countries.  
- Secondly, a general strategy has been proposed 
for the computation of EDC’s and DYD’s, by 
means of a rule based on common sense:  
With the national information sent to Interbull, 
one should be able to get back one’s own 
national sire proofs, using a simple univariate 
sire model. This rule could be the basis of a new 
kind of “national” validation, required before 
sending data to Interbull. An extreme 
consequence could be a non uniform definition of 
EDC’s across country, adapted to each national 
situation.  The strategy could also be applied to 
situations not considered here, such as for traits 
described by random regression models 
(following the work of Mrode and Swanson, 
2002) or in multivariate settings (as in Liu et al., 
2003) or including maternal effects.  
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