
HAL Id: hal-02765109
https://hal.inrae.fr/hal-02765109

Submitted on 1 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benefits and limits of increasingly sophisticated models
for genetic evaluation: the example of pig breeding

Jean Pierre Bidanel

To cite this version:
Jean Pierre Bidanel. Benefits and limits of increasingly sophisticated models for genetic evaluation:
the example of pig breeding. 6. World congress on genetics applied to livestock production, Jan 1998,
Armidale, Australia. �hal-02765109�

https://hal.inrae.fr/hal-02765109
https://hal.archives-ouvertes.fr


6th World Congress on Genetics Applied to Livestock Production, Armidale, January 1998, 25, 577-584 
 

 577 

BENEFITS AND LIMITS OF INCREASINGLY SOPHISTICATED MODELS FOR 
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SUMMARY 
Genetic evaluation of most farm animals is performed using more and more complex statistical 
and genetic models. Benefits and problems associated with this increased sophistication are 
reviewed and illustrated using pig breeding examples. Model checking and validation methods 
are briefly introduced. 
Keywords : genetic evaluation, mathematical models, model checking, pigs 
 
INTRODUCTION 
The use of mixed model methodology (MMM) has become a standard in most farm animal 
species to estimate genetic parameters through Restricted Maximum Likelihood and estimate 
breeding values through Best Linear Unbiased Prediction (BLUP). MMM has considerably 
evolved since the first publication of Henderson (1949) and early applications to the evaluation 
of dairy bulls. The increasing power of computers and major advances in computational 
methods have led to the replacement of the simple sire models used in early years by 
increasingly complex and realistic models which allow a more efficient use of the data available 
for selection decisions. The tendency towards the use of increasingly sophisticated models has 
been greatly facilitated over the last few years by the availability of flexible computing 
softwares for estimating breeding values and genetic parameters. In counterpart, the advantages 
associated with the use of more complex models may be offset by increased computational 
difficulties and a reduced robustness. Benefits and problems associated with the use of 
increasingly sophisticated models for estimating genetic parameters and breeding values are 
reviewed and illustrated using examples encountered in pig breeding. Some elements about 
model checking and validation are also given. 
 
MODELS USED IN PIG BREEDING 
Pig genetic evaluation models reflect the large variety of situations encountered in pig breeding, 
with two extreme cases. On one side, national breeding schemes often lead to large scale 
evaluations involving many participants and different testing environments (i.e. central testing 
stations, selection and multiplication herds) and often encounter problems such as genotype x 
environment interaction, small contemporary group size, immigration, preferential treatments, 
variance heterogeneity. On the other side, breeding companies generally own populations with 
a more limited size (one to several hundreds of females) distributed in a limited number of 
nucleus herds with a better control of testing environment and immigration, but have to cope 
with problems such as inbreeding and inaccuracies of genetic parameter estimates. Yet, all pig 
breeding schemes share some common features such as the use of multiple trait selection 
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objectives and criteria, the necessary use of an « animal model » to adequately describe the data 
and, because boars and gilts are selected on a weekly basis, the continuous aspect of the genetic 
evaluation process.  
 
Mixed model methodology has been introduced more recently in pig breeding than in many 
other farm animal species, as it was not until 1985 that the first major application of BLUP was 
reported (Hudson & Kennedy, 1985). Other routine applications of BLUP only started at the 
end of the eighties (e.g. Bampton, 1992). In each case, single trait breeding values were 
computed and then combined in an aggregate index. The availability of easy-to-use and flexible 
computer softwares allowing for multiple trait models in the early nineties has considerably 
enhanced the use of BLUP - animal models and of REML estimation of genetic parameters. 
They have made it possible to adequately describe the sophisticated structure of pig breeding 
data, i.e. to combine traits from several testing environments with different fixed and random 
effects for some or all of the traits.  
 
Several potential improvements of models have been investigated over the last few years. 
Alfonso (1995) compared the interest of a model considering each parity record of a sow as a 
different vs a standard repeatability model. The impact of maternal effects on genetic 
evaluation and selection response for litter size was thoroughly investigated by Roehe and 
Kennedy (1993a;b). Estany & Sorensen (1995) and Frey et al. (1997) reconsidered the way 
(fixed or random) to account for the effect of contemporary group when group size is limited. 
Other improvements of animal models which are currently developed or should be considered 
in the near future have been extensively reviewed by Simianer (1994) at the last WCGALP 
meeting. Like in most farm animal species, major improvements in pig genetic evaluation 
should come from further improvements of the statistical models used, particularly to account 
for heteroskedasticity and analyze traits which are not normally distributed or involve non 
additive mechanisms and, above all, from the use of more realistic genetic models. For 
instance, heterogeneous genetic and residual variances between herds or group of herds have 
been evidenced by e.g. Bidanel et al. (1994) or See (1994). Heteroskedasticity also generally 
occurs when several populations are considered in a single genetic evaluation. BLUP properly 
accounts for heterogeneous variances across environments, provided that the true variances in 
each environment are known (Gianola, 1986), but applications to pigs genetic evaluation are 
still very limited. Traits such as prenatal and preweaning survival or sow longevity cannot 
adequately be described by usual mixed models. Non linear models such as the threshold or 
survival models have been developed for such traits - see Ducrocq (1990) for a review -, but 
pig breeding applications have until now been limited. 
 
With regard to genetic models, important non additive effects may exist for some traits in pigs. 
The large heterosis effects obtained for litter size and, to a lesser extent, growth traits, suggest 
that noticeable dominance and/or epistatic effects might exist for these traits. Under the 
infinitesimal model, mixed model methodology can easily account for non additive gene effects 
(Henderson, 1984), as well as for cytoplasmic or imprinting effects (Kennedy et al., 1990) in 
non inbred populations, although the estimation of the corresponding variance components is 
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often a formidable task. Then, more and more evidence is accumulating showing that loci of 
medium to large effects exist for economically important traits (Le Roy et al., 1990; Andersson 
et al., 1994). Mixed models of inheritance, which assume one or several identified segregating 
loci, plus an additional polygenic component, have been developed. When genotypes at each 
identified locus are known, they can be appropriately treated as fixed effects in standard mixed 
model techniques (Kennedy et al., 1992). When only genotypes at linked markers are known, 
the uncertainty due to unknown haplotypes and recombination events has to be taken into 
account (e.g. Fernando & Grossman, 1989).  
 
BENEFITS FROM USING INCREASINGLY SOPHISTICATED MODELS 
General considerations. The desirable properties of BLUP (Henderson, 1984) only hold when 
the model used appropriately describes the observed variation, i.e. that the distributions 
specified are correct and that all environmental and genetic components of variation are 
considered. Problems may also occur when populations undergo selection or non random 
mating, which may result in severe biases in estimates genetic parameters and breeding values.  
Properly taking into account these phenomena generally requires to include all the information 
related to the selection process in the analysis (Im et al., 1989). In most cases, this implies to 
use animal models which exhaustively utilize available pedigree and data information and, 
when several traits are selected, the use of multiple trait models. The expected benefits from a 
more appropriate model specification will be detailed below. 
 
Multivariate animal models. The advantage of animal models as compared to more simple 
models such as sire, sire-paternal grand sire or sire-dam models have been extensively detailed 
(e.g. see Schmidt, 1988 or Foulley & Molénat, 1994) and will not be considered here. As 
reviewed by Ducrocq (1994), further advantages can be drawn from the use of multivariate 
animal models. First, multivariate models are required to properly account for selection bias 
when several traits are selected. Severe biases in estimated breeding values and genetic trends 
may occur when univariate models are used in such situations, especially when genetic and 
residual correlations differ (e.g. see Pollak & Quaas, 1981; Sorensen & Johansson, 1992). 
Multivariate models also make it possible to use extra information on correlated traits or of 
direct information on related animals when one or several traits from the selection objective are 
difficult or impossible to measure on selection candidates. Obvious examples in pigs are the use 
of backfat thickness to improve carcass lean content and of meat quality measurements on 
slaughtered sibs for carcass and meat quality measurements. They also allow to cope with 
genotype x environment interactions by considering performance data measured in different 
environments like different traits (e. g. growth rate and backfat thickness measured on the farm 
and in testing stations). Data measured on crossbred animals might be incorporated in genetic 
evaluation in a similar way. Then improved accuracy and data structure can be obtained from 
multiple trait models. The gain in accuracy strongly depends on the genetic parameters of the 
traits considered. It increases when the genetic correlation between traits is high, when 
heritabilities or/and genetic and residual covariances differ, when more than one random factor 
is considered and when full or half sib family size is small (Ducrocq, 1994). Improved data 
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structure mainly comes from nonzero residual covariances which create more ties between 
animal and fixed effects (Thompson & Meyer, 1986). 
 
Structure of dispersion parameters. Ignoring the heterogeneity of variances may result in 
substantial losses in response to selection, in particular due to selecting too many individuals 
from the most variable environments (e.g. Hill, 1984). As indicated above, BLUP accounts for 
heterogeneous variances when these variances are known. However, the estimation of 
heterogeneous variances may be a very difficult task, especially when environmental cells are 
numerous and have a limited size. In such cases, the structural mixed linear model on log-
variance components recently developed (e.g. Foulley & Quaas 1994) provides an appealing 
theoretical framework for identifying meaningful sources of variation of variance components. 
The consequences of ignoring other non additive effects such as epistatic, cytoplasmic or 
imprinting effects have not yet been thoroughly investigated, but ignoring them may also bias 
prediction of direct effects, in particular because these effects are partly transmitted through 
successive generations. 
 
Non linear models. Although BLUP techniques are rather robust to departures from normality, 
non linear models when traits are not normally distributed have been shown to more adequately 
describe observed data and result in higher responses to selection in various situations (e.g. see 
Meijering & Gianola, 1985). In other instances, such as survival data, no linear model can 
adequately and exhaustively describe available data (Ducrocq, 1990). Inference in non linear 
models is often based on bayesian methodology, which offers a global framework for the 
estimation of both location and dispersion parameters. Until recently, available algorithms were 
based on asymptotic approximations of posterior distributions (Ducrocq, 1990). However, 
things have dramatically changed during the last few years with the development of new 
algorithms based on Markov chain Monte Carlo methods, which can compute entire posterior 
distributions (e.g. Sorensen et al., 1995). 
 
Genetic models. Under the infinitesimal model, Henderson (1975) algebraically showed that 
ignoring some random effects in genetic evaluation still yields unbiased predictions, but with an 
increased prediction error variance and, as a consequence, lower responses to selection.  
Moreover, predictions do not remain unbiased in any situation. In the multivariate case, using a 
wrong model to estimate (co)variance components in selected populations results in incorrect 
parameters, which do not allow to properly account for selection bias (Ducrocq, 1994). 
Ignoring maternal effects also results in biased estimates of direct effects, even when direct 
heritability is correct and the correlation between direct and maternal effects is null (Roehe & 
Kennedy, 1993b). Predictions of additive affects are also biased in presence of dominance and 
inbreeding when these effects are ignored, but remain unbiased when they are properly 
accounted for (e.g. De Boer & Van Arendunk, 1992).  
 
Extra genetic gain is usually expected from including information on genes with medium to 
large effects in the genetic evaluation process. Numerous studies have investigated this problem 
in recent years, though none of them has specifically addressed the case of pig breeding 
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schemes. Results are not always comparable, because selection criteria differed between studies  
(i.e. from an index based on individual information to animal models), but they all indicate that 
the knowledge of genotypes at quantitative trait loci generally improves short term response to 
selection (Larzul et al., 1997). Conversely, some discrepancies have been obtained for long 
term response to selection (e.g. see Larzul et al., 1997 for a discussion). In the less favourable 
situation where only genotypes at linked markers are known, results largely depend on the 
situation considered. Large gains can be expected in the most favourable situations, i.e. when 
linkage desequilibrium exists at the population level (Lande & Thompson, 1990) and when 
traits are expressed lately, are sex limited or are difficult to measure (e.g. Ruane & Colleau, 
1996). In other cases, the advantage of marker assisted selection may be questionable (e.g. see 
Ruane & Colleau, 1996). 
 
Environmental effects. Environmental effects include intrinsic effects such as age, breed or 
genetic type, parity and sex as well as contemporary or management group (CG), type of 
mating ... and their interactions. They are usually considered as fixed effects. As shown by 
Henderson (1975), ignoring or incorrectly specifying an important fixed effect leads to biased 
estimates of breeding values. Correctly specifying environmental effects is often a difficult task, 
mainly because sources of variation are not always available (e.g. different buildings in the 
same herd, preferential treatments,...) or may be poorly estimated. Small CG size in pigs mainly 
occur for meat quality (CG = animals sent together to the abattoir) or reproductive traits (CG is 
a complex interaction between herd, year, season and type and/or number of matings). In such a 
case treating CG as a random effect reduces PEV, but may result in biased predictions in case 
of non-random associations between sires and CG (this might have occur for instance if a high 
breeding value for growth rate was associated with poor meat quality). Another possibility 
consist in grouping successive small CG using clustering techniques. 
 
PROBLEMS AND LIMITS OF COMPLEX MODELS 
Main difficulties associated with the use of increasingly complex model are lack of robustness 
and computational problems. Other aspects, such as higher reduction of genetic variability and 
increase in inbreeding should not be underestimated, but are not considered here. 
 
Robustness. Best linear unbiased predictions of breeding values are computed assuming that 
population dispersion parameters are perfectly known. More complex models often involve 
more dispersion parameters than simpler ones (e.g. genetic, litter and residual correlations 
between traits in multivariate analyses, direct and maternal heritabilities, plus a correlation 
between direct and maternal effects for maternal effect models,...). This increased number of 
parameters has several consequences. First, parameters are usually less accurately estimated for 
a given amount of data, because they often involve covariances, which are less accurately 
estimated than variances, but also because variances have a reduced accuracy. For instance, 
standard errors of heritabilities can be 3 to 5 times larger with a maternal effect model as 
compared to a model involving only direct effects (Thompson, 1976). Similar conclusions can 
be drawn with models involving non additive effects (e.g. see Misztal, 1997). Then, because 
more parameters are involved, complex models are often more sensitive to a given variation in 
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parameter values. As a consequence, gains from using a more sophisticated and appropriate 
model can be reduced or annihilated by poor parameter estimates, as shown by several recent 
studies. Alfonso (1995) compared the efficiency of a multiple trait vs a repeatability animal 
model for genetic evaluation of litter size when genetic are inaccurately known and found, 
using a decision theory approach, that the simple repeatability model should be preferred to a 
multivariate model. Ruane & Colleau (1996) showed that the interest of marker assisted 
selection over conventional BLUP-animal model is also reduced or even annihilated when the 
QTL variance has been incorrectly estimated. Schaeffer (1984) compared the efficiency of 
multiple trait (MT) vs single trait (ST) BLUP when using incorrect residual and genetic 
correlations. MT-BLUP sometimes had a lower efficiency of ST-BLUP but, as emphasized by 
Ducrocq (1994), ST-BLUP implicitly assumes null correlations and may have a low efficiency 
when true parameters differ from zero. 
 
Poor estimates of fixed effects may also reduce the interest of complex models. For instance, 
the efficiency of multivariate models for litter size in pigs is reduced due to the smaller size of 
contemporary groups, which result in less accurate estimates of their effects. 
Overparameterized models for fixed effects also unnecessarily increase prediction error 
variance (Henderson, 1975) decreases connectedness and may result in computational 
problems. For instance, using a herd * year * season * type of mating interaction in genetic 
evaluation for litter size in France has been shown to give a lower predictive ability than a more 
parsimonious model involving a herd * year * type of mating effect and an additive effect of 
farrowing month (Bidanel, unpublished results). A similar situation was found when too many 
unknown parent groups were defined.  
 
The lower robustness of complex models has important consequences when population size is 
limited, which is the case many pig strains, as variance components cannot be accurately 
estimated. Yet, the same problem may occur in large populations, as available computing 
resources still often limit the size of the system of equations involved. As a consequence, 
complex models involving several additional variance components are likely to give inaccurate 
dispersion parameter estimates. Moreover, variance components are generally estimated from 
subsets of the data used for genetic evaluation. A good sampling strategy is then fundamental to 
obtain unbiased estimates of dispersion parameters, in particular to avoid selection bias. 
 
Computational problems. Genetic evaluations often require to solve huge linear systems using 
iterative methods. The number of equations involved often increases when increasingly 
sophisticated models are used. For instance, the number of equations is multiplied by the 
number of traits in multivariate analyses, by almost 2 when dominance effects are included and 
by almost 3 for marker assisted evaluation with one QTL using the model of Fernando & 
Grossman (1989) . The increase in computing time is much more important due to  a higher 
computing time per iteration and a slower convergence. Several thousands of iterations may be 
required in presence of selection , when groups of unknown parents or more than one random 
effects are included and in case of poor connectedness (Ducrocq, 1994). Non linear models are 
also computationally very demanding, because of a low convergence rate and the higher 
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complexity of the system of equations to be solved. As emphasized by Ducrocq (1994), this 
may be problematic when a fixed number of iterations is used as a stopping criterion. 
Computing time can be drastically reduced in many instances by exploiting the structure of the 
system of equations, using specific algorithms or computational tricks - see Ducrocq (1994) for 
a review -. Unfortunately, the integration of these improved algorithms in general purpose 
packages, which would greatly favour their use, often remains to be done.  
 
CHOICE AND VALIDATION OF A MODEL 
As emphasized by Gelman et al. (1997), « a good [Bayesian] analysis should include at least 
some check of the adequacy of the fit of the model to the data and the plausibility of the model 
for the purpose for which the model will be used ». Though it may appear as common sense, 
this crucial step is not always satisfactorily achieved when elaborating genetic evaluation 
models. The first point, i.e. goodness of fit, can be evaluated using mean square error when 
dispersion parameters are known. In that case, fixed effects can be tested using an appropriate F 
tests (Henderson, 1984). When variances are unknown, nested models can be compared on the 
basis of their likelihood, and likelihood ratio tests (LRT) can be used to select the appropriate 
model. For instance, Robert et al. (1995) used LRT in the case of heteroskedastic linear mixed 
models to test the homogeneity of a set of genetic correlations. With non nested models, criteria 
such as the Akaike’s Information Criterion can be used to select the best fit model among 
alternative models (see Wada & Kashiwagi, 1990, for an application to animal breeding 
problems). In the case of genetic evaluation problems, the second point mainly concern model’s 
predictive ability. Crossvalidation techniques, in which observed data are partitioned and each 
data subset compared to its predictions conditional on the model and the rest of the data, have 
recently been used to compare linear vs non linear models (e.g. Perez-Enciso et al., 1996) or 
models with and without groups of unknown parents (Estany & Sorensen, 1995). Yet, as noted 
by Frey et al. (1997), better ways than simply dividing the data into two equivalent subsets may 
be found to compare predictive ability of genetic evaluation models (e.g. prediction of progeny 
performance with parameters estimated from parental data). A somewhat related strategy for 
model checking in the bayesian framework is to compare posterior predictive distribution of 
future observations to real data or substantive knowledge. A review of bayesian model 
checking methods can be found in Gelman et al. (1997). Finally, simulation studies are also 
very helpful to compare model efficiency on the basis of long term response to selection (e.g. 
Roehe & Kennedy, 1993b; Ruane & Colleau, 1996). 
 
CONCLUSION 
Increasingly sophisticated genetic evaluation models may undoubtedly contribute to increase 
the efficiency of animal breeding plans. Recent advances have in particular been made to more 
adequately describe the structure of dispersion parameters and consider more realistic genetic 
models. However, a careful model checking and validation is a necessary prior step to insure 
that the proposed model is fully justified. A lot of work still remains to be done in this area.  
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