18th Conference
of
European Comparative Endocrinologists
from Molecular to Integrative Biology

September 10th-14th, 1996
Palais des Congrès
Rouen - France

ABSTRACTS OF LECTURES
AND COMMUNICATIONS

European Society for Comparative Endocrinology Council

President: A. De Loof, Belgium
Vice-President: H. Vaudry, France
Secretary-Treasurer: E.W. Roubos, The Netherlands
Honorary Vice-President: F. Gracia-Navarro, Spain
Chairman: X. Bellès, Spain; D. Larhammar, Sweden;
Members: G.M. Coast, United Kingdom; R. Pierantoni, Italy;
S. Dufour, France; A.M. Polzonetti-Magni, Italy;
W.P.M. Geraerts, The Netherlands;
F. Sehnal, Czech Republic; J. Koolman, Germany

Local Organizing Committee

Chairman: H. Vaudry
Members: V. Carpentier, L. Cazin, N. Chartrel, V. Contesse, J.M. Danger,
C. Delarue, L. Desruès, M. Feuilloley, S. Jégou,
M.K. Kodjo, M. Lamacz, F. Leboulenger, I. Lührmann,
E. Louiset, A.G. Mensah-Nyagan, M. Montréal, I. Remy-Jouet,
M.C. Tonon, H. Tostivint, L. Yon
mean of in situ hybridization and immunocytochemistry. Both techniques demonstrated the presence of islet-1 in some nuclei of the ventral telencephalon, the ventral preoptic area, and the mediobasal hypothalamus. No particular peptide-like phenotype could be correlated to the islet-1 phenotype. The presence of islet-1 in brain regions known for participating in the neuroendocrine control of pituitary functions in fish suggests not only a role for this transcription factor in the development but also in the regulation of some functions in the endocrine mature brain.

Supported by INRA and CNRS.

P210 CYCLIC ALLATOSTATIN-LIKE PEPTIDE DETECTION IN THE BRAIN-RETROCEREBRAL COMPLEX OF THE EARWIG LABIIDURA RIPARIA, RELATED TO THE REPRODUCTIVE CYCLE
F. Sayah (1), C. Fayet (1) and A.M. Lavender (2)
(1) Physiologie des Insectes, University P. & M. Curie, Paris,

A polyclonal antibody against allatostatin-3 of Blattella germanica (BLAST-3) (a gift from X. Belles, Barcelona) is used to immunolocalize allatostatin-like peptides in the brain-retrocerebral complex of Labidura riparia adult females. Immunoreactive cells are strongly stained in pars intercerebralis. These cells and their axons show immunoreactivity at previtellogenic, ovulation and ovarian arrest periods. During vitellogenesis, immunoreactivity is restricted to only four pericaryons in the pars intercerebralis. In the deutocerebrum, one cell is stained at the root of each antennal nerve. During the reproductive cycle, these cells and their axons show immunoreactivity at previtellogenic, ovulation and ovarian arrest periods. During vitellogenesis, immunoreactivity is restricted to only four pericaryons in the pars intercerebralis. From the deutocerebrum, one cell is stained at the root of each antennal nerve. During the reproductive cycle, these cells and their axons show immunoreactivity at previtellogenic, ovulation and ovarian arrest periods. During vitellogenesis, immunoreactivity is restricted to only four pericaryons in the pars intercerebralis. When young vitellogenic females are injected with 20-hydroxysteroid (20E), which inhibits vitellogenesis, full immunoreactivity reappears, suggesting sensitivity of these cells to 20E as is logically expected for a negative feedback loop.

The results show that BLAST-3-like material is produced cyclically in Labidura in correlation with low levels of JH and the lack of vitellogenesis. We suggest that allatostatin or allatostatin-like neuropeptides might be involved in the inhibition of JH synthesis. This study contributes also to provide information on the degree of homology of allatostatins across various insects.

P211 TO THE INVESTIGATION OF THE AMYGDALA NEUROENDOCRINE FUNCTION (THE ECOLOGICAL ASPECT)
A. Akhmadeev, A. Altinbaev, I. Bayazitov, D. Nagaeva, L. Kalimullina and K. Kajunov
Bashkirian State Medical University, Bashkirian State University, Ufa, Russia.

On the basis of an extensive material there were for the first time determined zones of sex dimorphism (ZSD) of amygdala (Kalimullina, 1998). The response of neurons on the insulin deficit was investigated in the ZSD. The work was carried out at white male rats (Wistar line). Registration of reactive changes of neurons and their karyovolumetrical characteristics was recorded. The results showed that the following regularities are present: 1) neurons of all zones of SD are sensitive to deficit of insulin, which indicates to the importance of critical period of brain’s sex differentiation in the formation of neuroendocrine centers in organism ontogenesis; 2) the topography of amygdala’s zones shows the possibility of the direct (or indirect, through hypothalamus) influence of amygdala on visceral centers of the brain’s stem; 3) the majority of amygdala’s zones, which react to allxan diabetes, have direct anatomic connections with the main or accessory olfactory bulbs.

P212 CONTROL OF GONADOTROPHIN RELEASE IN TROUT ESTROGEN RECEPTOR-CONTAINING DOPAMINERGIC NEURONS AND TYROSINE HYDROXYLASE EXPRESSIO
B. Linard, T. Bailhache, A. Cheguillaume, O. Kah, P. Jego and C. Saligaud
Endocrinologie Moléculaire de la Reproduction, URA CNRS 256, Endocrinologie Moléculaire des Poissons, INRA, Campus de Beaulieu, 35042 Rennes cedex, France.

Central dopaminergic (DA) pathways in fish are involved in a negative feedback of estradiol (E2) on gonadotropin II (GtHII) release. The inhibition of catecholamine synthesis in vitellogenic female rainbow trout increases plasma GtHII and decreases DA levels in the pituitary and in some brain regions such as the telencephalon and the preoptic area. Double immunocytochemical stainings demonstrated that some DA neurons in the preoptic area contain E2 receptors. The gene of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis could be a target gene of E2. We understood the cloning of TH in the trout using a brain expression library. The coding sequence has been obtained and exhibits high homology with TH in others vertebrates. The estrogenic regulation of brain TH expression is currently analysed by in situ hybridization.

Supported by grants of CNRS and INRA.

P213 SPECIFIC R.I.A. FOR GTHI AND GTH2 IN THE RAINBOW TROUT ONCORHYNCHUS MYKISS, GONADOTROPINS BLOOD PLASMA LEVELS DURING THE SPAWNING PERIOD
M. Govorun and B. Breton
Laboratoire de physiologie des Poissons, INRA, Campus de Beaulieu, 35042 Rennes; Cedex France.

GTHI and GTH2 have been purified from rainbow trout pituitary glands using immobilized metal ion affinity chromatography. After separation of their chymotryptic sub-units, antibodies have been raised against GTHI-β and GTH2-β. In the GTHI assay, using the stable form of GTHI as labelled hormone, the cross-reactivity with GTH2 was 9-10 % for the DS0 dose, whereas it was around 50 % using the native form including stable and dissociable GTHI. The sensitivity of the assay is 0.2 to 0.4 ng/ml, those of the GTH2 assay was 0.1 to 0.2 ng/ml. In this assay there was no cross-reactivity at all with GTHI. In both assays, rainbow trout growth hormone (GH) and prolactine did not compete. GTH1 and GTH2 blood plasma levels have been determined from 15 days before ovulation until 15 days after, by sampling every 2 days, the egg stage being determined at each sampling by individual egg stripping. GTH2 was undetectable until the appearance of the first lipid droplets, when it rose transiently to 21.25 ± 4.19 ng/ml. GTH1 levels which had decreased at the end of the vitellogenesis, also increased during this period, starting 8 days before ovulation and peaking at the same time as GTH2 at 10.3 ± 2.02 ng/ml. After ovulation, both hormones levels decreased but did not return to basal. GTH1 increased from days 6 to + 8, peaking at day + 10 at 19.39 ± 3.31 ng/ml. Similarly GTH2 levels also increased, but later peaking at day +10 to 18.84 ± 4.53 ng/ml. Hormone levels were not returned to basal at day + 16.

P217 3α-AMINOButyRIC ACID (GABA) STIMULATES GONADOTROPIN-II (GTH-II) RELEASE IN AFRICAN CATFISH
C. Johnson (1), R. Schulz (2) and V.L. Trudoe (3)
Dept. of Biology and Biochemistry (1), Brunel University, England UB8 3PH, Dept. of Experimental Zoology (2), University of Utrecht, 3584 CH Utrecht, The Netherlands and Dept. of Zoology (3), University of Aberdeen, Scotland, AB24 3TZ.

GABAergic nerve fibres are found in close proximity to gonadotrophs in the pars distalis of the catfish pituitary, suggesting that GABA may be important for the regulation of GTH-II release. Previous work demonstrated that GABA did not directly stimulate GTH-II release from pituitary fragments in vitro. Here, male African catfish at different stages of postnatal development were injected i.p. with GABA (300 mg/kg) and a sGnRH analog (sGnRH; 5 µg/kg) and blood was collected 1.5 h later for determination of plasma GTH-II. Dopamine inhibits GTH-II release in fish, and to study the involvement of this catfishelome, groups of catfish were also pretreated with the dopamine antagonist sulpiride (1 µmol/kg) 5 h before injection of GABA or sGnRH. In 5 mo old adolescent fish (first spawning) and 10 mo old males (end of puberty), GABA and sGnRH respectively stimulated a 2- and 2.5-fold increase in GTH-II concentrations. In 12 mo old fully adult fish, GABA and sGnRH respectively stimulated a 5-fold and 3-fold increase in GTH-II. At all ages, sulpiride did not alter the GTH-II response to GABA suggesting that dopamine does not modulate GABA action during puberty. In contrast, sulpiride did potentiate sGnRH-stimulated GTH-II release. These data demonstrate that GABA has a