
HAL Id: hal-02770543
https://hal.inrae.fr/hal-02770543

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed constraint satisfaction : a framework for decision
problems under incomplete knowledge

Hélène Fargier, Jérôme Lang, Thomas Schiex

To cite this version:
Hélène Fargier, Jérôme Lang, Thomas Schiex. Mixed constraint satisfaction : a framework for decision
problems under incomplete knowledge. National American Conference on Artificial Intelligence (AAAI
1996), Association for the Advancement of Artificial Intelligence, Aug 1996, Portland, United States.
pp.175-180. �hal-02770543�

https://hal.inrae.fr/hal-02770543
https://hal.archives-ouvertes.fr

&me Fargier, JMhne Lang
IRIT - Universite Paul Sabatier
3 1062 Toulouse Cedex (France)

Abstract

Constraint satisfaction is a powerful tool for representing and
solving decision problems with complete knowledge about
the world. We extend the CSP framework so as to represent
decision problems under incomplete knowledge. The basis
of the extension consists in a distinction between control-
lable and uncontrollable variables - hence the terminology
“mixed CSP” - and a “solution” gives actually a conditional
decision. We study the complexity of deciding the consis-
tency of a mixed CSP. As the problem is generally intractable,
we propose an algorithm for finding an approximate solution.

Introduction
Most of the time, solving a constraint satisfaction problem
(CSP) means finding an assignment of the variables satis-
fying all the constraints, if such an assignment exists. Such
a request often relies on the assumption (generally implicit)
that the variables are controllable, i.e., that the agent has the
power to fix their values. However, one may think to give
variables a status of uncontroZZabZe: the value of an uncon-
trollable variable is fixed by the external world and thus it is
outside the control of the agent. In the rest of the paper we
will refer to controllable variables as decision variables and
to uncontrollable as parameters. If all variables of a CSP
are controllable, the purpose of the resolution of the CSP
is to find a good decision which the agent may apply: we
will refer to this kind of CSP (which is the most common
in the CSP literature) as decision-oriented CSP. If all vari-
ables are uncontrollable, the constraints represent pieces of
knowledge about the possible actual values of the variables.
In this case, what is expected is not necessarily to find a
consistent assignment, but rather to find the actual value
of each variable. This means that the resolution process
has to be interpreted not in terms of decision but in terms
of reasoning (as this is the case in most logical approaches
for knowledge representation). We will refer to this kind
of CSP as reasoning-oriented CSP. Examples of reasoning-
oriented CSPs in the literature are far less numerous. For
instance, CSP used for scene interpretation clearly belong
in this class.

The fundamental difference between these two kinds of
CSPs thus lies in the interpretation of the data (variables
and constraints) and in the output of the resolution pro-

homas Sehiex
INRA

3 1320 Castanet Cedex (France)

cess; interpreting the number of solutions is particularly
worth of interest: if a decision-oriented CSP has several
soZutions, this is rather good news since the agent will be
(in principle) happy with any of them; on the contrary, if a
reasoning-orientedCSP has several solutions, which means
that the knowledge is incomplete, giving only one solution
means arbitrary selecting one possible situation, which is
not necessarily the real one - giving all solutions could be
more adequate. Now, if a decision-oriented CSP has no
solution, the problem is over-specified; inconsistency for
reasoning-oriented CSP has to be interpreted in a different
way, since the variables do have a value in the actual world
and therefore at least one of the constraints is not sound.

Now, beyond pure decision or reasoning-oriented prob-
lems, there are practical problems where a decision has to
be taken, while the actual world is not completely known
(which is the basic assumption in applications of decision
theory). For instance, in scheduling, the decision (sequenc-
ing the tasks) may depend on ill-known parameters such
as the reliability of some machines. Our motivation is to
show that the CSP framework, which has been successfully
developed and applied in the past years, can be extended in
such a way that it can represent and solve problems of deci-
sion making under incomplete knowledge. These problems
will be represented by so-called mixed CSPs involving both
controllable and uncontrollable variables.

The definition of a solution of a mixed CSP depends cru-
cially on the assumptions concerning the agent’s awareness
of the parameter values (the state of the world) at the time
the decision must be made (deadline for acting) - where a
decision is an assignment of decision variables. We will
consider these two epistemological assumptions:

(full observability): the actual world will be completely
revealed to the agent before the deadline is reached (possi-
bly, just before), so that it is useful to compute “off-line” a
ready-to-use conditional decision, mapping possible cases
to decisions, that the agent will be able to instantiate in real
time, as soon as the actual world is known.
NO (no observability): the agent will never learn anything
new about the actual state of the world before the deadline;
all it will ever know is already encoded in the initial specifi-
cation of the problem. In this case, it is useless to provide a
conditional decision, and a suitable solution of the problem

Constraint Satisfaction 175

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

consists in pure, unconditional decision to be taken in any outside the scope of the paper, we assume that K is consis-
possible case. tent.
The intermediate case where some partial knowledge about
the state of the world may be learned (for instance through
information-gathering actions) is not considered in this pa-
per. The two extreme assumptions we consider lead to two
definitions of a solution of a mixed CSP and two different
notions of consistency, that we study in Section 2. In Sec-
tion 3 we propose an anytime algorithm for solving mixed
CSP under assumption (FO). Possible extensions and ap-
plications are mentioned in conclusion.

A mixed CSP defines a collection Candidates(P), of
classical, decision-oriented CSPs, one for each possible
world w - it will be called the set of candidate problems
induced by P. Briefly (we omit technical details for space
considerations), the candidate problem induced by a world
w is a CSP over X whose constraints are the original pure
decision constraints plus those obtained by reducing each
mixed constraint C to a pure decision constraint by letting
its parameters take their value as specified in wl.

Mixed constraint satisfaction
Definitions
A classical constraint satisfaction problem is a triple P =
(X, D, C), where X is a set of variables, each of which takes
its possible values in a domain Di (supposed here finite, we
note D = x iDi), and C is a a set of constraints, each
of which restricting the possible values of some variables.
Sol(P) denotes the set of all assignments satisfying all
constraints of P.

Roughly speaking, a mixed CSP is a CSP equipped with
a partition between (controllable) decision variables and
(uncontrollable) parameters.

Definition 1 (mixed CSP) A mixed CSP is defined by a
6-uple P = (A, L, X, D, ic,C) where:

- A== {A,,... , X,) is a set of parameters;
- L=L1x . + e x L,, where Li is the domain of Xi;
- x = (Xl,... , xn) is a set of decision variables;
- D=D1 x . . . x Dn, where Di is the domain of xi;
- K is a set of constraints involving only parameters;
- C is a set of constraints, each of them involving at least

one decision variable.
A complete assignment of the parameters will be called a
world and will be denoted by w. A complete assignment
of the decision variables will be called a decision and will
be generally denoted by d. The complete assignment of
both parameters and decision variables resulting from the
concatenation of w and d will be denoted by (w, d).

The important distinction between the constraints of K
and those of C is due to their very different interpretations:
the constraints of K involve only parameters and thus rep-
resent the knowledge we have about the real world. Now,
C contains decision constraints, which restrict the allowed
values of decision variables, possibly conditioned by some
parameters - if so they will be called mixed (or equivalently
parameterized) constraints. If A = 0 (resp. X = m), P
is a classical decision-oriented (resp. reasoning-oriented)
CSP.

Definition 2 A solution of the reasoning-oriented CSP
(A, L, K> is a possible world. The set of all possible worlds

for P is denoted by Pass(P).

Now, a decision d is said to cover a world w iff it satisfies
the candidate problem induced by w; this means that if the
real world appears to be w, then d will be a suitable decision.
Among the possible worlds, those which are covered by at
least one decision, i.e., whose induced candidate problem
is consistent, are called good worlds - and the others are
called bad worlds.

Definition 3 A decision d is said to cover a world w iff
(w, d) is a solution of (AUX, L x D, C). The set of all worlds
(possible or not) covered by d is denoted by Covers?(d).

Definition 4 Good(P) = Pass(P) n (&=oCoversp(d))
Bad(P) = Pass(P) \ Good(p)

Equivalently,
Good(p) = &D{W E Poss(P)((w,d) satisfies C}.

Example: let P be the following mixed CSP:
- X = {x1,x2,x3); Dl = Dz = D3 = {1,2,3}
- A = {A,, A,}; Ll = La = {a, b, c, d}
- K: contains only one constraint: Co: XI # X2
- C contains three constraints Cl, C2, C3:

Cl c2 c3

f’o4’) = {(a, b), (a, 4 (~4, @+4 (W, @A Cc, 4
(c, b), (c, d), @,a), (d, b), (d, c)}. tit WI = (d, b) and w =
(d, c); the decisions covering w1 are (3,1,2) and (3,1,3). It can
be checked that no decision covers ~2, and that all other possible
worlds are good: Bad(P) = (~2). Lastly, let dl = (1,3,3), then
Coversp(dl) = {a, b} x {a, c}.

Conditional and unconditional decisions
The case of full observability In the case of full observ-
ability, solving a mixed CSP consists in giving a conditional
strategy (from a planning point of view,-a conditional plan)
associating, to each possible world, a decision that satis-
fies the corresponding candidate problem: once the actual

If 1c: were inconsistent, we would get Pass(P) = 0. But
this means that at least one of the constraints of K: is not
sound. A non-trivial handling of this inconsistency being

‘Note that among the CSPs of Candidates(P), some may
be inconsistent, which means that the actual problem may be
inconsistent.

176 Constraint Satisfaction

values of the parameters are known, we have an appropri-
ate decision. More reasonably, we may consider condi-
tional decisions defined on a subset of Pass(P) (ideally on
Good(P)).

Definition 5 (conditional decisions) A conditional deci-
sion s for P is a map from a subset W, of Pass(P) to
D such that VW E W,, s(w) covers w. Zf W, = Good(p),
s is optimal. If W, = Good(P) = Pass(P) (implying
Bad(P) = 0), s is complete.

Obviously, a complete conditional decision is also opti-
mal, but the converse is generally not true: while a mixed
CSP always has optimal conditional decisions, it does not
always have a complete conditional decision.

Definition 6 (consistency) A mixed CSP is consistent ifit
has a complete conditional decision.

Clearly, P is consistent H Bad(P) = o ti Good(P) =
Pass(P). The consistency of P means that all candidate
problems are consistent. When it is not the case, a weaker
request consists in giving an optimal conditional decision,
which covers all situations which are possible to cover.
Example (continued): the following s is an optimal conditional
decision for P2:

I XI L I X2 -+ II a I b I c I d I -. , -
a
b

:

The case of no observability The previous approach as-
sumes that the actual world will be known before the deci-
sion has to be taken (FO). Clearly, under the other extreme
assumption (NO), it is useless to look for a conditional
decision: consequently, in this case one has to look for a
pure (unconditional) decision. Intuitively, this pure deci-
sion should cover “as many worlds as possible”; if there is
no other decision covering more worlds covered by d (w.r.t.
set inclusion), d is undominated; if furthermore d covers all
good (resp. possible) worlds, it is universal (resp. strong
universal).

Definition 7 A decision d E D is a undominated for P iff
there is no d’ E D such that Coversp(d’) strictly con-
tains Coversp(d); it is an universal decision for P if
Coversp (d) = Good(P) and a strong universal decision
for P if Coversp(d) = Pass(P).

While a mixed CSP always has an undominated decision
(and generally has several incomparable ones), it is not
always the case that it has a universal decision (and a fortiori
a strong universal decision). Note that a pure decision is an
extreme case of a conditional decision, where all considered
worlds are mapped to the same decision. Here is a summary
of the relations between different notions of decisions:

2The table has to be read this way: a world w is defined by
the values assigned to both parameters X1 and X2 and corresponds
thus to a row and a column, at the intersection of which is the
decision s(w) when defined i.e., when w E W(s). Here, W(s)
contains all good worlds, so s is optimal.

strong universal decisions
5 universal decisions
E undominated decisions
C conditional decisions
and

strong universal decisions
s complete conditional decisions
C optimal conditional decisions
5 conditional decisions

Definition 8 (uniform & strong consistency) A
mixed CSP is uniformly consistent ifs it has a universal
decision, and strongly consistent iffit has a strong univer-
sal decision.

Clearly, P is strongly consistent if and only if it is both
consistent and uniformly consistent. The converses are gen-
erally not true. Note that universal (resp. strong universal)
consistency implies that any undominated decision is a uni-
versal decision (resp. a strong universal decision).
Example (continued): P has no universal decision. Consider the
mixed CSP P’ obtained from P by replacing Ca : z1 + 22 5 4
by Ci : 2x1 + 22 5 4. Then, Go&(?‘) = {a, b} x {a, b, d}
and d = (1,2,3) is a universal decision (but not a strong universal
decision).

Complexity Interestingly, the problems of deciding con-
sistency and strong consistency fall in complexity classes
which are above /VP in the polynomial hierarchy. We
recall (Stockmeyer, 1977) that a decision problem is in
NPNP = Cc iff it can be solved in polynomial time on a non-
deterministic Turin

5
machine using N P-oracles; a decision

problem is in co-C, = II: iff its complementary problem
is in Cc. The role of the “canonical” complete problem
(which is played by SAT for NP) is played by 2-QBF for
Cr; 2-QBF is the problem of deciding whether the follow-
ing quantified boolean formula is true: XVb’F(Z, c). The
complementary problem 2-QBF (vz %F(a’, 6)) is complete3
for II<. Strong consistency (resp. consistency) looks sim-
ilar to 2-QBF (resp. to 2-QBF) since it involves the same
alternation of quantifiers.

roposition 1 The problem MIXED-SAT of deciding consis-
tency of a binary mixed CSP is II:-complete.

Sketch of proof: the problem is in l-I: since its complementary
problem can be solved by the following algorithm: guess a world
w, check that it is possible and that the corresponding candidate
problem is inconsistent (co-NP-complete oracle). The complete-
ness can be proven by reducing 2-QBF restricted to 3-CNF to the
MIXED-SAT problem (see (Fargier et al., 1996)).

Note that MIXED-SAT remains IIF-complete even when
we restrict ourself to binary mixed CSP with an empty K.
This results furthermore offers a “canonical” lI,P-complete
problem to the CSP community. The problem of deciding
strong consistency is easily shown to be in Cc, but com-
pleteness is still to be proven in the general case.

3and remains so when F is restricted to 3-CNF (Stockmeyer,
1977).

Constraint Satisfaction 177

In practice, the complexity of MIXED-SAT may be reason-
able if we consider that K should usually drastically reduce
the number of possible worlds. Lastly, when K = 0 (or
equivalently Pass(P) = L), parameters are independent
(since their possible values are not constrained). This as-
sumption has a drastic effect on the complexity of strong
consistency:

Proposition 2 Under the parameter independence assump-
tion, deciding strong consistency in a binary mixed CSP is
NP-complete.

Sketch of proof: membership in NP is straightforward (the de-
cision d is a polynomial length certificate which is checkable in
polynomial time since Pass(P) = L). The completeness comes
from the fact that the consistency of any binary CSP can be re-
duced to the strong consistency of the same CSP, considered as a
mixed CSP with an empty parameter set A.

Searching for a conditional decision
The high complexity of finding a solution of a mixed CSP
leads us to look for an algorithm which gives an optimal
conditional solution if we let it run until it stops naturally,
or otherwise gives an approximate (non optimal) conditional
decision (the longer we let it run, the closer it gets to op-
timality). Intuitively, the algorithm incrementally builds a
list of decisions which eventually covers a superset of all
good worlds. Repeatedly, we pick a new decision d (to
be added to the list) that covers at least one possible world
among those which are not yet covered, we compute the set
R of worlds (possible or not) that this decision covers and
we subtract this set from the set of worlds which haven’t
yet been covered. In order to easily compute worlds cov-
ered by d, we assume that any constraint of C involves at
most one parameter. Therefore, Coversp (d) forms a Carte-
sian product of subsets of the parameter domains and can
be computed in polynomial time in binary mixed CSP. The
successive subtractions of these Cartesian products is per-
formed using a technique recently proposed in (Freuder and
Hubbe, 1995) , called subdomain subproblem extraction.
We recah this technique before we describe our algorithm.

Sub-domain extraction

We define an environment E as a set of worlds of the
form El x . . . x Z,, with V’k, lk E Lk. An example of
environment is (Xi E {a, c), X2 E {b, c, d}), also written
{a, c} x {b, c, d) or [tc>] when there is no ambiguity on the
order of parameters. The set of all possible environments
is obviously a lattice (equipped with the inclusion order),
whose top is the set of all possible parameter assignments
(in the example, [$$]) and whose bottom is the empty set.

Given two environments E and R, sub-domain subprob-
Zem extraction technique (Freuder and Hubbe, 1995) decom-
poses E into a set of disjoint sub-environments Dec(E, R)
such that all worlds of E belong either to R or to one of
the sub-environments of the decomposition. The decom-
position is unique if an ordering on the variables is fixed.
WhenEnR = 0 we let Dec(E, R) = (E); and when

E C R,Dec(E, R) = 0. Thus, this decomposition is ac-
tually a subtraction since we end up with a list of disjoint
environments which cover exactly the worlds of E \ R.
Namely:

Proposition 3 (Freuder and Hubbe 1995) w E E and
w $Z R e there exists a unique F E Dec(E, R) such
thatw E F

The algorithm
Start
LD:= W; {list of decisions with the env. covered}
Env:= {& x .a. x Lp}; {list of env. not yet covered by LD}
Bad:= 0; {list of non coverable env.}
Repeat

E := an environment from Env; {possible heuristics}
If (A, L, K: U E) is consistent (1)

{E contains possible worlds}
then

If (A U X, L x D, K U C U E) is inconsistent (2)
{E contains only non-coverable worlds}
then Bad :=Bad UE
else s := a solution of (A U X, L x D, K: U C U E);

d := projection of s on the decision variables;
{d covers at least one possible world of E}
R := Caversp (d) {unary constraints on par-am.}
Add (R, d) to LD;
Env:= UFEEnVDeC(F, R) (3)

end {else}
end {else}

Until Env = 0 (or interruption by the user)
End {LD covers Good(P)}
Several steps of the algorithm deserve some comments:

(1) The test of consistency of (A, L, K u E) may seem
superfluous - since its role is only to distinguish bad
environments from impossible environments, and in any
case no new decision will be added-but is necessary* if
we care about about the consistency of P (since Lemma 4
will not hold any longer if this test is removed).

(l)+(2) The two sequences of CSP (A, L,K u E) and
(A U X, L x D, K U C U E), repeatedly solved by the
algorithm, define dynamic CSP (Dechter et al., 1988)
and their resolution may be improved by any techniques
developed to solve such problems.

(3) Once a new R is built, it is subtracted from all the
awaiting environments to avoid some redundant compu-
tations. This furthermore guarantees that the computation
will stop when the current list LD defines a solution.

(3) The update of the list of environments Env, may be
performed lazily to avoid memory consumption.

Lastly, the algorithm considers an environment as impossi-
ble only when all of its worlds are impossible; consequently,
there will be environments in LD and Bad containing im-
possible worlds. This is not a problem, since (i) these

4However, this test can be performed during the resolution (2)
of (A U X, L x D, K U C U E) by the backtrack-based algorithm
simply by imposing that the parameters be instantiated first. As
soon as a consistent labeling of the A is found, any vertical ordering
heuristics may apply.

178 Constraint Satisfaction

impossible worlds will never be observed; the important
point is that any possible, coverable world is covered by
a decision, and any possible, bad world is in the Bad list;
and (ii) any environment added to the Bad list contains at
least a possible world, which ensures that at the end of the
algorithm, P is consistent @Bad = 0.

1.

2.

3.

4.

5.

6.

7.

unning the algorithm on the example
Env = {[$":]};LD = M;Bad= 0

E = [;$I; dl = (3,1,2); R = {b, d} x {a, b};
Dec([:;“,:l> [:I) = tr:;1> LZlh
Env = tc”,l~ La; LD = ccr:1, (3,1,2)>h

E = [!;I; d2 = (1,2,3); R = {a, b} x {a, b, d};
%Lbcd,l~ r,sP,l) = tr% m;
~f4LabcCdl Eil> = Kl, LAdlh
Env = tr:17 r,“,1, [:I, L&bccdlh
LD = c<r3 (3,1,2)), ([:$I, (1,2,3))h

E = [“,I; d3 = (1,3,3); R = {a, b} x {a, c);
Dec([El, [~f3=Dec([~l, [::1)=0;
~4,d,l7 rzl) =c& ~4[abCcdl’ [::I> = Uabccdlh
Env= tr,“,1, Lbccdlh
LD=N:I> c41> 2% &gJ (1>2,3)), ([::I7 (19 39 3)))

E = [,“,I; K: U C U E inconsistent (but K U E consistent).

Bad = tr,“,1>
E = [=bCcd]; & = (2,2,3); R = (a, c} x (a, b, d);
~4[,Ll7 Lx& = Klh Env = Klh
LD = {<[:I, (3,1,2)), (l:;d]' (L2,3)), ([::I, (L3, W,
([::g’ (29 27 3)))

E = [:I; K: U E inconsistent. Env = 0. STOP

Finally, the last value of LD is {([if], (3,1,2)), ([Qabbd], (1,2,3)),
([:!I, (L3,3)L ([~~.Jl’ C&T WI, and Bad = {[,“,Ih This al-
lows us to build a conditional decision where each world w is
mapped to the decision S(W) = dj associated to the first item
(E, dj) such that E contains w (shown on the table below). This
search of a decision for a given world could be made more effi-
cient via the use of a discrimination tree for example. The worlds
marked with a “*” are actually impossible but the list LD assigns
them a decision, or labels them bad.

Correctness of the algorithm
It is based on the following properties; the proofs (omitted
for length considerations) appear in (Fargier et al., 1996).

Proposition 4 At any point of the algorithm, if E E Bad
then E n Pass(P) C Bad(Q) and E n Pass(P) # 0.
Proposition 5 Atanypointofthe algorithm, if(E, d) E LD
then VW E E, (w, d) satisfies C.

Proposition 6 (Correctness of the algorithm) Zf run qui-
etly, the algorithm stops, the jnal value of LD dejnes an
optimal conditional decision for Q and the jinal value of
Bad contains Bad(Q),

Sketch of proof: to prove the termination, we prove that
LJE~Q~E decreases strictly at each iteration (using Proposition 3).
The second part of the theorem relies on the following invariant,
verified at any iteration: VW E Poss(P), 3(E, d) E LD such that
w E E or 3!E E Env such that w E E or 3!E E Bad such that
w E E, The invariant is proved by induction on the algorithm (we
omit the proof for length considerations). Applying the invariant
to the end of the last iteration gives VW E Pass(P), either 3(E, d)
in LD such that w E E, or 3E E Bad such that w E E. Together
with Propositions 4 and 5, this achieves proving the theorem.

Since the set of possible worlds covered by LD grows
monotonically as the algorithm runs (and so is Bad) it is
possible to use the algorithm as an “anytime” algorithm.
Actually, LD tends to a cover of Good(Q) and Bad tends to
a subset of Bad(Q) .

Proposition 7 If the algorithm runs until it stops, Q is con-
sistent ifl Bad # 0.

The proof follows easily from Propositions 6 and 4. Qb-
viously, if Bad = 0 and 1 LDI = 1 then Q is strongly
consistent. The converse is not true; more generally, the list
LD may not be minima15.

Partial CSP (Freuder, 1989) also handles simultaneously
a family of CSPs (representing the possible relaxations
of an overconstrained CSP) but the original motivation of
this framework is not to handle decision under incomplete
knowledge, and therefore lacks the distinction between con-
trollable and uncontrollable variables. In (Helzerman and
Harper, 1994) an efficient algorithm is proposed for en-
forcing arc-consistency simultaneously in a family of CSPs
sharing some variables and constraints; such a family is re-
lated to our set of candidates, but again, this approach does
not enable decision under incomplete knowledge. Now, in
the field of knowledge representation (Boutilier, 1994) pro-
posed a logical, qualitative basis for decision theory, dis-
tinguishing like us between controllable and uncontrollable
propositions, but without the notion of conditional decision.
Poole’s independent choice logic (Poole, 1995) also distin-
guishes between the nature’s choice space and the agent’s
choice space, in order to build strategies which are similar to
our conditional decisions; it also includes the representation
of probabilities, utilities and knowledge-gathering actions.

In this paper we proposed an anytime algorithm for com-
puting conditional decisions under the full observability as-
sumption. Further work will consist first in implementing
and testing our algorithm; for this we think of exploiting

5For instance, it may be the case that the last decision added to
the list covers all possible worlds but that many decisions have been
added to the list before. Of course, one could think of checking
afterwards whether some decisions are redundant, but this could
be very costly.

Constraint Satisfaction 179

results from the area of dynamic constraint satisfaction
(Dechter et al., 1988), where several techniques are pro-
posed in order to solve a sequence of CSP that differs only
in some constraints more efficiently than by naively solving
each CSP one after the other. Furthermore, the compu-
tation of a compact representation of conditional decisions
could also probably be performed using Finite Automata (as
(Vempaty, 1992) for sets of solutions) or Binary Decision
Diagrams (Bryant, 1992). It is clear that, at this level of
complexity, algorithmic issues may be crucial.

Since our contribution consists in extending the CSP
framework in order to deal with decision problems under
incomplete knowledge (namely by distinguishing between
controllable and uncontrollable variables), it can be consid-
ered as a first step to embed decision theory into constraint
satisfaction; other important steps in this direction would
consist in considering probabilities, utilities and sequences
of decisions. A first step towards handling probabilistic
knowledge in constraint satisfaction has been proposed in
(Fargier et al., 1995), where the uncertainty on the values
of parameters is encoded by a given probability distribu-
tion instead of a set of constraints. Utility functions would
enable us to represent flexible goals and it should not be
hard to embed them in our framework; in the constraints
of C, an extra field is added to each tuple, namely the util-
ity of the corresponding assignment, as in (Schiex et al.,
1995, Bistarelli et al., 1995). Extending our framework to
sequences of decisions is significantly harder. The partition
of the variables is not sufficient: not only decisions are in-
fluenced by parameters, but the value of some parameters
may also be influenced by earlier decisions; for this we may
structure decision variables and parameters in a directed
network, in the same spirit as influence diagrams (Howard
and Matheson, 1984)6 , a link from Xi to xj meaning that
the allowed values of the decision variable xj depend on
X;, and a link from xi to Xj meaning that the decision of
assigning a value to xj has or may have some effects on Xj .

An interesting potential application of mixed constraint
satisfaction and its possible extensions is planning under
uncertainty. Clearly, this topic needs the notion of control-
lability, and would gain a lot in being encoded in an exten-
sion of the CSP framework - since it could benefit from the
numerous advances on the resolution of CSPs. The similar-
ity between our conditional decisions and conditional plans
is clear, at least for a single action. For handling sequences
of actions, mixed CSPs have to be extended as evoked in
the previous paragraph. Non-deterministic effects of ac-
tions may be encoded by using extra parameters. Lastly,
many recent approaches to planning make use of decision
theory; clearly, extending mixed CSP with a larger part of
decision theory goes in this direction; our long-term goal is
thus to provide a constraint satisfaction based framework to
decision-theoretic planning.

References
Craig Boutilier, Toward a logic for qualitative decision
theory, Proc. of KR’94,75-86.
R. E. Bryant, Symbolic Boolean Manipulation with Or-
dered Binary-Decision Diagrams, ACM Computing Sur-
veys, 24,3, 1992,293-3 18.
Rina Dechter and Avi Dechter, Belief Maintenance in Dy-
namic Constraint Networks, Proc. of AAAI’88, 37-42, St.
Paul, MN.
Helene Fargier, Jerome Lang and Thomas Schiex, Con-
straint satisfaction and decision under uncertainty, Tech.
Report IRIT-96-06, Universite Paul Sabatier (Toulouse,
France), Feb. 1996.
Helene Fargier, Jerome Lang, Roger Martin-Clouaire and
Thomas Schiex, A constraint satisfaction framework for
decision under uncertainty, Proc. of Uncertainty in AI’95,
167-174.
Eugene Freuder, Partial constraint satisfaction, Proceed-
ings of IJCAI’89,278-283.
Eugene Freuder and Paul Hubbe, Extracting constraint sat-
isfaction subproblems, Proc. of ZJCAZ’9.5, Montreal.
Randall A. Helzerman and Mary P. Harper, An approach to
multiply segmented constraint satisfaction problems, Proc.
AAAZ’94,350-355.
R.A. Howard and J.E. Matheson, Influence Diagrams, In-
fluence Diagrams, in R.A. Howard and J.E. Matheson,
eds., The Principles and Applications of Decision Analy-
sis, vol.2 (1984), 720-761.
Alan K. Mackworth, Consistency in networks of relations,
Artificial Intelligence, 8, 1977,99-l 18.
David Poole, Exploiting the rule structure for decision
making within the independent choice logic, Proc. of Un-
certainty in AI’95,454-463.
S. Bistarelli, F. Rossi and U. Montanari, Constraint solv-
ing over Semi-rings, Proceedings of NCAZ’95, Montreal,
Canada, 624-630.
T. Schiex, H. Fargier and G. Verfaillie, Valued Constraint
Satisfaction Problems: hard and easy problems, Proc. of
ZJCAI’95, Montreal, Canada, 63 l-637.
L. J. Stockmeyer, The polynomial-time hierarchy, Theo-
retical Computer Science, 3, 1977, l-22.
N. Rao Vempaty, Solving Constraint Satisfaction Problems
Using Finite State Automata, Proceedings of AAAI’92,
453-458.

‘Note that the multi-stage extension of mixed CSP would differ
from influence diagrams in the representational and computational
basis of our approach, which is, namely, constraint satisfaction;
in particular, certain kinds of cycles are allowed in our approach,
contrarily to the acyclicity requirement for influence diagrams.

180 Constraint Satisfaction

