
HAL Id: hal-02774878
https://hal.inrae.fr/hal-02774878

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constraint satisfaction framework for decision under
uncertainty

Hélène Fargier, Jérôme Lang, Roger Martin Clouaire, Thomas Schiex

To cite this version:
Hélène Fargier, Jérôme Lang, Roger Martin Clouaire, Thomas Schiex. A constraint satisfaction frame-
work for decision under uncertainty. 11th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 1995), Aug 1995, Montreal, Canada. pp.167-174. �hal-02774878�

https://hal.inrae.fr/hal-02774878
https://hal.archives-ouvertes.fr


A constraint satisfaction framework for decision under uncertainty 

Helene Fargier, Jerome Lang 
IRIT - Universite Paul Sabatier 
31062 Toulouse Cedex (France) 

{fargier, lang}@irit.fr 

Abstract 

The Constraint Satisfaction Problem (CSP) framework 
offers a simple and sound basis for representing and 
solving simple decision problems, without uncertainty. 

This paper is devoted to an extension of the CSP frame­
work enabling us to deal with some decisions problems 
under uncertainty. This extension relies on a differen­
tiation between the agent-controllable decision vari­
ables and the uncontrollable parameters whose values 
depend on the occurrence of uncertain events.The un­
certainty on the values of the parameters is assumed to 
be given under the form of a probability distribution. 

Two algorithms are given, for computing respectively 
decisions solving the problem with a maximal proba­
bility, and conditional decisions mapping the largest 
possible amount of possible cases to actual decisions. 

1 Introduction 

Decision making is primarily a matter of choosing between 
alternatives that most commonly are expressed implicitly. 
Thus solving a decision problem amounts to generate the 
option(s) that is(are) most appropriate with respect to the 
specification of the decision problem at hand. Different 
decision problems can be characterized along two discrim­
inating features: 

- decisions are made at a single time point (although they 
may have a temporal structure i.e., form a plan) or are 
elaborated in sequence of steps, each being enriched 
by information resulting from the previous ones; 

- the requirements (constraints, criteria) that implicitly 
define the alternatives are uncertainty-free or not. Re­
quirements are uncertain if they vary depending on 
the circumstances, the occurrence of which is incom­
pletely known (uncertain). 

Sequential decisions and uncertain requirements increase 
the complexity of the decision problem, the most complex 
case being the joint situation. This paper is devoted to the 
case of single-instant decisions and uncertain requirements 
and proposes an approach of the problem in the framework 
of constraint satisfaction. 
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So far the only decision problem tackled within CSP (Con­
straint Satisfaction Problem) approaches concern the sim­
plest case: single-instant decision problem with no uncer­
tainty at all. In order to cast the addressed decision problem 
in a CSP framework it is essential to distinguish between 
two types of unknowns that are called parameters and deci­
sion variables respectively. Parameters are uncontrollable 
unknowns, i.e. , the value taken by a parameter is a matter of 
occurrence of an event that cannot be controlled (not even 
influenced) by the decision maker (also referred to as the 
agent). The value of a parameter is imposed by the exter­
nal world and the agent may have only partial knowledge 
about what this value might be. By contrast, the assignment 
of the decision variables is what the agent wants to decide 
upon. Failing to differentiate between parameters and de­
cision variables may yield nonsensical results in a classical 
CSP approach because a particular value of a parameter can 
restrict the range of allowed (satisfactory) values for the de­
cision variables whereas the converse is physically impossi­
ble. The key issue is therefore to develop a CSP framework 
and resolution algorithms that provide for the uncontrol­
lable/controllable dichotomy in the set of unknowns. 

This paper addresses an extension of the CSP framework, 
namely probabilistic CSP, involving both parameters and 
decision variables, the uncertainty on the values of the pa­
rameters being represented by a probability distribution. A 
formal representation framework is defined and two algo­
rithms relying on an assumption of independence of the 
parameters are described. In this paper we consider succes­
sively two assumptions concerning the agent's awareness of 
the paremeter values (the state of the world) at the time the 
decision must imperatively be made (deadline for acting): 

- (NK) ("no more knowledge"): the agent will never 
learn anything new about the actual state of the world 
before the deadline; all it will ever know is already 
encoded by the probability distribution. For this case 
we propose an algorithm which gives an actual, un­
conditional decision, that is most likely to be suitable. 

- (CK) ("complete knowledge"): the actual world will 
be completely revealed before the deadline is reached 
(possibly, just before), so that it it useful to the agent 
to compute "off-line" a ready-to-use conditional deci­
sion, that the agent will be able to instantiate "on-line", 



as soon as it knows what the actual world is. For this 
purpose we have developed an "anytime" resolution 
algorithm that provides a set of decisions with their 
conditions of applicability, together with the likeli­
hood of occurrence of these conditions. 

The intermediate case where some partial knowledge about 
the state of the world may be learned is not considered in 
this paper. See [5) for further discussion on this point. 

In Section 2 we define probabilistic CSP s and several types 
of solutions (corresponding to decisions); then we propose 
algorithms dealing with the problem of computing optimal 
decisions under the assumptions (NK) (Section 3) and 
(CK) (Section 4). 

2 Probabilistic constraint satisfaction 
problems 

2.1 Preliminary definitions and notations 

A classical constraint satisfaction problem is a triple P = 

(X, D, C), where X is a set of variables, each of which
has its possible values in a domain (supposed here finite) 
D; (with D = x;D;), and Cis a set of constraints. Each
constraint C; E C involves a set of variables noted V ( C;)
and is defined by a subset of the Cartesian product of the 
domains of the variables in V(C;). This subset, noted 
C; as the constraint itself, gives the set of all the possible 
assignments of the variables in V ( C; ): the constraint C; is 
satisfied by an assignment of the variables in V ( C;) iff this 
assignment belongs to the set of admissible tuples of C;. 
A solution of the CSP is an assignment of values to all the 
variables such that all the constraints are satisfied. The set 
of all the solutions of a CSP Pis noted Sol(P). 

In the rest of the paper, assignments of values to a set of 
variables Y are also considered as tuples of values of the 
variables of Y, i.e., elements of the Cartesian product of the 
domains of the variables in Y. The concatenation of two 
assignments al and a2 of variables in vl and v2 such that 
vl n v2 = 0 is noted (al, a2); it is an assignment of vl uv2.
The projection of an assignment a of a set of variables Y 
on a set of variables Z � Y, noted t !Z is simply the tuples
of the values of the variables of Z in t. This notion (and
notation) is extended to a set of tuples: the projection R!z 
on Z of a subset R of the Cartesian product of the domains 
of the variables of Y is the set of the projections on Z of all 
the assignments in R. 

2.2 Probabilistic CSPs: definitions 

Roughly speaking, a probabilistic CSP is a CSP equipped 
with a partition between (controllable) decision variables 
and (uncontrollable) parameters, and a probability distribu­
tion over the possible values of the parameters. 

Definition 1 A probabilistic CSP is a 6-uple P = 

(A, W, X, D, C, pr) where:

- A = { .X1, ... , Ap} is a set of parameters;

- w = wl X . . .  X Wp. where W; is the domain of >..;;
- X = { x1, ... , Xn} is a set of decision variables;
- D = D1 x · · · x Dn, where D; is the domain of x;; 
- C is a set of constraints, each of them involving at
least one decision variable.

- pr : W - [0, 1] is a probability distribution over the
parameter assignments.

Constraints are defined in the same way as in classical 
CSP. We note X(C;) (resp. A(C;)) the set of variables 
(resp. parameters) involved in a constraint C;. 

A complete assignment of the parameters (resp. of the 
decision variables) will be called a world (resp. a decision) 
and will be generally denoted by w (resp. by d). A partial 
world (resp. a partial decision) will be an assignment of a 
subset of the parameters (resp. of the decision variables). 

The subset of C containing the constraints involving no 
parameters will be denoted by C* ; the other constraints in C 
(involving at least a parameter) restrict the allowed values of 
some decision variables, dependently of the values of some 
parameters: they will be called parameterized constraints. 
Obviously, if A = 0, P is a classical CSP.

We assume that the constraints of C involve at least a de­
cision variable since the available information about the 
actual values of parameters is completely encoded by pr­
if a tuple of parameter assignments is impossible then the 
probability of any world extending this tuple is 0. 

We have not y et discussed how the probability distribution 
on worlds is specified. Clearly, it is not reasonable to 
assume that the input contains the explicit specification of 
pr(w) for each w. Hence, generally pr will be given in a 
much more concise way. The simplest case occurs when 
parameters are mutually independent (pr is then specified 
only by an individual probability distributions p1·,x, for each 
parameter .X;). A more complex case consists in structuring 
the parameters in a Bayesian network: the computation of 
pr requires then the propagation of probabilities through the 
network. Thus, pr will generally be given implicitly rather 
than explicitly, and will generally require some computation 
in order to be available. From now on we choose to ignore 
this step: the computation of pr is taken for granted. 

Definition 2 (possible worlds) A world w of W such that 
pr( w) > 0 is a possible world. The set of all possible
worlds is denoted by Poss(P). 

Let a be an assignment of a subset of the variables (where 
variables is here the general terminology for both parame­
ters and decision variables). We define the reduction of a 
constraint C by assignment a as the set of assignments of 
the unassigned variables compatible with a according to C: 

Definition 3 Let C be a constraint of C involving a set 
V (C) = A( C) U X (C) of variables and parameters. The 
reduction ofC by anassignment a of V' � V(C) is the con­
straint Reduce(C, a) on V(C)- V' defined by the tuples
{bE DJY(C)-V' I (b, a)!V(C) E C}.



We note C[a] = {Reduce(C, a), C E C} the reduction ofC 
by a. 

This notion of reduction is especially meaningful when a is 
either a world w or a decision d. The reduction of C by a 
world w is a set of classical decision constraints (involving 
decision variables only); it defines the decisions which are 
suitable if the world is w. Namely, to each world w we as­
sociate the uncertainty-freedecision problem (X, D, C[w]). 
Each of these classical CSPs will be called a candidate 
problem. One of them (and only one) is the actual problem 
(X, D, C[w*]), corresponding to the actual world w* (but 
since there is generally more than one possible world, the 
agent does not know which one is the actual one). 

Definition 4 The set of candidate problems induced by P 
is defined by Candidates(P) = {(X,D,C[w]) lw E W )} .

Note that among the CSPs of Candidates(P), some may 
be inconsistent, which means that the actual problem may 
be inconsistent. 

Dually, the reduction of C by a decision d yields a CSP 
(A, W, C[d]) involving parameters only, whose solutions are 
the worlds for which d is a suitable decision. These worlds 
are said to be covered by d. Note that, obviously, w is a 
solution of (A, W, C[d]) iff d is a solution of (X, D, C[w]) 
iff(w, d) is a solution of (AU X, W x D, C). 

Among the possible worlds, those which are covered by at 
least a decision are called good worlds- and the others are 
called bad worlds. Equivalently, w is good iff (X, D, C[w ]) 
is consistent. 

Definition S 
Good(P) = {w E Poss(P) I 3d ED, (w, d) satisfies C)}
Bad(P) = Poss(P) \ Good(P) 

Now, for each possible decision d we can compute the 
probability that it is a suitable decision, i.e. that it covers 
the actual world. 

Definition 6 (probability that a decision is a solution) 
The probability that a given decision d is a solution of
the actual problem is the probability of the set of worlds it 
covers, i.e. PS(d) = Pr(Sol((A, W,C[d]))). 

Notice that P S is not a probability distribution 1.

Now, we can compute the probability that the actual world 
can be covered: this is the probability of consistency of the 
actual problem. 

Definition 7 (probability of consistency) To a proba­
bilistic CSP P we associate the probability that the actual 
problem is consistent, i.e. 

Pcon•(P) = Pr(Good(P)) 

If Pcons(P) = 1 then P will be said consistent. 

1It is actually a contour function in the sense of Dempster­
Shafer theory. We omit details due to lack of space (see [5]). 

Example: (strongly modified from [14]). Cons ider a dinner to 
be organized, to which each of the three guests (Grandgousier, 

Gargantua and Pantagruel) is not sure to come. The problem 
is to choose a wine and a meal according to four cons traints, 
among which three depends on the presence of each guest. The 
probabilistic CSP P corresponding to this problem is defined by: 

- Decision variables: X = {x1, x2 }; D1 = {White, Red}; 
D2 = {Turkey, Beef, Fish}

- Parameters: A = {.XI, A2, A3}; WI = w2 = w3 = 

{comes, -.comes} (these two values are abbreviated c and 
-.c in the rest of the paper) . 

-Cons traints: C = {C1,C2,C3,C4};

Cuisine rules Grandgousier (bee[) 

Xl X2 
w F 
R B 
w T 
R T 

.X1 X2 
c T 
c F : T -.c 

-.c F 
-.c B 

Gargantua (white wine) Pantagruel (vegetarian) 

.X2 X! 
c R 

-.c R 
-.c w 

.X3 X2 
c F 

-.c T 
-.c F 
-.c B 

The participation of the different guests are mutually independent. 
The probability that Grandgousier comes is 0.6 and respectively 
0. 9 and 0.5 for Gargantua and Pantagruel. 

In this example, all worlds are possible ( Poss(P) = W). If 
we cons ider world w1 = ( c, -.c, c) whose probability is 0.03, 
the reduction of the cons traints are: Reduce( C1, w!) = C1, 

Reduce(C2,w!) = {T, F}, Reduce(C3,w!) = {R, W }  and 
Reduce(C3,wl) = {F}. TheCSP (X, D,C[w1]) that corre­
sponds to w1 has a single solution (W, F) and thus w1 is a good 
world. The decision (W, F) covers 3 more worlds (( -.c, -.c, c), 

( c, -.c, -.c) and ( -.c, -.c, -.c)) which finally give a probability 
PS((W, F)) = 0.1 (since the worlds covered by (W, f) are 
exactly those where Gargantua does not come) . 

In the world w2 = ( c, c, c), whose probability is 0.27, the 
reduction of the cons traints are: Reduce( cl' W2) = cl' 

Reduce(C2,w2) = {T, F}, Reduce(C3,w2) = {R} and 
Reduce(C3, w2 ) = {F} which defines an inconsistentCSP. Thus, 
w2 is a bad world. The only other bad worldisw3 = (-.c, c, c) with 
probability 0.18. Therefore, Bad(P) = {(c,c,c),(-.c,c,c)}, 

Pr(Bad(P) = 0.27 + 0.18 = 0.45 and Pcons(P) = 0.55. 

There is a number of interesting particular cases of proba­
bilistic CSPs obtained by some simplifying assumptions. A 
first assumption, already evoked in Section 2.1, is the mu­
tual independence of parameters: in this case pr is specified 
only by individual probability distributions2• 

Another particular case is illustrated by our previous exam­
ple: we have a problem where the relevance of some con­
straints is uncertain, and every uncertain constraint c; is en­
coded by a parameterized constraint C; linking the decision 

2Hence, the problem can be stated in such a way that
Poss(P) = W, simply by removing impossible values from 
the domain. 



variables of c; to one parameter A;, whose domain has two 
values (in our example, comes and -.comes), corresponding 
respectively to the relevance and the irrelevance of c; to the 
actual problem. This simplifying assumption is denoted 
by ( U). If { c1, ... , cq} denotes the set of these uncertain 
constraints, then it can be shown that C andidates(P) is a 
relaxation lattice in the sense ofFreuder [6], equipped with 
the probability distribution obviously induced by the distri­
bution on worlds: namely, the set of candidates problems 
are obtained by taking the union of C* and of any subset of 
{ c;, i = 1 . . .  q }. Moreover when the c; 's are independently 
relevant, P is strongly consistent (see Definition 13) iff the 
top of the lattice, namely { c;, i = 1 . . .  q} u C* is consistent 
in the classical sense. A more general class of probabilistic 
CSPs occurs when each parameterized constraint involves 
exactly one parameter. Each parameterized constraint cor­
responds thus to an disjunctive family of classical decision 
constraints (one for each possible value of the involved pa­
rameter). We denote by (F) this simplifying assumption. 

2.3 Conditional decisions as solutions 

A conditional decision will ideally associate to each possi­
ble world a decision satisfying the corresponding decision 
problem. Since some possible worlds may induce an in­
consistent CSP, a weaker request consists in giving a partial 
conditional decision, i.e., defined on a subset of W (ideally 
on Good(P)). 

Definition 8 (conditional decisions) A complete condi­
tional decision s is a map from Poss(P) to D. A par­
tial conditional decision s is a map from a subset W ( s) of
Poss(P) to D. A (partial or complete) conditional decision
is soundiffVw E W(s),s(w )coversw.

In the rest of the paper, we refer to "conditional decisions" 
as to partial or complete conditional decisions. Clearly, 
complete conditional decisions generalize decisions as de­
fined in Section 2.2 (the latter are called pure decisions as 
opposed to conditional decisions). Namely, a conditional 
decision which is constant over Poss(P) corresponds to 
a (pure) decision. Conditional decisions will play the role 
of solutions for probabilistic CSPs (ideally, a solution is a 
complete sound conditional decision). As for (pure) deci­
sions, a conditional decision has a probability to cover the 
actual world: 

Definition 9 The probability that a conditional decision s 
will yield a solution to the actual problem is defined by: 

PS(s) = L pr·(w)
wEIV(s) 

s(w) covers w 

The following simple results are easy to prove: 

Proposition 1 
(i) for any conditional decisions, PS(s) :S Pcons(P).
(ii) there exists as such that PS(s) = Pcons(P).
(iii) P is consistent iff there exists a s such that P S( s) = 1.

Definition 10 (optimal conditional decisions) A condi­
tional decision (partial or complete) s is optimal for 
P iff PS(s) is maximum (or equivalently iff PS(s) = 

Pcons(P)). 

Thus, one may compute an optimal conditional decision 
off line and use it later on, in real time, when the actual 
world will be known. This assumes that this actual world 
will be known before the decision has to be taken ((CK)). 
Clearly, under the other extreme assumption ((NK)), it is 
useless to look for a conditional decision: consequently, in 
this case one has to look for a pure decision rather than for a 
conditional one. A reasonable strategy is then to maximize 
the probability that this pure decision will work: 

Definition 11 (optimal pure decisions) A pure decision d 
is optimal iff PS(d) is maximum. We let Pspv(P) = 

P S( d) where dis an optimal pure decision.

Pspv(P) is the maximum probability of success of a Pure 
Decision. Obviously, Pspv(P) :S Pcons(P). The ideal 
case is when there is a pure decision covering all good 
worlds: 

Definition 12 (universal decisions) A pure decision dis a 
universal decision iff PS(d) = Pcons(P). 

Thus, a universal decision will work for any possible world 
whose associated candidate problem is consistent and thus it 
is an optimal decision. Clearly, when there exists a universal 
decision, it is useless to look for a conditional decision. 

Definition 13 (strong universal decisions) A pure deci­
sion dis a strong universal decision ofP iff P S( d) = 1. P 
is strongly consistent iff it has a strong universal decision. 

A strong universal decision is a universal decision covering 
all possible worlds. The case where P is strongly consistent 
is the ideal one. Obviously, strong consistency implies 
consistency . 

Example: using the same probabilistic CSP, we may consider the 
following conditional decisions, which is optimal since P S(s) = 

Pcons("P) = 0.55. 

AI .X2 AJ Decision 
c c c Bad 
c c ..,c (R,T) 
c ..,c ..,c (R, T) 
c -,c c (W,F) 

..,c c c Bad 
..,c c ..,c (R,T) 
..,c -,c -,c (R, T) 
-,c ..,c c (W,F) . . The dectswn ( R, T) LS the only optimal pure 

decision( PS((R, T)) = 0.5) but is not univer­
sal. However, if the probability that Pantagruel 

( .X3) comes were 0, ( R, T) would be a strong
universal decision. 

3 Searching for an optimal pure decision 

In both Sections 3 and 4 we assume mutual independence 
of parameters, for the sake of simplicity; however this as-



sumption could be relaxed provided that the computation 
of the probability of a set of worlds is taken for granted. 

Furthermore, in this Section (only) we make the assumption 
(NK) that the agent will never have any further knowledge 
about the actual world before acting (all it knows is already 
encoded in pr) and consequently, all it can execute is a 
pure decision. Now, the best the agent can require from the 
solver is an optimal pure decision. As it may be computa­
tionally costly to compute an optimal one, especially if the 
agent has a deadline, we propose an "anytime" algorithm 
which computes an approximately optimal pure decision 
if stopped before its natural stop (the longer the algorithm 
runs, the better the pure decision), and eventually gives an 
optimal one if it runs until its natural stop. 

Our approach to the problem of maximizing P S( d) consists 
in using a Depth First Branch and Bound algorithm. For 
the sake of simplicity, consider that variables are instanti­
ated in a prescribed order, say ( x 1 , .. . , x") and that all the 
constraint are binary3. The root of the tree is the empty 
instantiation. Intermediate nodes denote partial decisions 
( d1, ... , d;). Leaves represent instantiations of X,i.e., pure 
decisions d = ( d1, ... , dn)· In a depth first exploration of 
the tree, we keep track of the leaves d maximizing P S( d). 

Each time a new variable decision d; is assigned to variable 
x;, all the constraints C E C connecting this variable x; to 
an unassigned decision variable xi or a parameter >.A, will 
be used as in the classical Forward-checking algorithm [8] 
to remove all the values incompatible with the assignment 
x; = d;from the domains of xi (resp. >.k): each domain Di 
(resp. Wk) is simply replaced by (Dj n Reduce(C, (d;)) 
(resp (Wk n Reduce(C, (d;) ) if C involves a parameter). 
Updating the domain of a variable v using constraint C 
after the assignment of decision d; to x; is performed by 
the procedure FORWARDCHECK(v, C, d;) in Algorithm 1,
line 2. 

After forward-checking, the Cartesian product of the re­
maining values in the domains of all the parameters define 
the worlds which are compatible with the current partial de­
cision: all the worlds that are obviously incompatible have 
been removed. The cumulated probabilities of the remain-
ing worlds give an upper bound Ps( d) on the probability 
of the best complete decision among the descendants of the 
current node since only incompatible worlds have been re­
moved. This bound is easily computed if independence is 
assumed: the bound is simply the product on all domains of 
the sums of the probabilities of the remaining values of each 
domain. When a complete decision dis reached, since all 
the constraint have been propagated, the worlds remaining 
are the worlds covered by the decision: Ps(d) = P S( d). 

When does backtrack occur ? First, if the domain of a 
decision variable or a parameter becomes empty, then we 
know that no world is covered by our current partial deci­
sion and we may therefore backtrack, reconsider the value 
of the last decision variable assigned, restore the domains 

3This implies that we are in case (F) since a constraint involves 
at least one decision variable. The algorithm is easily extended to 
handle larger arities as long as assumption (F) holds. 

modified due to the last assignment to their previous values 
and go on. Further cutoffs can be obtained using our upper 
bound and a very simple lower bound on the best proba­
bility. This lower bound is simply the probability P S( d) 
associated to the best decision found so far and is embod­
ied in the algorithm in a threshold a, initialized to 0 and 
updated each time a decision d such that P S( d) > a is 
reached. Whenever the two bounds meet, we know that 
the best probability of any complete decision that can be 
reached from this node is worse than the best probability 
found up to now and backtrack occurs, as previously. 

The search will stop when no more node can be created. It 
is successful if a leaf has been reached, and the best decision 
among those which have been reached is optimal. 

Function SEARCH(d1, ... , d;, p;) 

1 
2 

if i = n then a := p; {Update upper bound} 
else 

Choose a variable x;+1 
for d;+l E Di+l do

SAVEDOMAINS(A U X) 
forC E C s.t. Xi+l E V(C) 

and V(C) C£ {x1, . . .  , x;+d do

L 
Let {vj} = V(C)- {x;+d
FORWARDCHECK(vj, C, di+l) 

3 Pi+l := flw. LvEW• [pr.x.(v)]
if (Pi+l > a) and ('t:/i, D; =f:. 0) then
L SEARCH(dl' . .. 'di+l' Pi+l)

RESTOREDOMAINS(A U X) 

Algorithm 1: A Forward-checking-based Depth First 
Branch and Bound 

The algorithm is sketched as Algorithm 1. The function 
SEARCH should initially be called with an empty partial 
decision and a probability p0 equal to 1, the initial triv­
ial upper bound on the probability of an optimal decision. 
The functions SAVEDOMAINS and RESTOREDOMAINS save 
and restore the domains of the the variables (actually, only 
modified domains have to be saved). One should note that 
on line 1 of the algorithm vi can be a decision variable or 
a parameter. On line 3, the current upper bound Pi could 
easily be incrementally updated by only taking into account 
the parameters whose domains have been modified: the 
previous probability p; is simply multiplied by the rela­
tive decrease of the probability associated to each modified 
domain. The algorithm is related to existing extensions 
of Forward checking which have been considered in the 
context of valued CSP [15] and partial CSP [6]. 

4 Searching for a conditional decision 

Clearly, searching for an optimal conditional decision is 
computationally costly (since in the worst case, its size 
equals the number of possible worlds); this leads us to look 
for an algorithm which gives a conditional decision which 
tends eventually to an optimal one if we let the algorithm run 
until it stops naturally (the longer we let it run, the higher the 



probability associated to the current conditional decision). 
Intuitively, the algorithm incrementally builds a conditional 
decision which eventually covers a superset of all good 
worlds. Repeatedly, (i) we pick a new pure decision d (to 
be added to the current partial conditional decision) that 
covers at least one possible world among the worlds which 
are not covered yet, (ii) we compute the set R of worlds 
that this decision covers and (iii) we subtract this set from 
the set of worlds which haven't yet been covered (initially, 
this set has the value W, i.e. it contains all worlds). In 
order to easily compute the worlds covered by d and their 
probabilities, we make the following two assumptions: first, 
parameters are mutually independent (again), and second, 
any constraint of C involves at most one parameter (F). Due 
to assumption {F), the worlds covered by a decision d (i.e., 
C[d)) form a Cartesian product of subsets of the parameter 
domains. The successive subtractions of these Cartesian 
products is performed using a technique recently proposed 
by Freuder and Hubbe [7], called subdomain subproblem 
extraction. Before we describe our algorithm, we first recall 
this technique of subdomain extraction. 

4.1 Subdomain extraction 

We define an environment E as a set of worlds of the form 
/1 x · · · x lp. with 'Vk, lk � Wk. An example of envi­
ronment is (A1 E {c},A2 E {c,-,c},A3 E {..,c}), alsoc 
written { c} x {c, -,c} x { -,c} or [ c,�c) when there is no 
ambiguity on the order of parameters. The set of all possi­
ble environments is obviously a lattice (equipped with the 
inclusion order), whose top is the set of all possible pa-

rameter assignments (in the example, [ �: :::� ] ) and whosec, -.c 
bottom is the empty set. The probability of an environment 
E = /1 x · · · x lp, under the independence assumption, is 
Pr(E) = n�=1 LvEik pr(v).

Given two environments E and R, sub-domain subprob­
lem extraction technique [7], decomposes E into a set of 
disjoint sub-environments Dec(E, R) such that all worlds 
of E belong either to R or to one of the sub-environments
of the decomposition. The decomposition is unique if an 
ordering on the variables is fixed. We give here a modi­
fication of Freuder and Robbe's decomposition algorithm, 
where we also compute incrementally the probability of 
each environment generated by the decomposition. This 
function returns the decomposition of E by F and the prob­
ability of the set of worlds of E that are already in F (used 
in Algorithm 3). 

When actually used, the probability p E of the environment
E needed on entry has already been computed since if the 
procedure DEC is called, either E = W and PE = 1, orE
comes from a previous decomposition. 

Note that when E n F = 0 we get DEc( E, F) 
{ (E, pE) }, and when E � F we get DEC(E, F)= 0. 

Example: E = W = [ �::::�) , F = [ c,�c).c,-,c c 

1. i = 1; Rest = [ c,':,c); PRest = 0.6, E' = [ c�c);
C1oC C,•C 

Function DEC( ( E, p E), F) 

List := 0; E' := E; PE• = PE; i := 1
repeat 

Rest:= E' 
Rest!{A;} := E!{A;}- F!{A;} 

·-
p(Rest I{ >j}) 

PReot ·- PE'· p(E' )
II>;} 

{independence} 

if (Rest !{A;} # 0) then
l Add (

.
Rest, PRest) to List 

E!{A,} := E!{A;} n F!{A;}
PE' := PE' -PRest

i := i + 1
until ((i > p) or (E!{A;} = 0)) 
return (List, PE')

Algorithm 2: The decomposition algorithm 

PE' = 0.4; List= { ( [ c,':,c), 0.6) };c,-,c 
-.c 

2. i = 2; Rest = [ c,-.c); PRest = 0;c,-,c 
3. i = 3; Rest = [ c�c); PRest = 0.2, E' =

p(E' ) = 0.2;
List = { ([ �:��), 0.6), ([ c�c), 0.2) }. END

[ c�c]·-.c '

4.2 An algorithm for searching a conditional decision 

The algorithm is sketched as Algorithm 3. Two steps of 
the algorithm deserve some comments: first (line 1), the se­
quences ofCSP (AUX, W x D, CUE), repeatedly solved by 
the algorithm, define dynamic constraint satisfaction prob­
lems [ 4] and their resolution may be improved by any tech­
niques developed to solve such problems. Second (line 2), 
once a new W C is built, it is subtracted from all the await­
ing environments to avoid some redundant computations. 
This furthermore guarantees that the computation will stop 
when the current list Dec is ions defines a solution. 

Example ( continued) : 

1. Env = {(W, 1)}; p900d = 0; Pbad = 0; Decisions= 0 

2. (E,pE) = (W, 1); d1 = (R, B); WC = [ c2c );
Env = { ( [ �·��), 0.6), ( [ c?c), 0.2) };' -.c 
Decisions = ( {[ c:..,-;,c), ( R, B))); Pgood = 0.2.

3. (E,pE)={[�:��),0.6);d2=(R,T);WC= [����);
Env = { ( [ c,;c), 0.3), ( [ c?c), 0.2) };

Decisions = (( [ ����), (R, T)), ( [ c2c), (R, B)));
Pgood = 0.5. 

c [�-.c l 4. (E,pE)=([c.;c),o.3;d3=(W,F);WC= c:-:;c J; 
Env = { {[g), 0.27), {[ gc), 0.18) }; (( [ :�:), (W, F)) is 
added to Decisions; Pgood = 0.55; 

c [ c 5. (E,pE) = ( [g), 0.27); inconsistent; Bad = { g)};



Decisions := 0 
Env := {(W, 1)} 
Bad:= 0 

{decisions & env. covered} 
{uncovered environment} 

{ uncoverable envitonment} 
{lower bound of Peons (P)} 

{lower bound of 1- Pcon$(P)} 

1 

Pgood := 0 
Pbad := 0
repeat 

Pick a pair (E, PE) from Env {possible heuristics} 
if (A U X, W x D, C U E) is inconsistent then 

I
%E contains only non-coverable worlds 
Bad:= Bad UE; Pbad := Pbad + PE 

else 
(d,w) :=a solution of (AUX, W x D,C U E) 
%d covers at least one possible world of E 
WC := C[d] {Worlds covered by D} 
Add (WC, d) to Decisions; 
Env' = 0 
forGE Env do 

2 l (H,p) = DEC(G, WC) 
Env':= Env' U H
Pgood := Pgood + P 

Env :=Env' 

until (Env = 0) (or interruption by the user)

Algorithm 3: Computing an optimal conditional decision 

Pbad = 0.27. Env = { ( [ g
c], 0.18) }. 

6. (E, PE) = ( [ gc], 0.18); inconsistent; 

Bad = { [ g], [ gc] }; Pbad = 0.45; Env = 0. END

( ( [ :�:), (W, F)}, ( ( ����), (R, T)}, ( ( c2c), (R, B))) is the
final value of Decisions; from it we may built a conditional 

decision; moreover Bad is in Bad. Pgood tends to Pcons(P) and 
reaches a eventually.

4.3 Correctness of the algorithm 

Proposition 2 At any point of the algorithm, the following 
properties hold: 

• V(E, PE ) of Envwe have PE = P1·(E);

• VE EBadwe have E � Bad(P);

• V(E and d) E Decisions, Vw E E, d covers w;

• Pgood � Pr( Good(P)) � 1 - Pbad 

Proposition 3 (Correctness of the algorithm) If run qui­
etly, the algorithm stops and : 

• the final value of Decisions defines an optimal con­
ditional decision;

• the final values of Pgood and Pbad verify Pgood + Pbad =
1. Pgood = Pr(Good(C)) and Pbad = P1·(Bad(P)).

Thus, the set of worlds covered by Decisions 
grows monotonically (and so does Bad), and the 

interval [p9ood, 1 - Pbad] shrinks monotonically from 
its initial value [0, 1] to its final singleton value 
[Pr(Good(C)), Pr(Good(C))]. Therefore, it is possible to 
use the algorithm as an "anytime" algorithm: Dec is ions 
tends to a cover of Good(P) and Bad tends to Bad(P). 

So far we have assumed that the applicability of a con­
ditional decision is taken for granted (since, according to 
assumption (CK), the actual world will be revealed before 
the deadline for acting). We could consider more com­
plex situations where further knowledge about the world 
can be learned by means of knowledge-gathering actions; 
another problem consists then in finding a relevant set of 
knowledge-gathering actions, sufficient to make the agent 
able to act properly. This is left for further research (see (5] 
for further considerations on this point). 

5 Related work 

In the field of constraint satisfaction and automated reason­
ing: Partial and valued CSP [6, 15] define general frame­
works that extends the traditional CSP framework in a sim­
ilar direction, but without any distinction between decision 
variables and parameters. Another related area of research 
is dynamic constraint satisfaction [4], where several tech­
niques are proposed in order to solve a sequence of CSP 
that differs only in some constraints more efficiently than by 
naively solving each CSP one after the other. Such improve­
ments could immediately be incorporated in the algorithm 
proposed . The computation of a compact representation of 
(partial) solutions could probably be performed using Fi­
nite Automata or Ordered Binary Decision Diagrams [2]. 
OBDD are used to solve problems issued from propositional 
logic, closely related to CSP. In fact, an OBDD could rep­
resent - using exponential memory and time in the worst 
case - all the partial solutions of a probabilistic CSP by 
shifting to propositional logic. 

In the field of decision analysis: Deciding under uncertainty 
has been studied for long in decision theory and has been 
applied recently to planning. There is a number of computa­
tional approaches to decision analysis, which all distinguish 
in a way or another parameters (subject to probability distri­
butions) and decision variables, the most common of them 
include influence diagrams [9], Markov decision processes 
and also valuation-based systems [16]. On the one hand, 
these computational frameworks tackle much more general 
decision problems since they consider sequences of deci­
sions (and also utility values), while ours tackles only one­
step decisions. On the other hand, our framework describes 
the constraints between dependent variables by means of an 
elaborate representation language equipped with elaborate 
computational tools (namely constraint satisfaction prob­
lems) while influence diagrams and other approaches do 
not focus on this representation issue and represent these 
relationships more explicitly. Both kind of approaches are 
however somewhat complementary, and one could think 
of extending our framework so as to integrate for instance 
influence diagrams (for the nice representation of the de­
pendency structure of the decision problem) and constraint 
satisfaction (for the representation of the constraints be-



tween dependent variables). 
An interesting particular problem related to our framework 
is in Qi and Poole [13] who discuss a navigation problem 
in U-graphs, i.e., graphs where some of the edges are un­
certain (the probability associated to an uncertain edge is 
the probability that the connection between two vertices 
is traversable); the static version of this problem may be 
encoded by a probabilistic CSP where a parameter is asso­
ciated to each uncertain edge4• 
In the field of knowledge representation: Recently, Boutilier 
[ 1] has proposed a logical, qualitative basis for decision the­
ory, distinguishing as we did between controllable and un­
controllable propositions; however, while we look for con­
ditional decisions, Boutilier's very cautious strategy looks
only for a pure decision (the best one maximizing the worst
possible outcome). [12] also discusses controllability issues
in an abduction-based framework for planning.

6 Concluding remarks 

Our contribution was mainly in extending the CSP frame­
work in order to deal with decision problems under uncer­
tainty, by distinguishing between controllable variables and 
uncontrollable parameters and by representing the knowl­
edge of the world by a probability distribution on the pa­
rameters. This framework can be considered as a first step 
to embed decision theory into constraint satisfaction; two 
other important steps in this direction will consists in con­
sidering utilities and sequences of decisions. Utility func­
tions would enable us to represent flexibility and it should 
not be significantly harder to embed them in our frame­
work: in the constraints of C, an extra field is added to 
each tuple, namely the utility of the corresponding variable 
assignment. Forbidden tuples have a utility of -oo. Non­
flexible constraints allow only two utility degrees for the 
tuples, namely 0 and -oo. Extending our framework to 
sequences of decisions is significantly harder. The partition 
of the variables is not sufficient: not only decisions are in­
fluenced by parameters, but the value of some parameters 
may also be influenced by some earlier decisions; for this 
we think of reusing ideas from influence diagrams [9] or 
causal networks (e.g [3]) by structuring decision variables 
and parameters in a directed acyclic network (not to be con­
fused with the undirected constraint graph of the CSP), a 
link from A; to xi meaning that the allowed values of the 
decision variable xi depend on ..\;, and a link from x; to ..\ i 
meaning that the decision of assigning a value to xi has or 
may have some effects on ..\ i. 

An interesting potential application of probabilistic CSP 
(and its possible extensions) is planning under uncertainty. 
A preliminary version of probabilistic CSP has been ap­
plied to an agricultural planning problem [ 11]. Clearly, this 
problematic needs the notion of controllability, and would 
certainly gain a lot in being encoded in an extension of the 

4However the dynamic version of the problem, where the ac­
tual presence of an edge can be learned by the agent only when 
it is at one on its extremities cannot be easily modeled in our 
framework yet. 

CSP framework -since it could benefit from the numer­
ous advances on the resolution of CSPs. The similarity 
between our conditional decisions and conditional plans is 
clear, at least for a single action. For handling sequences 
of actions, probabilistic constraint satisfaction has to be 
extended as evoked in the previous paragraph. Actions 
with probabilistic effects may be encoded by using extra 
parameters and probability distributions. Lastly, a lot of 
recent approaches to planning make use of decision the­
ory; clearly, extending probabilistic CSP with utility values 
and sequences of decisions goes in this direction; our long­
term goal is thus to provide a constraint satisfaction based 
framework to decision-theoretic planning. 
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