
HAL Id: hal-02774878
https://hal.inrae.fr/hal-02774878v1

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constraint satisfaction framework for decision under
uncertainty

Hélène Fargier, Jérôme Lang, Roger Martin Clouaire, Thomas Schiex

To cite this version:
Hélène Fargier, Jérôme Lang, Roger Martin Clouaire, Thomas Schiex. A constraint satisfaction frame-
work for decision under uncertainty. 11th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 1995), Aug 1995, Montreal, Canada. pp.167-174. �hal-02774878�

https://hal.inrae.fr/hal-02774878v1
https://hal.archives-ouvertes.fr

A constraint satisfaction framework for decision under uncertainty

Helene Fargier, Jerome Lang
IRIT - Universite Paul Sabatier
31062 Toulouse Cedex (France)

{fargier, lang}@irit.fr

Abstract

The Constraint Satisfaction Problem (CSP) framework
offers a simple and sound basis for representing and
solving simple decision problems, without uncertainty.

This paper is devoted to an extension of the CSP frame
work enabling us to deal with some decisions problems
under uncertainty. This extension relies on a differen
tiation between the agent-controllable decision vari
ables and the uncontrollable parameters whose values
depend on the occurrence of uncertain events.The un
certainty on the values of the parameters is assumed to
be given under the form of a probability distribution.

Two algorithms are given, for computing respectively
decisions solving the problem with a maximal proba
bility, and conditional decisions mapping the largest
possible amount of possible cases to actual decisions.

1 Introduction

Decision making is primarily a matter of choosing between
alternatives that most commonly are expressed implicitly.
Thus solving a decision problem amounts to generate the
option(s) that is(are) most appropriate with respect to the
specification of the decision problem at hand. Different
decision problems can be characterized along two discrim
inating features:

- decisions are made at a single time point (although they
may have a temporal structure i.e., form a plan) or are
elaborated in sequence of steps, each being enriched
by information resulting from the previous ones;

- the requirements (constraints, criteria) that implicitly
define the alternatives are uncertainty-free or not. Re
quirements are uncertain if they vary depending on
the circumstances, the occurrence of which is incom
pletely known (uncertain).

Sequential decisions and uncertain requirements increase
the complexity of the decision problem, the most complex
case being the joint situation. This paper is devoted to the
case of single-instant decisions and uncertain requirements
and proposes an approach of the problem in the framework
of constraint satisfaction.

Roger Martin-Ciouaire, Thomas Schiex
INRA, BP27

31326 Castanet Cedex (France)
{rmc,tschiex}@toulouse.inra.fr

So far the only decision problem tackled within CSP (Con
straint Satisfaction Problem) approaches concern the sim
plest case: single-instant decision problem with no uncer
tainty at all. In order to cast the addressed decision problem
in a CSP framework it is essential to distinguish between
two types of unknowns that are called parameters and deci
sion variables respectively. Parameters are uncontrollable
unknowns, i.e. , the value taken by a parameter is a matter of
occurrence of an event that cannot be controlled (not even
influenced) by the decision maker (also referred to as the
agent). The value of a parameter is imposed by the exter
nal world and the agent may have only partial knowledge
about what this value might be. By contrast, the assignment
of the decision variables is what the agent wants to decide
upon. Failing to differentiate between parameters and de
cision variables may yield nonsensical results in a classical
CSP approach because a particular value of a parameter can
restrict the range of allowed (satisfactory) values for the de
cision variables whereas the converse is physically impossi
ble. The key issue is therefore to develop a CSP framework
and resolution algorithms that provide for the uncontrol
lable/controllable dichotomy in the set of unknowns.

This paper addresses an extension of the CSP framework,
namely probabilistic CSP, involving both parameters and
decision variables, the uncertainty on the values of the pa
rameters being represented by a probability distribution. A
formal representation framework is defined and two algo
rithms relying on an assumption of independence of the
parameters are described. In this paper we consider succes
sively two assumptions concerning the agent's awareness of
the paremeter values (the state of the world) at the time the
decision must imperatively be made (deadline for acting):

- (NK) ("no more knowledge"): the agent will never
learn anything new about the actual state of the world
before the deadline; all it will ever know is already
encoded by the probability distribution. For this case
we propose an algorithm which gives an actual, un
conditional decision, that is most likely to be suitable.

- (CK) ("complete knowledge"): the actual world will
be completely revealed before the deadline is reached
(possibly, just before), so that it it useful to the agent
to compute "off-line" a ready-to-use conditional deci
sion, that the agent will be able to instantiate "on-line",

as soon as it knows what the actual world is. For this
purpose we have developed an "anytime" resolution
algorithm that provides a set of decisions with their
conditions of applicability, together with the likeli
hood of occurrence of these conditions.

The intermediate case where some partial knowledge about
the state of the world may be learned is not considered in
this paper. See [5) for further discussion on this point.

In Section 2 we define probabilistic CSP s and several types
of solutions (corresponding to decisions); then we propose
algorithms dealing with the problem of computing optimal
decisions under the assumptions (NK) (Section 3) and
(CK) (Section 4).

2 Probabilistic constraint satisfaction
problems

2.1 Preliminary definitions and notations

A classical constraint satisfaction problem is a triple P =

(X, D, C), where X is a set of variables, each of which
has its possible values in a domain (supposed here finite)
D; (with D = x;D;), and Cis a set of constraints. Each
constraint C; E C involves a set of variables noted V (C;)
and is defined by a subset of the Cartesian product of the
domains of the variables in V(C;). This subset, noted
C; as the constraint itself, gives the set of all the possible
assignments of the variables in V (C;): the constraint C; is
satisfied by an assignment of the variables in V (C;) iff this
assignment belongs to the set of admissible tuples of C;.
A solution of the CSP is an assignment of values to all the
variables such that all the constraints are satisfied. The set
of all the solutions of a CSP Pis noted Sol(P).

In the rest of the paper, assignments of values to a set of
variables Y are also considered as tuples of values of the
variables of Y, i.e., elements of the Cartesian product of the
domains of the variables in Y. The concatenation of two
assignments al and a2 of variables in vl and v2 such that
vl n v2 = 0 is noted (al, a2); it is an assignment of vl uv2.
The projection of an assignment a of a set of variables Y
on a set of variables Z � Y, noted t !Z is simply the tuples
of the values of the variables of Z in t. This notion (and
notation) is extended to a set of tuples: the projection R!z
on Z of a subset R of the Cartesian product of the domains
of the variables of Y is the set of the projections on Z of all
the assignments in R.

2.2 Probabilistic CSPs: definitions

Roughly speaking, a probabilistic CSP is a CSP equipped
with a partition between (controllable) decision variables
and (uncontrollable) parameters, and a probability distribu
tion over the possible values of the parameters.

Definition 1 A probabilistic CSP is a 6-uple P =

(A, W, X, D, C, pr) where:

- A = { .X1, ... , Ap} is a set of parameters;

- w = wl X . . . X Wp. where W; is the domain of >..;;
- X = { x1, ... , Xn} is a set of decision variables;
- D = D1 x · · · x Dn, where D; is the domain of x;;
- C is a set of constraints, each of them involving at
least one decision variable.

- pr : W - [0, 1] is a probability distribution over the
parameter assignments.

Constraints are defined in the same way as in classical
CSP. We note X(C;) (resp. A(C;)) the set of variables
(resp. parameters) involved in a constraint C;.

A complete assignment of the parameters (resp. of the
decision variables) will be called a world (resp. a decision)
and will be generally denoted by w (resp. by d). A partial
world (resp. a partial decision) will be an assignment of a
subset of the parameters (resp. of the decision variables).

The subset of C containing the constraints involving no
parameters will be denoted by C* ; the other constraints in C
(involving at least a parameter) restrict the allowed values of
some decision variables, dependently of the values of some
parameters: they will be called parameterized constraints.
Obviously, if A = 0, P is a classical CSP.

We assume that the constraints of C involve at least a de
cision variable since the available information about the
actual values of parameters is completely encoded by pr
if a tuple of parameter assignments is impossible then the
probability of any world extending this tuple is 0.

We have not y et discussed how the probability distribution
on worlds is specified. Clearly, it is not reasonable to
assume that the input contains the explicit specification of
pr(w) for each w. Hence, generally pr will be given in a
much more concise way. The simplest case occurs when
parameters are mutually independent (pr is then specified
only by an individual probability distributions p1·,x, for each
parameter .X;). A more complex case consists in structuring
the parameters in a Bayesian network: the computation of
pr requires then the propagation of probabilities through the
network. Thus, pr will generally be given implicitly rather
than explicitly, and will generally require some computation
in order to be available. From now on we choose to ignore
this step: the computation of pr is taken for granted.

Definition 2 (possible worlds) A world w of W such that
pr(w) > 0 is a possible world. The set of all possible
worlds is denoted by Poss(P).

Let a be an assignment of a subset of the variables (where
variables is here the general terminology for both parame
ters and decision variables). We define the reduction of a
constraint C by assignment a as the set of assignments of
the unassigned variables compatible with a according to C:

Definition 3 Let C be a constraint of C involving a set
V (C) = A(C) U X (C) of variables and parameters. The
reduction ofC by anassignment a of V' � V(C) is the con
straint Reduce(C, a) on V(C)- V' defined by the tuples
{bE DJY(C)-V' I (b, a)!V(C) E C}.

We note C[a] = {Reduce(C, a), C E C} the reduction ofC
by a.

This notion of reduction is especially meaningful when a is
either a world w or a decision d. The reduction of C by a
world w is a set of classical decision constraints (involving
decision variables only); it defines the decisions which are
suitable if the world is w. Namely, to each world w we as
sociate the uncertainty-freedecision problem (X, D, C[w]).
Each of these classical CSPs will be called a candidate
problem. One of them (and only one) is the actual problem
(X, D, C[w*]), corresponding to the actual world w* (but
since there is generally more than one possible world, the
agent does not know which one is the actual one).

Definition 4 The set of candidate problems induced by P
is defined by Candidates(P) = {(X,D,C[w]) lw E W)} .

Note that among the CSPs of Candidates(P), some may
be inconsistent, which means that the actual problem may
be inconsistent.

Dually, the reduction of C by a decision d yields a CSP
(A, W, C[d]) involving parameters only, whose solutions are
the worlds for which d is a suitable decision. These worlds
are said to be covered by d. Note that, obviously, w is a
solution of (A, W, C[d]) iff d is a solution of (X, D, C[w])
iff(w, d) is a solution of (AU X, W x D, C).

Among the possible worlds, those which are covered by at
least a decision are called good worlds- and the others are
called bad worlds. Equivalently, w is good iff (X, D, C[w])
is consistent.

Definition S
Good(P) = {w E Poss(P) I 3d ED, (w, d) satisfies C)}
Bad(P) = Poss(P) \ Good(P)

Now, for each possible decision d we can compute the
probability that it is a suitable decision, i.e. that it covers
the actual world.

Definition 6 (probability that a decision is a solution)
The probability that a given decision d is a solution of
the actual problem is the probability of the set of worlds it
covers, i.e. PS(d) = Pr(Sol((A, W,C[d]))).

Notice that P S is not a probability distribution 1.

Now, we can compute the probability that the actual world
can be covered: this is the probability of consistency of the
actual problem.

Definition 7 (probability of consistency) To a proba
bilistic CSP P we associate the probability that the actual
problem is consistent, i.e.

Pcon•(P) = Pr(Good(P))

If Pcons(P) = 1 then P will be said consistent.

1It is actually a contour function in the sense of Dempster
Shafer theory. We omit details due to lack of space (see [5]).

Example: (strongly modified from [14]). Cons ider a dinner to
be organized, to which each of the three guests (Grandgousier,

Gargantua and Pantagruel) is not sure to come. The problem
is to choose a wine and a meal according to four cons traints,
among which three depends on the presence of each guest. The
probabilistic CSP P corresponding to this problem is defined by:

- Decision variables: X = {x1, x2 }; D1 = {White, Red};
D2 = {Turkey, Beef, Fish}

- Parameters: A = {.XI, A2, A3}; WI = w2 = w3 =

{comes, -.comes} (these two values are abbreviated c and
-.c in the rest of the paper) .

-Cons traints: C = {C1,C2,C3,C4};

Cuisine rules Grandgousier (bee[)

Xl X2
w F
R B
w T
R T

.X1 X2
c T
c F : T -.c

-.c F
-.c B

Gargantua (white wine) Pantagruel (vegetarian)

.X2 X!
c R

-.c R
-.c w

.X3 X2
c F

-.c T
-.c F
-.c B

The participation of the different guests are mutually independent.
The probability that Grandgousier comes is 0.6 and respectively
0. 9 and 0.5 for Gargantua and Pantagruel.

In this example, all worlds are possible (Poss(P) = W). If
we cons ider world w1 = (c, -.c, c) whose probability is 0.03,
the reduction of the cons traints are: Reduce(C1, w!) = C1,

Reduce(C2,w!) = {T, F}, Reduce(C3,w!) = {R, W } and
Reduce(C3,wl) = {F}. TheCSP (X, D,C[w1]) that corre
sponds to w1 has a single solution (W, F) and thus w1 is a good
world. The decision (W, F) covers 3 more worlds ((-.c, -.c, c),

(c, -.c, -.c) and (-.c, -.c, -.c)) which finally give a probability
PS((W, F)) = 0.1 (since the worlds covered by (W, f) are
exactly those where Gargantua does not come) .

In the world w2 = (c, c, c), whose probability is 0.27, the
reduction of the cons traints are: Reduce(cl' W2) = cl'

Reduce(C2,w2) = {T, F}, Reduce(C3,w2) = {R} and
Reduce(C3, w2) = {F} which defines an inconsistentCSP. Thus,
w2 is a bad world. The only other bad worldisw3 = (-.c, c, c) with
probability 0.18. Therefore, Bad(P) = {(c,c,c),(-.c,c,c)},

Pr(Bad(P) = 0.27 + 0.18 = 0.45 and Pcons(P) = 0.55.

There is a number of interesting particular cases of proba
bilistic CSPs obtained by some simplifying assumptions. A
first assumption, already evoked in Section 2.1, is the mu
tual independence of parameters: in this case pr is specified
only by individual probability distributions2•

Another particular case is illustrated by our previous exam
ple: we have a problem where the relevance of some con
straints is uncertain, and every uncertain constraint c; is en
coded by a parameterized constraint C; linking the decision

2Hence, the problem can be stated in such a way that
Poss(P) = W, simply by removing impossible values from
the domain.

variables of c; to one parameter A;, whose domain has two
values (in our example, comes and -.comes), corresponding
respectively to the relevance and the irrelevance of c; to the
actual problem. This simplifying assumption is denoted
by (U). If { c1, ... , cq} denotes the set of these uncertain
constraints, then it can be shown that C andidates(P) is a
relaxation lattice in the sense ofFreuder [6], equipped with
the probability distribution obviously induced by the distri
bution on worlds: namely, the set of candidates problems
are obtained by taking the union of C* and of any subset of
{ c;, i = 1 . . . q }. Moreover when the c; 's are independently
relevant, P is strongly consistent (see Definition 13) iff the
top of the lattice, namely { c;, i = 1 . . . q} u C* is consistent
in the classical sense. A more general class of probabilistic
CSPs occurs when each parameterized constraint involves
exactly one parameter. Each parameterized constraint cor
responds thus to an disjunctive family of classical decision
constraints (one for each possible value of the involved pa
rameter). We denote by (F) this simplifying assumption.

2.3 Conditional decisions as solutions

A conditional decision will ideally associate to each possi
ble world a decision satisfying the corresponding decision
problem. Since some possible worlds may induce an in
consistent CSP, a weaker request consists in giving a partial
conditional decision, i.e., defined on a subset of W (ideally
on Good(P)).

Definition 8 (conditional decisions) A complete condi
tional decision s is a map from Poss(P) to D. A par
tial conditional decision s is a map from a subset W (s) of
Poss(P) to D. A (partial or complete) conditional decision
is soundiffVw E W(s),s(w)coversw.

In the rest of the paper, we refer to "conditional decisions"
as to partial or complete conditional decisions. Clearly,
complete conditional decisions generalize decisions as de
fined in Section 2.2 (the latter are called pure decisions as
opposed to conditional decisions). Namely, a conditional
decision which is constant over Poss(P) corresponds to
a (pure) decision. Conditional decisions will play the role
of solutions for probabilistic CSPs (ideally, a solution is a
complete sound conditional decision). As for (pure) deci
sions, a conditional decision has a probability to cover the
actual world:

Definition 9 The probability that a conditional decision s
will yield a solution to the actual problem is defined by:

PS(s) = L pr·(w)
wEIV(s)

s(w) covers w

The following simple results are easy to prove:

Proposition 1
(i) for any conditional decisions, PS(s) :S Pcons(P).
(ii) there exists as such that PS(s) = Pcons(P).
(iii) P is consistent iff there exists a s such that P S(s) = 1.

Definition 10 (optimal conditional decisions) A condi
tional decision (partial or complete) s is optimal for
P iff PS(s) is maximum (or equivalently iff PS(s) =

Pcons(P)).

Thus, one may compute an optimal conditional decision
off line and use it later on, in real time, when the actual
world will be known. This assumes that this actual world
will be known before the decision has to be taken ((CK)).
Clearly, under the other extreme assumption ((NK)), it is
useless to look for a conditional decision: consequently, in
this case one has to look for a pure decision rather than for a
conditional one. A reasonable strategy is then to maximize
the probability that this pure decision will work:

Definition 11 (optimal pure decisions) A pure decision d
is optimal iff PS(d) is maximum. We let Pspv(P) =

P S(d) where dis an optimal pure decision.

Pspv(P) is the maximum probability of success of a Pure
Decision. Obviously, Pspv(P) :S Pcons(P). The ideal
case is when there is a pure decision covering all good
worlds:

Definition 12 (universal decisions) A pure decision dis a
universal decision iff PS(d) = Pcons(P).

Thus, a universal decision will work for any possible world
whose associated candidate problem is consistent and thus it
is an optimal decision. Clearly, when there exists a universal
decision, it is useless to look for a conditional decision.

Definition 13 (strong universal decisions) A pure deci
sion dis a strong universal decision ofP iff P S(d) = 1. P
is strongly consistent iff it has a strong universal decision.

A strong universal decision is a universal decision covering
all possible worlds. The case where P is strongly consistent
is the ideal one. Obviously, strong consistency implies
consistency .

Example: using the same probabilistic CSP, we may consider the
following conditional decisions, which is optimal since P S(s) =

Pcons("P) = 0.55.

AI .X2 AJ Decision
c c c Bad
c c ..,c (R,T)
c ..,c ..,c (R, T)
c -,c c (W,F)

..,c c c Bad
..,c c ..,c (R,T)
..,c -,c -,c (R, T)
-,c ..,c c (W,F) . . The dectswn (R, T) LS the only optimal pure

decision(PS((R, T)) = 0.5) but is not univer
sal. However, if the probability that Pantagruel

(.X3) comes were 0, (R, T) would be a strong
universal decision.

3 Searching for an optimal pure decision

In both Sections 3 and 4 we assume mutual independence
of parameters, for the sake of simplicity; however this as-

sumption could be relaxed provided that the computation
of the probability of a set of worlds is taken for granted.

Furthermore, in this Section (only) we make the assumption
(NK) that the agent will never have any further knowledge
about the actual world before acting (all it knows is already
encoded in pr) and consequently, all it can execute is a
pure decision. Now, the best the agent can require from the
solver is an optimal pure decision. As it may be computa
tionally costly to compute an optimal one, especially if the
agent has a deadline, we propose an "anytime" algorithm
which computes an approximately optimal pure decision
if stopped before its natural stop (the longer the algorithm
runs, the better the pure decision), and eventually gives an
optimal one if it runs until its natural stop.

Our approach to the problem of maximizing P S(d) consists
in using a Depth First Branch and Bound algorithm. For
the sake of simplicity, consider that variables are instanti
ated in a prescribed order, say (x 1 , .. . , x") and that all the
constraint are binary3. The root of the tree is the empty
instantiation. Intermediate nodes denote partial decisions
(d1, ... , d;). Leaves represent instantiations of X,i.e., pure
decisions d = (d1, ... , dn)· In a depth first exploration of
the tree, we keep track of the leaves d maximizing P S(d).

Each time a new variable decision d; is assigned to variable
x;, all the constraints C E C connecting this variable x; to
an unassigned decision variable xi or a parameter >.A, will
be used as in the classical Forward-checking algorithm [8]
to remove all the values incompatible with the assignment
x; = d;from the domains of xi (resp. >.k): each domain Di
(resp. Wk) is simply replaced by (Dj n Reduce(C, (d;))
(resp (Wk n Reduce(C, (d;)) if C involves a parameter).
Updating the domain of a variable v using constraint C
after the assignment of decision d; to x; is performed by
the procedure FORWARDCHECK(v, C, d;) in Algorithm 1,
line 2.

After forward-checking, the Cartesian product of the re
maining values in the domains of all the parameters define
the worlds which are compatible with the current partial de
cision: all the worlds that are obviously incompatible have
been removed. The cumulated probabilities of the remain-
ing worlds give an upper bound Ps(d) on the probability
of the best complete decision among the descendants of the
current node since only incompatible worlds have been re
moved. This bound is easily computed if independence is
assumed: the bound is simply the product on all domains of
the sums of the probabilities of the remaining values of each
domain. When a complete decision dis reached, since all
the constraint have been propagated, the worlds remaining
are the worlds covered by the decision: Ps(d) = P S(d).

When does backtrack occur ? First, if the domain of a
decision variable or a parameter becomes empty, then we
know that no world is covered by our current partial deci
sion and we may therefore backtrack, reconsider the value
of the last decision variable assigned, restore the domains

3This implies that we are in case (F) since a constraint involves
at least one decision variable. The algorithm is easily extended to
handle larger arities as long as assumption (F) holds.

modified due to the last assignment to their previous values
and go on. Further cutoffs can be obtained using our upper
bound and a very simple lower bound on the best proba
bility. This lower bound is simply the probability P S(d)
associated to the best decision found so far and is embod
ied in the algorithm in a threshold a, initialized to 0 and
updated each time a decision d such that P S(d) > a is
reached. Whenever the two bounds meet, we know that
the best probability of any complete decision that can be
reached from this node is worse than the best probability
found up to now and backtrack occurs, as previously.

The search will stop when no more node can be created. It
is successful if a leaf has been reached, and the best decision
among those which have been reached is optimal.

Function SEARCH(d1, ... , d;, p;)

1
2

if i = n then a := p; {Update upper bound}
else

Choose a variable x;+1
for d;+l E Di+l do

SAVEDOMAINS(A U X)
forC E C s.t. Xi+l E V(C)

and V(C) C£ {x1, . . . , x;+d do

L
Let {vj} = V(C)- {x;+d
FORWARDCHECK(vj, C, di+l)

3 Pi+l := flw. LvEW• [pr.x.(v)]
if (Pi+l > a) and ('t:/i, D; =f:. 0) then
L SEARCH(dl' . .. 'di+l' Pi+l)

RESTOREDOMAINS(A U X)

Algorithm 1: A Forward-checking-based Depth First
Branch and Bound

The algorithm is sketched as Algorithm 1. The function
SEARCH should initially be called with an empty partial
decision and a probability p0 equal to 1, the initial triv
ial upper bound on the probability of an optimal decision.
The functions SAVEDOMAINS and RESTOREDOMAINS save
and restore the domains of the the variables (actually, only
modified domains have to be saved). One should note that
on line 1 of the algorithm vi can be a decision variable or
a parameter. On line 3, the current upper bound Pi could
easily be incrementally updated by only taking into account
the parameters whose domains have been modified: the
previous probability p; is simply multiplied by the rela
tive decrease of the probability associated to each modified
domain. The algorithm is related to existing extensions
of Forward checking which have been considered in the
context of valued CSP [15] and partial CSP [6].

4 Searching for a conditional decision

Clearly, searching for an optimal conditional decision is
computationally costly (since in the worst case, its size
equals the number of possible worlds); this leads us to look
for an algorithm which gives a conditional decision which
tends eventually to an optimal one if we let the algorithm run
until it stops naturally (the longer we let it run, the higher the

probability associated to the current conditional decision).
Intuitively, the algorithm incrementally builds a conditional
decision which eventually covers a superset of all good
worlds. Repeatedly, (i) we pick a new pure decision d (to
be added to the current partial conditional decision) that
covers at least one possible world among the worlds which
are not covered yet, (ii) we compute the set R of worlds
that this decision covers and (iii) we subtract this set from
the set of worlds which haven't yet been covered (initially,
this set has the value W, i.e. it contains all worlds). In
order to easily compute the worlds covered by d and their
probabilities, we make the following two assumptions: first,
parameters are mutually independent (again), and second,
any constraint of C involves at most one parameter (F). Due
to assumption {F), the worlds covered by a decision d (i.e.,
C[d)) form a Cartesian product of subsets of the parameter
domains. The successive subtractions of these Cartesian
products is performed using a technique recently proposed
by Freuder and Hubbe [7], called subdomain subproblem
extraction. Before we describe our algorithm, we first recall
this technique of subdomain extraction.

4.1 Subdomain extraction

We define an environment E as a set of worlds of the form
/1 x · · · x lp. with 'Vk, lk � Wk. An example of envi
ronment is (A1 E {c},A2 E {c,-,c},A3 E {..,c}), alsoc
written { c} x {c, -,c} x { -,c} or [c,�c) when there is no
ambiguity on the order of parameters. The set of all possi
ble environments is obviously a lattice (equipped with the
inclusion order), whose top is the set of all possible pa-

rameter assignments (in the example, [�: :::�]) and whosec, -.c
bottom is the empty set. The probability of an environment
E = /1 x · · · x lp, under the independence assumption, is
Pr(E) = n�=1 LvEik pr(v).

Given two environments E and R, sub-domain subprob
lem extraction technique [7], decomposes E into a set of
disjoint sub-environments Dec(E, R) such that all worlds
of E belong either to R or to one of the sub-environments
of the decomposition. The decomposition is unique if an
ordering on the variables is fixed. We give here a modi
fication of Freuder and Robbe's decomposition algorithm,
where we also compute incrementally the probability of
each environment generated by the decomposition. This
function returns the decomposition of E by F and the prob
ability of the set of worlds of E that are already in F (used
in Algorithm 3).

When actually used, the probability p E of the environment
E needed on entry has already been computed since if the
procedure DEC is called, either E = W and PE = 1, orE
comes from a previous decomposition.

Note that when E n F = 0 we get DEc(E, F)
{ (E, pE) }, and when E � F we get DEC(E, F)= 0.

Example: E = W = [�::::�) , F = [c,�c).c,-,c c

1. i = 1; Rest = [c,':,c); PRest = 0.6, E' = [c�c);
C1oC C,•C

Function DEC((E, p E), F)

List := 0; E' := E; PE• = PE; i := 1
repeat

Rest:= E'
Rest!{A;} := E!{A;}- F!{A;}

·-
p(Rest I{ >j})

PReot ·- PE'· p(E')
II>;}

{independence}

if (Rest !{A;} # 0) then
l Add (

.
Rest, PRest) to List

E!{A,} := E!{A;} n F!{A;}
PE' := PE' -PRest

i := i + 1
until ((i > p) or (E!{A;} = 0))
return (List, PE')

Algorithm 2: The decomposition algorithm

PE' = 0.4; List= { ([c,':,c), 0.6) };c,-,c
-.c

2. i = 2; Rest = [c,-.c); PRest = 0;c,-,c
3. i = 3; Rest = [c�c); PRest = 0.2, E' =

p(E') = 0.2;
List = { ([�:��), 0.6), ([c�c), 0.2) }. END

[c�c]·-.c '

4.2 An algorithm for searching a conditional decision

The algorithm is sketched as Algorithm 3. Two steps of
the algorithm deserve some comments: first (line 1), the se
quences ofCSP (AUX, W x D, CUE), repeatedly solved by
the algorithm, define dynamic constraint satisfaction prob
lems [4] and their resolution may be improved by any tech
niques developed to solve such problems. Second (line 2),
once a new W C is built, it is subtracted from all the await
ing environments to avoid some redundant computations.
This furthermore guarantees that the computation will stop
when the current list Dec is ions defines a solution.

Example (continued) :

1. Env = {(W, 1)}; p900d = 0; Pbad = 0; Decisions= 0

2. (E,pE) = (W, 1); d1 = (R, B); WC = [c2c);
Env = { ([�·��), 0.6), ([c?c), 0.2) };' -.c
Decisions = ({[c:..,-;,c), (R, B))); Pgood = 0.2.

3. (E,pE)={[�:��),0.6);d2=(R,T);WC= [����);
Env = { ([c,;c), 0.3), ([c?c), 0.2) };

Decisions = (([����), (R, T)), ([c2c), (R, B)));
Pgood = 0.5.

c [�-.c l 4. (E,pE)=([c.;c),o.3;d3=(W,F);WC= c:-:;c J;
Env = { {[g), 0.27), {[gc), 0.18) }; (([:�:), (W, F)) is
added to Decisions; Pgood = 0.55;

c [c 5. (E,pE) = ([g), 0.27); inconsistent; Bad = { g)};

Decisions := 0
Env := {(W, 1)}
Bad:= 0

{decisions & env. covered}
{uncovered environment}

{ uncoverable envitonment}
{lower bound of Peons (P)}

{lower bound of 1- Pcon$(P)}

1

Pgood := 0
Pbad := 0
repeat

Pick a pair (E, PE) from Env {possible heuristics}
if (A U X, W x D, C U E) is inconsistent then

I
%E contains only non-coverable worlds
Bad:= Bad UE; Pbad := Pbad + PE

else
(d,w) :=a solution of (AUX, W x D,C U E)
%d covers at least one possible world of E
WC := C[d] {Worlds covered by D}
Add (WC, d) to Decisions;
Env' = 0
forGE Env do

2 l (H,p) = DEC(G, WC)
Env':= Env' U H
Pgood := Pgood + P

Env :=Env'

until (Env = 0) (or interruption by the user)

Algorithm 3: Computing an optimal conditional decision

Pbad = 0.27. Env = { ([g
c], 0.18) }.

6. (E, PE) = ([gc], 0.18); inconsistent;

Bad = { [g], [gc] }; Pbad = 0.45; Env = 0. END

(([:�:), (W, F)}, ((����), (R, T)}, ((c2c), (R, B))) is the
final value of Decisions; from it we may built a conditional

decision; moreover Bad is in Bad. Pgood tends to Pcons(P) and
reaches a eventually.

4.3 Correctness of the algorithm

Proposition 2 At any point of the algorithm, the following
properties hold:

• V(E, PE) of Envwe have PE = P1·(E);

• VE EBadwe have E � Bad(P);

• V(E and d) E Decisions, Vw E E, d covers w;

• Pgood � Pr(Good(P)) � 1 - Pbad

Proposition 3 (Correctness of the algorithm) If run qui
etly, the algorithm stops and :

• the final value of Decisions defines an optimal con
ditional decision;

• the final values of Pgood and Pbad verify Pgood + Pbad =
1. Pgood = Pr(Good(C)) and Pbad = P1·(Bad(P)).

Thus, the set of worlds covered by Decisions
grows monotonically (and so does Bad), and the

interval [p9ood, 1 - Pbad] shrinks monotonically from
its initial value [0, 1] to its final singleton value
[Pr(Good(C)), Pr(Good(C))]. Therefore, it is possible to
use the algorithm as an "anytime" algorithm: Dec is ions
tends to a cover of Good(P) and Bad tends to Bad(P).

So far we have assumed that the applicability of a con
ditional decision is taken for granted (since, according to
assumption (CK), the actual world will be revealed before
the deadline for acting). We could consider more com
plex situations where further knowledge about the world
can be learned by means of knowledge-gathering actions;
another problem consists then in finding a relevant set of
knowledge-gathering actions, sufficient to make the agent
able to act properly. This is left for further research (see (5]
for further considerations on this point).

5 Related work

In the field of constraint satisfaction and automated reason
ing: Partial and valued CSP [6, 15] define general frame
works that extends the traditional CSP framework in a sim
ilar direction, but without any distinction between decision
variables and parameters. Another related area of research
is dynamic constraint satisfaction [4], where several tech
niques are proposed in order to solve a sequence of CSP
that differs only in some constraints more efficiently than by
naively solving each CSP one after the other. Such improve
ments could immediately be incorporated in the algorithm
proposed . The computation of a compact representation of
(partial) solutions could probably be performed using Fi
nite Automata or Ordered Binary Decision Diagrams [2].
OBDD are used to solve problems issued from propositional
logic, closely related to CSP. In fact, an OBDD could rep
resent - using exponential memory and time in the worst
case - all the partial solutions of a probabilistic CSP by
shifting to propositional logic.

In the field of decision analysis: Deciding under uncertainty
has been studied for long in decision theory and has been
applied recently to planning. There is a number of computa
tional approaches to decision analysis, which all distinguish
in a way or another parameters (subject to probability distri
butions) and decision variables, the most common of them
include influence diagrams [9], Markov decision processes
and also valuation-based systems [16]. On the one hand,
these computational frameworks tackle much more general
decision problems since they consider sequences of deci
sions (and also utility values), while ours tackles only one
step decisions. On the other hand, our framework describes
the constraints between dependent variables by means of an
elaborate representation language equipped with elaborate
computational tools (namely constraint satisfaction prob
lems) while influence diagrams and other approaches do
not focus on this representation issue and represent these
relationships more explicitly. Both kind of approaches are
however somewhat complementary, and one could think
of extending our framework so as to integrate for instance
influence diagrams (for the nice representation of the de
pendency structure of the decision problem) and constraint
satisfaction (for the representation of the constraints be-

tween dependent variables).
An interesting particular problem related to our framework
is in Qi and Poole [13] who discuss a navigation problem
in U-graphs, i.e., graphs where some of the edges are un
certain (the probability associated to an uncertain edge is
the probability that the connection between two vertices
is traversable); the static version of this problem may be
encoded by a probabilistic CSP where a parameter is asso
ciated to each uncertain edge4•
In the field of knowledge representation: Recently, Boutilier
[1] has proposed a logical, qualitative basis for decision the
ory, distinguishing as we did between controllable and un
controllable propositions; however, while we look for con
ditional decisions, Boutilier's very cautious strategy looks
only for a pure decision (the best one maximizing the worst
possible outcome). [12] also discusses controllability issues
in an abduction-based framework for planning.

6 Concluding remarks

Our contribution was mainly in extending the CSP frame
work in order to deal with decision problems under uncer
tainty, by distinguishing between controllable variables and
uncontrollable parameters and by representing the knowl
edge of the world by a probability distribution on the pa
rameters. This framework can be considered as a first step
to embed decision theory into constraint satisfaction; two
other important steps in this direction will consists in con
sidering utilities and sequences of decisions. Utility func
tions would enable us to represent flexibility and it should
not be significantly harder to embed them in our frame
work: in the constraints of C, an extra field is added to
each tuple, namely the utility of the corresponding variable
assignment. Forbidden tuples have a utility of -oo. Non
flexible constraints allow only two utility degrees for the
tuples, namely 0 and -oo. Extending our framework to
sequences of decisions is significantly harder. The partition
of the variables is not sufficient: not only decisions are in
fluenced by parameters, but the value of some parameters
may also be influenced by some earlier decisions; for this
we think of reusing ideas from influence diagrams [9] or
causal networks (e.g [3]) by structuring decision variables
and parameters in a directed acyclic network (not to be con
fused with the undirected constraint graph of the CSP), a
link from A; to xi meaning that the allowed values of the
decision variable xi depend on ..\;, and a link from x; to ..\ i
meaning that the decision of assigning a value to xi has or
may have some effects on ..\ i.

An interesting potential application of probabilistic CSP
(and its possible extensions) is planning under uncertainty.
A preliminary version of probabilistic CSP has been ap
plied to an agricultural planning problem [11]. Clearly, this
problematic needs the notion of controllability, and would
certainly gain a lot in being encoded in an extension of the

4However the dynamic version of the problem, where the ac
tual presence of an edge can be learned by the agent only when
it is at one on its extremities cannot be easily modeled in our
framework yet.

CSP framework -since it could benefit from the numer
ous advances on the resolution of CSPs. The similarity
between our conditional decisions and conditional plans is
clear, at least for a single action. For handling sequences
of actions, probabilistic constraint satisfaction has to be
extended as evoked in the previous paragraph. Actions
with probabilistic effects may be encoded by using extra
parameters and probability distributions. Lastly, a lot of
recent approaches to planning make use of decision the
ory; clearly, extending probabilistic CSP with utility values
and sequences of decisions goes in this direction; our long
term goal is thus to provide a constraint satisfaction based
framework to decision-theoretic planning.

References

[1] Craig Boutilier, Toward a logic for qualitative decision the
ory, Proc. of KR'94, 75-86.

[2] Randal E. Bryant, Symbolic Boolean Manipulation with Or
dered Binary-Decision Diagrams,ACM Computing Surveys,
24,3,1992,293-318.

[3] Adnan Darwiche and Judea Pearl, Symbolic Causal Net
works, Proc. AAA/'94, 238-244.

[4] Rina Dechter and Avi Dechter, Belief Maintenance inDy
namic Constraint Networks, Proceedings of AAAI' 88, 37-42

[5) Hellme Fargier, Jerome Lang, Roger Martin-Clouaire and
T homas Schiex, A constraint satisfaction framework for de
cision under uncertainty, Tech. Report IRIT, University of
Toulouse, France, June 1995.

[6] Eugene Freuder, Partial constraint satisfaction, Proceedings
of /JCAI' 89, 278-283.

[7] Eugene Freuder and Paul Hubbe, Extracting constraint sat
isfaction subproblems, Proceedings of /JCA/'95.

[8] R. M. Haralick and G. L. Elliot. Increasing tree search
efficiency for constraint satisfaction problems. Artificial In
telligence, 14, 263-313, 1980.

[9) R.A. Howard and J.E. Matheson, Influence Diagrams, In
fluence Diagrams, in R.A. Howard and J.E. Matheson, eds.,
The Principles and Applications of Decision Analysis, vol.2
(1984), 720-761.

[10] Alan K. Mackworth, Consistency in networks of relations,
Artificial Intelligence, 8, 1977,99-118.

[11) R. Martin-Clouaire and J.P. Rellier, Crop management plan
ning as a fuzzy and uncertain constraint satisfaction problem,
Artificial Intelligence Applications in Natural Resources,
Agriculture and Environmental Science, 9, (1), 1995.

[12) David Poole and Keiji Kanazawa, An abductive framework
for decision-theoretic planning, AAAI Spring Symposium on
Decision Theoretic Planning, Stanford, March 1994.

[13) Runping Qi and David Poole, High level path planning with
uncertainty, Proceedings of Uncertainty in AI' 91, 287-294.

[14) Franyois Rabelais, <Euvres completes, Collection "La plei
ade", 1965, Gallirnard. Original ed.1535 (Pantagruel).

[15] Thomas Schiex, Helene Fargier and Gerard Verfaillie, Val
ued constraint satisfaction problems: hard and easy prob
lems, Proc. of /JCA/'95.

[16] Prakash P. Shenoy, Valuation-based systems for Bayesian
decision analysis, Operations Research 40 (92), 3, 463-484.

