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Abstract

We study the infestation dynamics of banana or plantain plants by Radopholus

similis, a plant-parasitic nematode that causes severe damages. Two control

strategies are implemented in our model: pesticides, which are widely used, and

fallows, which are more environmentally friendly. To represent the host-parasite

dynamics, two semi-discrete models are proposed. During each cropping season,

free nematodes enter the plant roots, on which they feed and reproduce. At

the end of the cropping season, fruits are harvested. In the first model, the

parent plant is cut down to be replaced by one of its suckers and pesticides

are applied. In the second model, the parent plant is uprooted and a fallow

period is introduced, inducing the decay of the free pest populations; at the

beginning of the next cropping season, a pest-free vitroplant is planted. For

both models, the effective reproduction number of pests is computed, assuming

that the infestation dynamics are fast compared to the other processes, which

leads to the model order reduction. Conditions on the pesticide load or the fallow

duration are then derived to ensure the stability of the pest free equilibrium.

Finally, numerical simulations illustrate these theoretical results.

Keywords: Epidemiological modelling, Semi-discrete model, Singular

∗Corresponding author
Email address: israeltankam@gmail.com (Israël Tankam-Chedjou)

Preprint submitted to Journal of LATEX Templates March 14, 2020



perturbation, Stability, Host-parasite interactions, Pest management

1. Introduction

Banana is the most popular fruit in the world and one of the most significant

basic foods, along with rice, corn and wheat. In 2011, 107 million tons of

banana were produced in more than 130 countries and out of 0.1 percent of the

world agricultural surface [1] for a total commercial value of 9 billion dollars5

(FAO, 2013). In Cameroon, banana-plantain occupies the eighth rank in food

productions (FAO, 2010), with an annual production of 1.4 million tons. This

crop involves many stakeholders (more than 600 000 producers and around 40

000 tradesmen) and contributes to 2% of the gross domestic product [2].

Both banana and banana-plantain cultures are hampered by plant-parasitic10

nematodes, insect pests and soil-borne fungi, that seriously threaten the sustain-

ability of these systems by decreasing yield, causing plant toppling or requiring

intensive pesticide use. The burrowing nematode Radopholus similis is the most

significant parasitic nematode of the banana and plantain plants in the world

[3]. It is a phytophagous nematode that attacks the roots of host plants and15

causes damages, ranging from simple root lesions that reduce the production to

the toppling of the plant. Hence, R. similis is one of the most regulated pests

of banana plants [4]. To control this pest, nematicides can be applied. Their

efficacy is sometimes limited. Moreover, the ecological impact of nematicides

and their general toxicity have led to their prohibition in some countries [5].20

Nevertheless, they are still frequently used, as they are very cost-effective and

easy to implement [6, 7]. More sustainable and environmentally friendly ba-

nana cropping systems can be designed. Studying the hostless survival of R.

similis, Chabrier noticed that nematode populations undergo a fast decay when

hosts are lacking [8]. Previously, Loos had observed in Panama that after 525

months of submergence R. similis had disappeared from the soil [9]. This decay

is essentially related to the absence of food resources and is also influenced by

the soil temperature, moisture and oxygenation [10]. With this knowledge, an
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alternative cropping system has been developed in Martinique, based on the

disinfestation of the land followed by the replanting of nematode-free banana30

vitroplants. Disinfestation is achieved either through a fallow period or a crop

rotation with non-host plants, after obligatory destruction of the banana plants

[11].

Mathematics is becoming a major tool for studying the evolution of plant

epidemics and diseases (see [12] and references therein). For instance, several35

mathematical and computational models have been proposed for soilborne pests

in the literature. Some crop rotation models have been proposed to control the

dynamics of the root-knot nematode Meloidogyne incognita [13], the root-knot

nematode Meloidogyne arenaria [14] and the root lesion nematode Pratylenchus

penetrans [15]. Some reaction-diffusion models have also been proposed to link40

the temporal and spatial dynamics of soilborne pathogens [16]. However, to our

knowledge, only one model has been proposed for R. similis [17]. The latter

is a cohort-based model, is fairly complex and requires extensive data to be

calibrated.

In the present work, we build on our previous modelling analysis [18]. We45

propose a multi-seasonal framework in which the dynamics of R. similis can be

analysed and controlled either by chemical pesticides or by fallow, and we ob-

serve how effective both methods can be. The models we propose are based on a

semi-discrete formalism. Such a formalism models continuous phenomena that

are discretely perturbed. Some authors have already used this kind of model in50

the life sciences [19], and more precisely for plant-parasite interactions [20] or

plant epidemics [21]. In this paper, we adopt the same framework as previous

works [21, 22, 23] that we contextualize for the soilborne pest R. similis. This

contextualization concerns some characteristics that are specific to both R. sim-

ilis and its hosts studied here, namely banana and plantain. For example, the55

growth of banana and plantain roots stops at the flowering of the plant [24],

which leads to a new hybridism in our models within continuous dynamics. Sec-

ondly, the cropping is made in non-arid tropical region, which implies that crops

do not suffer harmful climatic disruptions like winter or hard summers and they
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can be grown any time during the year. This changes the perspective under60

which we calculate the effective reproduction number R which corresponds to

the basic reproduction number under control measures such as fallow deploy-

ment. Also, the control strategies that are discussed in this paper are adapted

to R. similis and its interaction with banana or plantain plants.

In the following, banana plants designate banana or plantain plants indif-65

ferently. The models on which this study is based are given in Section 2. We

highlight results for both models in Section 3 : in Subsection 3.1 we investigate

the action of nematicides, when banana suckers arise from lateral buds on the

rhizome. We discuss the efficiency of this strategy. In Subsection 3.2, we anal-

yse a more environmental-friendly model in which a fallow replaces nematicides70

at the end of each season. In Section 4, we discuss the relevance of our work

compared to previous works.

2. Materials and Methods

2.1. Biological background and pathosystem

Banana cultivars are usually seedless and reproduce asexually by producing75

suckers, which are outgrows of vegetative buds. During their initial develop-

ment, the suckers share their parent rhizome [25]. Hence, if the parent plant is

infested, so are the suckers [25, 26]. In commercial plantations, one sucker is

usually selected to grow out and regenerate the plant [27]. The banana plant

produces roots continuously until the flowering [24]; then the plant growth con-80

centrates on the shoots and fruits. At the end of the cropping season, the banana

bunch is harvested and the plant is either cut down, or it dies naturally [27].

The roots that are not involved in the growth of the sucker quickly lose their

freshness by senescence [28].

Like most nematodes in the Pratylenchidae family, R. similis is an obligate85

parasite which can only feed on fresh roots and induces root necrosis [29]. It

is mainly found in roots and rhizomes, and rarely in the soil; the population

density ratio in soil and roots is generally less than 1/100 [30]. When it infects
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functional roots, R. similis burrows the tissues while feeding. R. similis usually

breeds by sexual reproduction. However, in the absence of males, unfertilized90

females can reproduce by parthenogenesis [31]. The females lay four to five

eggs per day during two weeks in root necrotic areas [32]. Juveniles then either

remain in the root and burrow to feed on fresh tissues, or they leave and migrate

in the soil to find another root [29].

2.2. Core model95

This work considers several cropping seasons and assumes a homogeneous

repartition of nematodes in the roots. We therefore build a multi-seasonal com-

partmental model which represents the root growth, the pest dynamics and

their interaction with the roots. Two cases are considered for banana plant

reproduction. In the first case, a sucker of the parent plant is selected to form100

the new plant. Dying roots of the parent plant are assigned the term old root

pool in our model. In the second case, a new nematode-free vitroplant is planted

after the uprooting of the parent plant. Some root tips are then left in the soil,

the uprooting being hardly perfect. These tips are also included in the old root

pool.105

We consider a single plant and make the following additional modelling as-

sumptions:

1. The nematode population is divided into three compartments: free ne-

matodes in the soil (P ), infesting nematodes in the roots (X), infesting

nematodes inside the old root pool (Y ). Since the absence of males is not110

limiting because the females can reproduce by parthenogenesis, we do not

pay attention to the sex of the pests.

2. There is one compartment for the biomass of functional roots (S).

3. During a cropping season, banana roots grow logistically [33] until the

flowering at which moment root development stops. The duration of the

growth period, i.e. the time elapsed between the start of the cropping

season and the flowering of the plant, is termed d; the total duration of a
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cropping season is termed D. We denote the starting point of the (n+ 1)-

th season by tn, and we set t0 = 0 as the starting point of the first season.

The logistic growth of the roots during a cropping season is therefore given

by:
dS

dt
= ρ(t)S

(
1− S

K

)
,

where

ρ(t) =

ρ for t ∈ (tn, tn + d],

0 for t ∈ (tn + d, tn +D].

4. Free pests (P ) infest the plant roots (rate β). They undergo natural

mortality (rate ω).115

5. Infesting pests (X) feed on the plant roots with a Holling type II-like

functional response aSX
S+∆ that is well-suited for invertebrates [34]. They

undergo natural mortality (rate µ). This mortality rate differs from the

mortality rate in the soil because the environments are different. The root,

which serves both as host and food for the nematode, is more favourable120

to pest survival than the soil (µ < ω).

6. When infesting nematodes feed, the ingested root biomass is used for

growth and for reproduction. Reproduction occurs inside (proportion γ)

or outside (proportion 1 − γ) the roots [29]. α is the conversion rate of

ingested biomass into pests.125

7. The old root pool quickly loses its freshness and degrades in the soil. The

infesting pests in those roots are then free in the soil (rate δ). They also

undergo natural mortality (rate µ).

Under the assumptions above, free nematodes (P ), infesting nematodes (X),

and infesting nematodes in the old root pool (Y ) interact with the functional130

roots (S) during the cropping season, i.e. for t ∈ (tn, tn +D], according to the
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following system:



dP (t)

dt
= δY (t)− βP (t)S(t) + αa(1− γ)

S(t)X(t)

S(t) + ∆
− ωP (t),

dS(t)

dt
= ρ(t)S(t)

(
1− S(t)

K

)
− aS(t)X(t)

S(t) + ∆
,

dX(t)

dt
= βP (t)S(t) + αaγ

S(t)X(t)

S(t) + ∆
− µX(t),

dY (t)

dt
= −(δ + µ)Y (t).

(1)

with the initial conditions at the beginning of the first season P (0+) = P0,

S(0+) = S0, X(0+) = X0, Y (0+) = Y0; where 0+ stands for the instant that135

directly follows the initial time 0.

If the senescence rate δ is very large, then the Y population is transferred

into P very quickly with the old root pool disappearing. Hence, we assume that

the transfer from Y to P is instantaneous and rewrite system (1) as follows:



dP (t)

dt
= −βP (t)S(t) + αa(1− γ)

S(t)X(t)

S(t) + ∆
− ωP (t),

dS(t)

dt
= ρ(t)S(t)

(
1− S(t)

K

)
− aS(t)X(t)

S(t) + ∆
,

dX(t)

dt
= βP (t)S(t) + αaγ

S(t)X(t)

S(t) + ∆
− µX(t).

(2)

140

with the initial conditions P (0+) = P0 + Y0, S(0+) = S0, X(0+) = X0. To

simplify the notation, we will assume in what follows that Y0 = 0, which has no

impact on the analysis as we could just change the value of the parameter P0.

By taking a larger value of parameter P0, we compensate for what is lost when

taking Y0 = 0.145

In this paper, the dynamics of (2) during the (tn, tn + d] intervals will be

called “the first subsystem of (2)”, while “the second subsystem of (2)” will

concern interval (tn + d, tn +D] with ρ = 0.

Figure 1 displays a diagram representing the parasitism process within the

cropping season.150
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Root growth Fruit growth

Figure 1: Schematic representation of the core model (2). P , S, and X denote the population

of free nematodes, respectively. Function f is a Holling type II functional response, and

constant α is the conversion rate of the ingested fresh roots that are used to reproduce inside

the root with a proportion γ and outside with a proportion (1 − γ). The constants µ and

γ are natural mortalities, and constant β is a rate of infection that depends on the biomass

of available fresh roots. The arrow from S to S illustrates the root growth during the root

growing period.

Switching from a cropping season to the following can be done in two different

ways:

i) In the first case, the banana plant has a vegetative growth and a new

sucker arises from the existing roots. Chemical nematicides are used at

the beginning of each cropping season to control the pest.155

ii) In the second case, a pest-free vitroplant is planted. A fallow is introduced

between two cropping seasons to control the pest.

The following subsections describe both cases.

2.3. Chemical control model

In this case, since there is no fallow, each season is immediately followed by160

the next season, so tn = nD.

R. similis can be controlled by nematicides. These have two means of action

on nematodes: contact effect and systemic effect. Contact nematicides directly
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kill nematodes after contact, whereas systemic nematicides are absorbed by the

plant roots and distributed throughout the organs where they act against pests165

[35]. Some nematicides present both effects. We assume that the nematicide

is used at the begining of each season and presents both systemic and contact

effects.

The switching between seasons is supported by the following assumptions:

• At the end of a season, a proportion q of the total biomass of the plant170

roots corresponds to the sucker that will grow during the next season.

Assuming an homogeneous distribution of nematodes in the roots, the

sucker bears the same proportion q of infesting nematodes. The sucker

becoming the new parent plant, remaining roots of the previous parent

plant are transferred to the old root pool. The old root pool therefore175

bears the proportion (1− q) of infesting pests.

This leads to the following switching rule at the beginning of the next

season: 

P (t+n ) = P (tn),

S(t+n ) = qS(tn),

X(t+n ) = qX(tn),

Y (t+n ) = (1− q)X(tn), n ∈ N∗.

(3)

As we have assumed that the infesting pests in the old root pool (Y )

instantaneously turn into free pests, we can write the previous switching

rule (3) as follows: 
P (t+n ) = P (tn) + (1− q)X(tn),

S(t+n ) = qS(tn),

X(t+n ) = qX(tn).

(4)

To add the action of the nematicide, we make the following assumptions:

• We assume that the natural clearance of the nematicide is very fast, so

that the action of the nematicide is instantaneous on the pest population
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[36, 37]. Hence, at time t+n , the nematicide contact action on free pests is180

given by:

P (t+n ) = λ
(
P (tn) + (1− q)X(tn)

)
, (5)

with 0 ≤ λ ≤ 1 the nematode survival rate on the application of the

nematicide.

• We assume that the systemic and contact effects are equivalent, i.e. that

their efficiency is the same for both free pests and infecting pests, so we

obtain:

X(t+n ) = λqX(tn), with 0 ≤ λ ≤ 1. (6)

According to all the previous assumptions, the switching rule between sea-

sons is given by: 
P (t+n ) = λ

(
P (tn) + (1− q)X(tn)

)
,

S(t+n ) = qS(tn),

X(t+n ) = λqX(tn).

(7)

185

Systems (2) and (7) with tn = nD form our multi-seasonal model with the

use of nematicide. A schematic is shown in Figure 2.

2.4. Fallow deployment model

In this case, banana crops are alternated with fallows or alternative non-host

crops. Because of its mandatory parasitism, R. similis populations in the soil190

decline rapidly in the absence of hosts. In the following, we will term the period

during which banana plants are not grown fallow, whether or not this is in fact

due to fallowing or alternative non-hosts being deployed

We assume that all the fallow periods have the same duration designated

by τ . A new season begins when both the cropping season and the fallow are195
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Cropping season Cropping seasonSwitching

Figure 2: Schematic representation of the course of the plant-pest dynamics over two cropping

seasons for the model (2)-(7). On the time axis, plain lines represent the continuous course of

time whereas the dotted line represents a discrete time, when switching occurs. Interactions

during continuous periods are based on the core model in Figure 1. At the switching, the

fresh root biomass (S) is initialized as a fraction q of the biomass inherited from the preceding

season, the free nematode population (P ) is initialized as the population of free nematodes

inherited from the preceding season plus a portion (1 − q) of the infesting nematodes inher-

ited from the preceding season, all with a survival rate λ to the instantaneous action of the

nematicide. The infecting nematode population (X) is initialized as the fraction q of the

population of infecting nematodes inherited from the preceding season, with a survival rate λ

to the instantaneous action of the nematicide.
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completed. The season duration is hence D + τ and the starting point of the

(n+1)-th season tn = n(D + τ).

• At the beginning of each cropping season, a pest-free vitroplant is planted

[11]. The initial condition X(0+) of system (2) becomes X0 = 0. More-

over, S(t+n ) = S0 and X(t+n ) = 0.200

• At the end of a cropping season, i.e. at t = tn +D, the plant is uprooted.

Since uprooting is imperfect, so we assume that a fraction r of the roots

remains in the soil and constitutes the old root pool, in which the nema-

todes Y are uniformly distributed. This leads to the following switching

rule for n ∈ N∗: 

P (tn−1 +D+) = P (tn−1 +D),

S(tn−1 +D+) = 0,

X(tn−1 +D+) = 0,

Y (tn−1 +D+) = rX(tn−1 +D).

(8)

As we have assumed that the infesting pests (Y ) in the old root pool in-

stantaneously turn into free pests (P ), we can rewrite the previous switch-

ing rule (8) as follows:
P (tn−1 +D+) = P (tn−1 +D) + rX(tn−1 +D),

S(tn−1 +D+) = 0,

X(tn−1 +D+) = 0.

(9)

• In the absence of hosts, during the fallow, free pests undergo an exponen-

tial decay [8]:

dP (t)

dt
= −ωP (t) for t ∈ (tn−1 +D, tn]. (10)

Solving equation (10) with the initial condition given by (9) leads to the
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following transition rule:
P (t+n ) =

(
P (tn−1 +D) + rX(tn−1 +D)

)
e−ωτ ,

S(t+n ) = S0,

X(t+n ) = 0,

(11)

where S0 is the size of newly planted pest-free vitro-plant.

The system formed by equations (2) and (11) form the multi-seasonal model

with fallow. This is schematically displayed in Figure 3.

FallowCropping season

r

Cropping seasonUprooting Planting

Figure 3: Schematic representation of the course of the plant-pest dynamics from one cropping

season to the next. On the time axis, plain lines represent the continuous course of time

whereas dotted lines represents discrete instants, where discrete phenomena occur (uprooting,

planting). Interactions during cropping seasons are based on the core model in Figure 1.

When switching from a cropping season to a fallow period, infecting nematodes convert into

free nematodes with a conversion faction r. Crossed-out boxes represent the uprooting, i.e. the

fresh root removal. When switching from a fallow period to a cropping season, i.e. planting

a new sucker, the fresh root biomass is initialized at S0 and infesting pest at 0 whereas free

pest population stays the same.

2.5. Well-posedness of the problem

Considering system (2) with either the switching rule (7) or (11), the problem205

is well-posed.

Indeed, each subsystem of system (2) is a well-posed Cauchy problem. The

first subsystem has P = P0, S = S0, X = X0 as the initial conditions when

13



n = 0 and the initial conditions are given by (7) or (11) when n ≥ 1. The second

subsystem of system (2) has the value of the solution of its first subsystem as210

the initial condition. Therefore, since S is bounded and the (P,X) dynamics are

linearly bounded, system (2) admits a unique continuous solution on (tn, tn+D].

The non-negativity of the trajectories is straightforward and given in Ap-

pendix A.

3. Results215

The analysis of the two models in the previous section turns out to be very

different from the analysis of similar models in the literature [22, 23]. This is

because these models are more complex, their non-linearities are stronger and

more numerous than those of the models in the literature, and the form of the

growth function of the roots brings an additional hybridism to the models. We220

will reduce the models, at least on the intervals on which the Tychonov theorem

holds, in order to obtain local stability results and some thresholds related to

this stability.

3.1. Chemical control

In this subsection we consider the system formed by equations (2) and (7)225

with tn = nD.

Solving the root equation in the absence of pests leads to the following

solution:

S(t) =


S(t+n )K

S(t+n ) + (K − S(t+n ))e−ρ(t−tn)
if t ∈ (tn, tn + d],

S(t+n )K

S(t+n ) + (K − S(t+n ))e−ρd
if t ∈ (tn + d, tn+1]

(12)

such that:

S(t+n+1) = q
S(t+n )K

S(t+n ) +
(
K − S(t+n )

)
e−ρd

. (13)

If S(t+n+1) < S(t+n ) then the root biomass will decrease over time even if

there is no pest. In order to avoid such unrealistic scenario, for small S(t+n ), we

14



want S(t+n+1) > S(t+n ), that is:

q > e−ρd +
S(t+n )

K

(
1− e−ρd

)
,

which is satisfied for small enough S(t+n ) when:

q > e−ρd. (14)

Under condition (14), the discrete system (13) will be stabilized around the

equilibrium S∗0 whose expression is given by:

S∗0 =
K(q − e−ρd)

1− e−ρd

and upon which a periodic Pest Free Solution (PFS) of system (2,7) is built.

Generally, in the presence of host plants, the size of the R. similis population230

is very small [38, 39, 40, 41]. In this modelling, this can be interpreted as a high

infestation rate, leading to the fast convergence of the free pest level to zero.

The following proposition allows us to reduce the order of the first subsystem

of (2) by assuming that the infestation rate β is large and by using singular

perturbation theory for the slow-fast dynamics [42].235

Proposition 3.1. Assuming that the primary infestation β is large and con-

sidering the state variable N = P +X, the first subsystem of (2) can be approx-

imated by the following Rosenzweig-MacArthur model [43] on the (tn, tn + d]

intervals: 
dS

dt
= ρS

(
1− S

K

)
− a SN

S + ∆
,

dN

dt
= αa

SN

S + ∆
− µN,

(15)

with initial conditions S(0+) = S0, N(0+) = P0 +X0, S(t+n ) = S0 and N(t+n ) =

P (t+n ) +X(t+n ).

The proof is given in Appendix B.

Remark 3.1. According to this proposition, the number of free pests is null in

the reduced first subsystem. This is a good approximation when β has a high240

value. Thus, we are going to consider that the second second subsystem of (2)

15



starts with a free pest population P = P (tn + d) = 0 and an infesting pest

population X = N(tn + d).

Figure 4 illustrates the dynamics of the reduced system (15) over the root

growing period, and how it initializes the full model on the fruit growing period.245

Root growth Fruit growth

Figure 4: Schematic representation of the reduced model, with first subsystem of model

(2) reduced into model (15). During the root growing period, the system is reduced to a

Rosenzweig-MacArthur model where the population of free nematodes is null, and the state

variable N represents the sum of nematodes populations that stands for the population of

infesting nematodes.At the flowering tn + d, the nematode population from the end of the

root growing period becomes the pest population at the start of fruit growing period, whereas

the population of free nematodes is initialized as zero. The circled arrow represents the growth

of fresh roots (S) that is effective before the flowering and null after, during the fruit growing

period.

We can obtain the analytical solution of the reduced system (15) linearised

around the pest free solution thanks to the following proposition.

Proposition 3.2. For q > e−ρd, the periodic pest free solution of system (2,7)

is:

S∗(t) =


S∗0K

S∗0 + (K − S∗0 )e−ρ(t−tn)
if t ∈ (tn, tn + d],

S∗0K

S∗0 + (K − S∗0 )e−ρd
if t ∈ (tn + d, tn+1].

(16)

Moreover, the following results hold:
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• For all n ∈ N, the solution of equations (15) linearised around the pest-free

solution for t ∈ (tn, tn + d] is given by:

N(t) =
(
P (t+n ) +X(t+n )

)
exp

(
−µ(t mod D) +

∫ t

tn

αaS∗(τ)

S∗(τ) + ∆
dτ

)
, (17)

S(t) = S∗(t) +

[∫ t

tn

−F (ξ) exp

(
−
∫ ξ

tn

ρ

(
1− 2S∗(τ)

K

)
dτ

)
dξ + S̃(t+n )

]

× exp

(∫ t

tn

ρ

(
1− 2S∗(τ)

K

)
dτ

)
,

(18)

where F (t) := aS∗(t)
S∗(t)+∆Ñ(t) and S̃(t+n ) = S(t+n )− S∗0 .

• For all n ∈ N and t ∈ (tn + d, tn +D], there exists a matrix Π(t), detailed

in Appendix C, such that: P (t)

X(t)

 = Π(t (mod D)− d).

 0

N(tn + d)


and

S(t) = S∗(t)− a S(tn + d)

S(tn + d) + ∆

∫ t

tn+d

X(τ)dτ +
[
S(tn + d)− S∗(tn + d)

]
,

where S(tn + d) is obtained from (18).250

The proof is given in Appendix C.

We can finally use Proposition 3.2 to study the discrete dynamics of the

total pest population N(t+n ) in the neighbourhood of the pest free solution.

This leads to the computation of the seasonal effective reproduction number

R, which corresponds to the quantity of free pest at the beginning of a season255

produced by a single free pest at the beginning of the previous season, in a

pest-free context under control measures [22, 44] . If this number is larger than

1, pests tend to persist over time. If it is smaller, pests tend to decline. These

results are given in the following proposition whose proof appears in Appendix

D.260
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Proposition 3.3. Pest persistence and effective reproduction number R

1. For all n ∈ N, the discrete pest dynamics in the neighbourhood of the pest

free solution are defined by:

N(t+n ) = (λθ)nN0, (19)

where:

θ =
(
Π1,2(D − d) + Π2,2(D − d)

)
e
−µd+

∫ d

0

αaS∗(τ)

S∗(τ) + ∆
dτ
,

N0 = P0 +X0, S∗ is given by equation 16, and the Πi,j are the inputs of

the matrix Π defined in Appendix C.

2. The effective reproduction number is given by:

R = λθ. (20)

3. The pest free solution is locally asymptotically stable for nematode survival

rate to pesticide load λ < λ0, with:

λ0 =
1

θ
(21)

Proposition 3.3 shows that the effective reproduction number depends on the

nematode survival rate to pesticide load λ. Thereby, if this number is greater265

than the threshold λ0, the effective reproduction number will be greater than 1

and the population or R. similis will persist over time; otherwise this population

undergoes a decline. We are going to illustrate this numerically.

Numerical simulations

In these simulations, we first show how well the reduced system (15) ap-270

proximates the first subsystem of equation (2). Then, we illustrate the pest

behaviour in the reduced model, in terms of persistence or decline, according to

the values taken by λ and R on both sides of their critical values.

Most parameters were set to realistic values obtained from experimental

studies in the literature and are given in Table 1. However, some parameters275

cannot be easily measured and were estimated indirectly:
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• The consumption rate a of Radopholus similis is evaluated from the size,

and therefore the mass, of a single pest [45]. Given the value of this

consumption rate, the consumption efficiency α and the half-saturation

constant ∆ are evaluated in order to keep an appropriate range of pest280

population over the time.

• The growth rate of roots ρ is chosen such that, when there is no pest, the

roots almost reach their maximum biomass at the end of their growing

period.

Generally, infestation is about [400, 51400] nematodes per 100 g of roots285

[50]. However in this work, in order to compare the two strategies exposed, we

consider that both studies begin with a pest-free sucker X0 = 0 and a rather

large value of nematodes in the soil P0 = 100.

In Figure 5, we first compare, over a single cropping season, the full model

described by equation (2) and the reduced model defined by equation (15) com-290

bined to the second subsystem of (2), according to several values of parameter β

ranging from 0.001 to 1. As expected, the reduced system approximates the full

model better when β gets larger. β = 0.1 leads to a very good approximation.

We hence set β = 0.1 for the remaining simulations. With this parameter

value and the other parameter values given in Table 1, the critical threshold for295

the nematode survival rate to pesticide load is λ0 = 0.01. Figure 6 illustrates

the pest dynamics when the λ survival rate λ varies:

(a) A small value of the effective reproduction number R = 0.1 is obtained

when λ = 0.001 � λ0. It leads to a very fast decline of the pests since

R � 1.300

(b) A value R = 0.9 close to but less than 1 is obtained when λ = 0.009 < λ0.

It leads to a slower decline of the pests.

(c) A value R = 1.1, obtained when λ = 0.011 > λ0, induces pest persistence.

Nematodes first steadily decrease and then persist with small oscillations.

No nematode eradication is achieved.305
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Param. Description Literature values Value (s)

d Duration of the roots growth 210-240 days (Beran-

gan), 180-210 days

(Cavendish) [46]

210 days

D Duration of the cropping sea-

son

300− 360 days [46] 330 days

β Infestation rate \ 1, 10−1, 10−2,

10−3

K Maximum roots biomass ≥ 143 g [47] 150 g

ρ Roots growth rate \ 0.025 day−1 (1)

ω Mortality rate of free pests 0.0495 day−1 [48] 0.0495 day−1

µ Mortality rate of infested

pests

0.05−0.04 day−1 [49] 0.045

a Consumption rate magnitude 10−4 g

(2) [45]

2.10−4 g.day−1

α Conversion rate of ingested

roots

\ 400 g−1 (3)

∆ Half-saturation constant \ 60 g (3)

γ Proportion of pests laid inside \ 0.5

q Proportion of roots forming

the new sucker

\ 1/3 (4)

r Proportion of roots forming

the old pool after uprooting

\ 5% (5)

S0 Initial root biomass 60 g [47] 60 g (6)

P0 Initial soil infestation small [39, 41, 40, 38] 100

X0 Initial roots infestation 0 [11] 0

(1) ρ is estimated such that S(d) ' K.

(2) The magnitude of a is evaluated from the size of R. similis.

(3) α and ∆ are estimated to maintain a sensible population size.

(4) The proportion q of the maximum biomass is close to the pest survival critical level;

(5) We assume that the uprooting is carefully done.

(6) The initial root biomass corresponds to the sucker survival critical level.

\ No data available in the literature.

Table 1: Parameter values used in model simulations
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(a) β = 0.001; (b) β = 0.01; (c) β = 0.1; (d) β = 1.

Figure 5: Pest population evolution over a single cropping season for different values of the

infestation rate β. The infesting pests (red lines) and the free pests (blue lines) are represented

for the full model (2) (plain lines) and the reduced model (15) (dashed lines). Paramater values

are given in Table 1.
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(d) When the nematicide is not applied λ = 1� λ0. The effective reproduc-

tion number takes its larger possible value R = R0 = 97.7 � 1. This

value of R is realistic in this multi-seasonal formalism, as it measures the

average number of pests that a single pest, introduced at the beginning of

a season in a pest-free context, produces for the following season. Indeed,310

a nematode of the species R. similis has a life cycle of 21 days and a single

female produces about 18 larvae (hatched eggs) during its life cycle [51].

Throughout a cropping season that lasts until 330 days, several genera-

tions of descendants follow each other, and surviving descendants produce

each about 18 larvae. Without control, a single original pest can therefore315

produce a huge number of pests. The saturation of resources (roots) is

the reason why exponentially high numbers are not reached. The pests

persist with large oscillations and a doubled periodicity that we analyse in

Figure 7. A periodicity over two periods arises. A first season starts with

a large root biomass (t5), which allows an explosion of pests that ravage320

the root in the second half of the season. A second season (t6) therefore

starts with a much lower root biomass, which prevents the quick develop-

ment of nematodes during the first part of the season and therefore gives

a large root in the second half of the season; which in turn will favour the

explosion of nematodes. And so on.325

These simulations show that the nematicide needs to destroy more than 99%

of the pests at the beginning of each season to lead to their disappearance over

time. Besides the fact that nematicides are harmful for the environment, studies

show that most nematicides cannot reach such an efficacy. While a very efficient

nematicide like tannic acid can have an efficient mortality rate that goes up to330

94% in a ”kind” soil like fine sand [52], Fenamiphos can only reach a mortality

of 77% in in vitro tests, and high dosages of the biological nematicide ”ABG-

9008” barely reach a mortality of 70% [53]. It therefore appears that, in case of

a single application per season, nematicides can only provide a partial remedy

in terms of nematode control but cannot result in complete pest eradication.335
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(a) λ = 0.001 and R = 0.1; (b) λ = 0.009 and R = 0.9; (c) λ = 0.011 and R = 1.1; (d)

λ = 1 and R = 97.7.

Figure 6: Infesting pest dynamics of model (2) - (7) over several cropping seasons for different

values of λ. The infestation rate is β = 0.1, so that the reduced model approximates the full

model well. Remaining parameter values are given in Table 1, leading to the threshold value

λ0 = 0.010 defined in equation (21).
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Figure 7: Pest-root dynamics over four seasons without chemical control (λ = 1) of model (2)

- (7). At the beginning ti of each season, root biomass grows until either the growth stops

(at ti + d) or the pest populations are so high that they overeat the roots. The jumps in the

root dynamics at ti are due to the switch (7), where a portion of the root pool of the parent

plant turns into a pool of old roots that die quickly by senescence. The remaining portion

represents the root pool of the sucker from which the new plant grows. The jumps in the pest

dynamics are also due to the switch (7), with in particular a proportion of the infesting pests

which become free pests because of the senescence of the part of the roots they are in. The

level of infesting pests goes up very quickly because the free pests return quickly in the fresh

roots, since β is high.
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In case of multiple applications, plant growth is strongly impacted. Indeed,

pesticides reduce the symbiotic efficiency of nitrogen-fixing bacteria and host

plants [54] and plants use fixed nitrogen (ammonia) to synthesize proteins. It

is therefore necessary to study a more environment-friendly and possibly more

efficient mean of control.340

In the next section, we replace the pesticide by crop rotation with non-host

plants or fallows.

3.2. Sufficient fallow deployment

In this subsection we study the system formed by equations (2) and (11).

We remind that tn, the starting point of the (n + 1)-th season, here has the345

value tn = n(D + τ); where τ stands for the duration of the fallow. Since the

new-planted suckers are assumed to be pest-free, it seems coherent that here

X(0+) = 0.

Through this section, we are going to present significant results that will

bring us to the computation of a threshold duration τ0 of the fallow. The350

tropical character of the banana cultures gives us an important freedom for this

fallow duration as synchronization with seasonality is not required.

The system (2,11) admits the following periodic pest free solution:

S̄(t) =



S0K

S0 + (K − S0)e−ρ(t−tn)
if t ∈ (tn, tn + d]

S0K

S0 + (K − S0)e−ρd
if t ∈ (tn + d, tn +D]

0 if t ∈ (tn +D, tn+1]

(22)

As in subection 3.1, we reduce the first subsystem of equation (2) to a

Rosenzweig-MacArthur model, by introducing a new state variable N = P +X

that represents the total number of nematodes and using the singular perturba-355

tion theory, to obtain equation (15) on (tn, tn + d] intervals with this time the

initial conditions S(t+n ) = S(0+) = S0, N(t+n ) = P (t+n ), N(0+) = P0.

The reduced system admits the same pest free solution. With this knowl-

edge, we can obtain the solutions of the reduced system of (2) - (11) on (tn, tn+d]
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intervals, linearised around the pest free solution. The following proposition360

gives such result:

Proposition 3.4. • For all n ∈ N, the reduced equation (15), with initial

conditions S(t+n ) = S(0) = S0, N(t+n ) = P (tn), N(0+) = P0, linearised

around the pest free solution (22), admits for t ∈ (tn, tn + d] the solution:

N(t) = P (t+n ) exp

(
−µ(t mod (D + τ)) +

∫ t

tn

αaS̄(τ)

S̄(τ) + ∆
dτ

)
(23)

S(t) = S̄(t)−
∫ t

tn

F (ξ) exp

(
−
∫ ξ

tn

ρ

(
1− 2S̄(τ)

K

)
dτ

)
dξ

× exp

(∫ t

tn

ρ

(
1− S̄(τ)

K

)
dτ

)
.

(24)

• For all n ∈ N and t ∈ (tn + d, tn +D].

There exists a matrix Π(t) detailed in Appendix C such that:

 P (t)

X(t)

 = Π
(
t (mod D + τ)− d

)
.

 0

N(tn + d)

 (25)

and

S(t) = S̄(t)−a S(tn + d)

S(tn + d) + ∆

∫ t

tn+d

X(τ)dτ+
[
S(tn+d)−S̄(tn+d)

]
, (26)

Where S(tn + d) is obtained from (24).365

Proof.

The proof is the same as for Proposition 3.2, setting initial conditions X+

to 0 and S̃(t+n ) = S0 − S0 = 0.

The solution given by Proposition 3.4 is used to initialise the second subsys-

tem of equation (2), from which we compute the effective reproduction number370

of the pest and the minimal duration τ0 of fallow that leads to the decline of

pests. That is the aim of the following proposition whose proof is given in

Appendix E.
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Proposition 3.5. (Pest eradication)

We have the following results:375

1. For all n ∈ N, the discrete pest dynamics in the neighbourhood of the pest

free solution is defined by:

P (t+n ) = P0e
−nωτθn

[
Π1,2(D − d) + qΠ2,2(D − d)

]n
, (27)

where

θ = exp

(
−µd+

∫ d

0

αaS̄(τ)

S̄(τ) + ∆
dτ

)
.

2. The effective reproduction number is given by:

R = e−ωτθ
[
Π1,2(D − d) + qΠ2,2(D − d)

]
. (28)

3. The pest free solution is locally asymptotically stable for fallow durations

τ > τ0, with:

τ0 =
ln
([

Π1,2(D − d) + qΠ2,2(D − d)
]
θ
)

ω
. (29)

In Proposition 3.5, equation (28) shows that the effective reproduction num-

ber R depends exponentially negatively on the duration τ of the fallow periods.

Thereby, the larger the value of τ , the smaller the value of R. When τ is greater

than the threshold τ0 given by equation (29), R will be smaller than 1 and the

pests will decline. Whereas when τ is below the threshold τ0, R will be greater380

than 1 and the pest will persist. We are going to illustrate this numerically.

Numerical simulations

As in Subsection 3.1 β = 0.1, so that the reduced system (15) approxi-

mates well the first subsystem of (2) such that the results of Proposition 3.5 are

accurate for both. We consider the system (2,11).385

We illustrate the behaviour of the population of nematodes, in terms of

persistence or decline, according to the values taken by τ and R on both sides

of the critical values τ = τ0 and R = 1.
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The parameter values are given in Table 1. With these parameters, the criti-

cal duration of fallow is τ0 = 36.79 days. In Figure 8, four results are illustrated:390

(a) A high duration of fallow τ = 83.3 days leads to a small effective reproduc-

tion number R = 0.1 � 1. The pests therefore decline rapidly. (b) When the

fallow period is set to τ = 38.92 that remains higher than the threshold τ0,

the effective reproduction number R = 0.9 is larger but remains less than 1.

The pests decline more slowly. (c) When τ = 34.86 days < τ0, the effective395

reproduction number takes the value R = 1.1 > 1 that leads to the persistence

of pests. (d) The highest value of the effective reproduction number, that is the

basic reproduction number R = R0 = 6.18, is obtained when there is no fallow

(τ = 0) and leads to the persistence of the pests with regular oscillation of their

population.400

It is well known that semi-discrete equations can give rise to periodic or

oscillating solutions when modelling epidemics [55, 56]. Oscillations in Figure 8

can find a biological meaning since populations of R. similis also show oscillating

behaviour in empirical studies. Indeed, some authors have shown that R. similis

nematode populations on a banana plant can vary over time in line with banana405

root dynamics and the stage of the parent plant; nematode populations grow

until banana flowering, are constant during inflorescence development, and are

stable after bunch harvest [57, 58, 59, 60]. We would have preferred to find, in

the simulations, intervals during which the populations are more or less constant,

but it is not a feature of our model.410

These simulations and the computed value of τ0 show that for a reasonable

37 fallow days after each cropping season, the tendency of the pest population

is the decline. In addition to being more environmental-friendly, controlling

R. similis by deploying fallows also seems easier to implement than chemical

control. Indeed, the latter requires the eradication of more than 99% of the415

nematodes each time the nematicide is used. Moreover, the use of fallow leads to

a smaller highest possible value R = 6.18 of the effective reproduction number,

compared to the value R = 97.7 obtained with chemical control. This huge

difference can be easily explained by the size of pests reservoir. Indeed, in
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(a) τ = 83.3 and R = 0.1; (b) τ = 38.92 and R = 0.9; (c) τ = 34.86 and R = 1.1; (d) τ = 0

and R = 6.18.

Figure 8: Infesting pest dynamics of model(2)-(11) over several cropping seasons for different

values of τ . The infestation rate is β = 0.1, so that the reduced model approximates the full

model well. Remaining parameter values are given in Table 1, leading to the threshold value

τ0 = 36.79 defined in equation (29).
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the case of deployment of fallow, only a few root tips constitute the reservoir of420

pests (portion r = 5%) between cropping seasons, whereas a whole pool of roots

inherited from the parent plant constitutes the reservoir of pests when there is

no fallow (portion 1− q = 2/3).

4. Discussion

We found in the literature only one study of R. similis populations with or425

without the use of nematicide [17]. The model has been named SIMBA-NEM,

and showed that population-related parameters (limit capacities, growth rates)

have a large impact on the population of R. similis, while in contrary, the pa-

rameters related to the use of pesticides had a little impact. This remark does

not contradict our conclusion of Subsection 3.1, where it has been noted that430

large quantities of nematicide were needed to significantly reduce the infesta-

tion. SIMBA-NEM is a population model based on the cohort structure, which

describes different stages of the nematode life cycle. As a result, it is a dis-

crete and computational model that pioneers pest dynamics in cropping system

models.435

However, SIMBA-NEM being computational, it has no analytic result or

qualitative description and its outputs and conclusions strongly depend on the

value of the parameters and precision in their estimation, which often requires

extensive data [61]. But we have not found in the literature quantitative studies

that count nematodes by sorting them by age, stage or cohort; possibly because440

it is difficult to set up this type of experiment for microscopic worms. Also, the

model does not allow fallowing or crop rotation with non-host plants, whereas it

has been shown empirically that these are effective strategies to fight the spread

of R. similis [11, 6, 8].

The crop rotation models presented in our introduction [13, 14, 15] are not445

adapted to the dynamics of R. similis because the studied pests have different

life cycles and sometimes different hosts that have different symptoms of the

infestation. Also, since R. similis does not have a large diffusive spread in the
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soil [62], a spatially explicit model is not necessary when studying its dynamics.

However, knowing that the spread of R. similis is mainly by water [62, 63], it450

might be interesting to study its spatial dynamics in highly irrigated environ-

ments. In this case, we can rely on excellent preliminary work found in reference

[16].

The analysis of plant-pest dynamics subjected to interruptions is not new.

Gubbins and Gilligan have studied the persistence of continuous plant-parasite455

systems in discrete disturbed environments [20]. The semi-discrete formalism

has also been studied for SEIR models [21] and many other plant epidemic or

more general dynamics including seasonality (see [19]). More precisely, a general

framework for soilborne parasite models has been given by Mailleret et al. [22]

and Hamelin et al. [23].460

But those models remains general frameworks not precisely related to the

dynamics of R. similis. For instance, they do not interrupt root growth after

the flowering of the plant, giving rise to an additionnal switching within the

continuous dynamics of the cropping season. Moreover, in such models, the

specific off-season (e.g. winter) during which hosts lack has a fixed size that465

cannot be manipulated in order to control the pest. As the geographical area

we analyse in Subsection 3.2 of this paper has a tropical climate that is well-

suited for banana growing all year long, it does not suffer fixed-sized and fixed-

distributed off-season. We can handle the size of such off-season that correspond

here to a fallow. In this way, we differentiate from previous works, and therefore470

can see the effective reproduction number R under a new perspective. Indeed,

it is now correlated with a threshold size τ0 of the off-season, around which the

pest dynamics show different behaviours.

This work was done after having reduced the model using singular perturba-

tions, by considering that the infestation rate was markedly high, which satisfies475

biological observations [38, 39, 40, 41]. We then compared the pest population

dynamics for different values of the infestation rate (Figure 5). For high enough

values, the reduced model is an excellent approximation of the full model, as

shown for instance in Figure 5 (c) for β = 0.1. However, for lower values such
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as β = 0.001 illustrated in Figure 5 (a), the approximation does not hold and480

the full model should be used.

5. Conclusion and future work

Our work proposes a multi-seasonal framework which describes the infesta-

tion of banana (or plantain) roots by the burrowing nematode R. similis. In

this work, we have studied two semi-discrete models based on impulsive ordinary485

differential equations, where the feeding of the pests has a saturated response.

In both models, pests have two living stages: a free stage in the soil and an

infesting stage in the roots. The difference between the two models lies in their

control method: the first one includes the use of pesticides while the second one

relies on fallow periods between seasons. We were able to provide local stability490

results for these new models, to compute effective reproduction numbers and

link them to biological thresholds, while managing well the difficulties related

to a step root growth function.

The two models bring out an obvious similarity: whether we use pesticides

or fallows, the infestation can be reduced by playing on the thresholds that are495

related to the effective reproduction number. In the first model, it relies on

the increase of the pesticide dosage, while in the second model it requires the

increase of the duration of the fallows between cropping seasons. However, we

have shown that chemical control is not very effective. Indeed, the required

pesticide efficiency which results from our computations and the value of our500

parameters is barely achieved in realistic environments, and would require large

amounts of pesticide. The fallow deployment model has also allowed us to find

an oscillation behaviour of nematode populations as found in the literature.

However, the two models showing similarities in study and pest management,

both of them present implementation issues due to different factors:505

(i) The first model implies the use of pesticides which have harmful ecological

impact [5] and the nematode can evolve to develop resistance to their ap-

plication. Besides, the effect of phytotoxicity of such pesticides has been
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identified in practice [64], but has not been included in our model yet.

Such an effect would certainly eliminate the linearity in the basic pest re-510

production number and induce the existence of an intermediate value of λ

that minimizes the effective pest reproduction number, with no guarantee

that the latter would be smaller than 1. Consideration of phytotoxicity

could therefore change the control strategy. Also, nematicides have a cost

and increasing the dosage also mean to increase the expense of chemical515

control.

(ii) The reproduction of the plant in the second model comes exclusively from

the use of healthy vitro-plants which each have a financial cost. Hence,

the cost of this strategy could be prohibitive for small farmers, while

the natural asexual reproduction of the plants by lateral shot is free of520

cost. Besides, we have shown that long fallow periods reduce significantly

the infestation; but long fallow periods can also decrease the number of

cropping seasons over a fixed time horizon. The legitimate question is

how far the duration of the fallow can be extended and still be accepted

by planters? It appears that the development of sustainable strategies525

for the management and control of plant diseases, in general, requires

an understanding of economic and social constraints that influence the

deployment of control [65].

(iii) Although our second model has been able to highlight the population

oscillations described in the literature, we were not able to obtain a sim-530

ulation in which the population of R. similis seems to be constant during

a certain period as observed by some authors [60, 57, 58, 59].

In order to solve issues (i) and (ii), we can think about linking fallow dura-

tions to an economical yield to identify optimal fallow deployments. An interest

in linking epidemiological with economic modelling arises when there are con-535

straints over the amount of control that can be applied, whether it is chemical,

cultural, genetical or biological [65]. Concerning fallow deployment, the control
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is cultural and is related to the duration of fallow periods between cropping sea-

sons. A constraint arises naturally from this control, since one cannot deploy

too large fallow periods in order to maintain a reasonable yield.540

The control relies on planting healthy vitro-plant at the beginning of each

cropping season. Therefore, finding the optimal control strategy requires esti-

mates for the cost of a healthy vitro-plant and crop yield losses induced by the

infestation. An interesting metric to capture the yield of crops in compartmen-

tal models has been proposed in the literature [66]. In this metric, the yield545

depends on the biomass of healthy tissues and a weighting function over the

time.

Finally, in order for optimal control strategies to be implemented, the param-

eters must be well-known. Poorly understood parameters can lead to systematic

biases in decision-making and distort control. Unfortunately, we see in Table 1550

that many parameters are poorly known, which could question the future results

of the optimization described above. To overcome such biases, we can rely on

parameter estimation and sensitivity analysis. In case real-time data measure-

ments are possible, we could use a Control Smart Algorithm (CSA) to know

whether to wait to collect the data or to implement the control directly with555

the data as it is available [67]. This may improve the efficiency of our future

optimal control models.
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Appendix A. Non-negativity of trajectories of models (2)-(7) and (2)-

(11)

Lemma 1. The state variables of system (2) with either switching rule (7) or565

(11) remain non-negative.

Proof.

We first consider n = 0 and denote by W = (P, S,X) the state vector and

by W (0+) the initial condition. As these state variables represent biological

quantities, we set W (0+) ≥ 0. The structure of the model then ensures that the570

state variables remain non-negative in the course of time. Besides, the discrete

rules (7) and (11) ensure that if the non-negative orthant is positively invariant

for season n, then the initial condition for season n+ 1 will be positive. Hence,

the same conclusion holds for n ≥ 1.

Appendix B. Proof of Proposition 3.1575

Let’s consider the first subsystem of equation (1), i.e. t ∈ (tn, tn + d[. Let

N = P +X and consider the system in (P, S,N).

Assuming that β is large, let β = β′

ε , 0 < ε� 1 and ζ = t
ε . The new time ζ

is called fast time. The system with derivatives according to ζ is written:

dP

dζ
= −β′PS + εαa(1− γ)

S(N − P )

S + ∆
− εωP,

dS

dζ
= ερS

(
1− S

K

)
− εaS(N − P )

S + ∆
,

dN

dζ
= εαaγ

S(N − P )

S + ∆
+ ε(µ− ω)P − εµN,

(B.1)

When ε = 0, we then define the fast equation by

dP

dζ
= −β′PS

Which admits an equilibrium P̄ = 0 that is asymptotically stable because S > 0

according to Lemma 1 in Appendix A.
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The slow equation is written as:
Ṡ = ρS

(
1− S

K

)
− a SN

S + ∆
,

Ṅ = αaγ
SN

S + ∆
− µN,

(B.2)

Which corresponds to a Rosenzweig-MacArthur model. The Tychonov theorem

ensures that

lim
ε→0

P (t, ε) = 0, t ∈ (tn, tn + d[

lim
ε→0

(S(t, ε), N(t, ε)) = (S̄(t), N̄(t)), t ∈ (tn, tn + d[

Where (S̄, N̄) is the solution of equation (B.2) and (P (t, ε), S(t, ε), N(t, ε)) is

the solution of the perturbed system:

εṖ = −β′PS + εαa(1− γ)
S(N − P )

S + ∆
− εωP,

Ṡ = ρS
(

1− S

K

)
− aS(N − P )

S + ∆
,

Ṅ = αa
S(N − P )

S + ∆
+ (µ− ω)P − µN.

Appendix C. Proof of Proposition 3.2580

• First, in absence of pest, the periodic solution occurs and we have S(t+n ) =

S∗0 . The Pest Free Solution is written for all t ∈ [0, d],

 S∗(t)

N∗(t)

 = S∗0K
S∗0+(K−S∗0 )e−ρt

0

 ,

with S∗0 = K(q−e−ρd)
1−e−ρd .

Considering the deviation variables S̃ = S(t) − S∗(t) and Ñ = N(t) −

N∗(t) = N(t), one can write the deviation system as:

˙̃S = ρ(S̃ + S∗(t))
(

1− S̃ + S∗(t)

K

)
− a(S̃ + S∗(t))Ñ

S̃ + S∗ + ∆
− ρS∗(t)

(
1− S∗(t)

K

)
,

˙̃N =
αa(S̃ + S∗(t))Ñ

S̃ + S∗ + ∆
− µÑ,

S̃(0+) = qS̃0, Ñ(0+) = N(0+) = P0 +X0.

(C.1)
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In a neighbourhood of the PFS, the system is equivalent to ˙̃S

˙̃N

 =

 ρ
(

1− 2S∗(t)

K

)
− aS∗(t)

S∗(t) + ∆

0 −µ+
αaS∗(t)

S∗(t) + ∆

 .

 S̃

Ñ

 (C.2)

This leads to the equation in Ñ

˙̃N =
(
− µ+

αaS∗(t)

S∗(t) + ∆

)
Ñ ,

whose solution is given by

Ñ(t) =
(
P (0+) +X(0+)

)
e
−µt+

∫ t

0

αaS∗(τ)

S∗(τ) + ∆
dτ
.

One can now replace this expression in (C.2) and let F (t) := aS∗(t)
S∗(t)+∆Ñ(t)

to obtain the equation in S̃:

˙̃S = ρ
(

1− 2S∗(t)

K

)
S̃(t)− F (t), S̃+(0) = qS̃(0).

This leads to the solution

S̃(t) =

[ ∫ t

0

−F (ξ) exp
(
−
∫ ξ

0

ρ
(
1− 2S∗(τ)

K

)
dτ
)
dξ+qS̃(0)

]
×exp

( ∫ t

0

ρ
(

1− 2S∗(τ)

K

)
dτ
)

• On (tn + d, tn +D], the second subsystem of equation (2) is written:

Ṗ (t) = −βP (t)S(t) + αa(1− γ)
S(t)X(t)

S(t) + ∆
− ωP (t),

Ṡ(t) = −aS(t)X(t)

S(t) + ∆
,

Ẋ(t) = βP (t)S(t) + αaγ
S(t)X(t)

S(t) + ∆
− µX(t).

(C.3)

With initial conditions P (tn + d+) = 0, X(tn + d+) = N(tn + d) and585

S(tn + d+) = S(tn + d) from the system (15).

The pest free equilibrium (PFE) can be written YP (t) =


Pp(t)

Sp(t)

Xp(t)

 =


0

S∗(d)

0

. Considering the deviation variables P̃ (t) = P (t) − Pp(t) =
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P (t), S̃(t) = S(t)− Sp(t), X̃(t) = X(t)−Xp(t) = X(t), one can write the

equation in the new variables as:

˙̃P = −βP̃ (S̃ + S∗(d)) + αa(1− γ)
(S̃ + S∗(d))X̃

S̃ + S∗(d) + ∆
− ωP̃ ,

˙̃S = −a (S̃ + S∗(d))X̃

S̃ + S∗(d) + ∆
,

˙̃X = βP̃ (S̃ + S∗(d)) + αaγ
(S̃ + S∗(d))X̃

S̃ + S∗(d) + ∆
− µX̃

(C.4)

And the Jacobian matrix J =


−βS∗(d)− ω 0 αa(1− γ) S∗(d)

S∗(d)+∆

0 0 −a S∗(d)
S∗(d)+∆

βS∗(d) 0 −µ+ αaγ S∗(d)
S∗(d)+∆

 .
In the neighbourhood of the PFE, system (C.4) is then equivalent to the

linearised system

˙̃Y = J.Ỹ , Ỹ = (P̃ , S̃, X̃). (C.5)

Since the second column of J is null, one just has to compute the ex-

ponential of At that will generate a local solution for P̃ and X̃, where

A :=

 −βS∗(d)− ω αa(1− γ) S∗(d)
S∗(d)+∆

βS∗(d) −µ+ αaγ S∗(d)
S∗(d)+∆

 .590

We deduce S̃ from ˙̃S = −a S∗(d)
S∗(d)+∆X̃, i.e.

S̃(t) = −a S∗(d)
S∗(d)+∆

∫ d

0

X̃(τ)dτ + S̃(d).

And so one for each season, assuming the trajectories remain close enough

to the PFS. Since A is a Metzler matrix, it admits two distinct real eigen-

values λ1,2 = tr(A)
2 ±

1
2

√
tr2(A)− 4det(A) and we have Π(t) =

 Π1,1(t) Π1,2(t)

Π2,1(t) Π2,2(t)

,

where

Π1,1(t) =
1

λ2 − λ1

(
eλ1t(λ2 + βS∗(d) + ω)− eλ2t(λ1 + βS∗(d) + ω)

)
Π1,2(t) = − 1

λ2 − λ1

( αa(1− γ)

S∗(d) + ∆
(eλ1t − eλ2t)

)
Π2,1(t) = − 1

λ2 − λ1

(
βS∗(d)(eλ1t − eλ2t)

)
Π2,2(t) =

1

λ2 − λ1

(
eλ1t

(
λ2 + µ− αaS∗(d)

S∗(d) + ∆

)
− eλ2t

(
λ1 + µ− αaS∗(d)

S∗(d) + ∆

))
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Appendix D. Proof of Proposition 3.3

1. From Proposition 3.2, when the pests remain in a neighbourhood of the

PFS,  P (t)

X(t)

 = Π
(
t− (tn + d)

)
.

 0

N(tn + d)


Hence,

N
(
tn+1

)
= P

(
tn+1

)
+X

(
tn+1

)
=

(
Π1,2(D − d) + Π2,2(D − d)

)
N(tn + d)

=
(
Π1,2(D − d) + Π2,2(D − d)

)
N(t+n )e

−µd+

∫ d

0

αaS∗(τ)

S∗(τ) + ∆
dτ

(from equation(17))

= θN(t+n ).

Thus, N
(
t+n+1

)
= λθN(t+n )

Therefore, ∀n ∈ N,595

N(t+n ) = (λθ)nN(0+)

= (λθ)n
(
P0 +X0

)
.

2. Since for (P0 +X0) 6= 0, N(t+n ) −→ 0 iff (λθ) < 1, we deduce R = λθ.

Appendix E. Proof of Proposition 3.5

1. From equation (23), we have

N(tn + d) = P (t+n )e
−µd+

∫ d

0

αaS̄(τ)

S̄(τ) + ∆
dτ
.

Hence, N(tn + d) = P (t+n )θ.

Equation (25) therefore involves
P (tn + tf)

X(tn +D)

 =


Π1,1(D − d) Π1,2(D − d)

Π2,1(D − d) Π2,2(D − d)




0

θP (t+n )


Hence, 

P (tn +D) = Π1,2(D − d).P (t+n )θ

X(tn +D) = Π2,2(D − d).P (t+n )θ
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So, according to the switching rule (11),

P (t+n+1) =
[
Π1,2(D − d) + qΠ2,2(D − d)

]
P (t+n )θe−ωτ

From where we deduce

P (t+n ) = P0e
−nωτθn

[
Π1,2(D − d) + qΠ2,2(D − d)

]n
.

2. Since P (t+n )→ 0 iff(
Π1,2(D − d) + qΠ2,2(D − d)

)
θe−ωτ < 1, (E.1)

We deduce R =
(
Π1,2(D − d) + qΠ2,2(D − d)

)
θe−ωτ .600

3. We deduce τ0 from the condition (E.1) above, by rearranging as τ >
ln
([

Π1,2(D−d)+qΠ2,2(D−d)
]
θ
)

ω ≡ τ0.
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(CARI’2018), 2018.

42

https://www.biorxiv.org/content/early/2019/09/20/774869
https://www.biorxiv.org/content/early/2019/09/20/774869
https://www.biorxiv.org/content/early/2019/09/20/774869
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/09/20/774869.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/09/20/774869.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/09/20/774869.full.pdf
http://dx.doi.org/10.1101/774869
https://www.biorxiv.org/content/early/2019/09/20/774869
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
http://dx.doi.org/10.1016/S0308-521X(99)00034-7
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
http://www.sciencedirect.com/science/article/pii/S0308521X99000347
https://doi.org/10.1080/07060669509500700
https://doi.org/10.1080/07060669509500700
https://doi.org/10.1080/07060669509500700
http://arxiv.org/abs/https://doi.org/10.1080/07060669509500700
http://dx.doi.org/10.1080/07060669509500700
http://dx.doi.org/10.1080/07060669509500700
http://dx.doi.org/10.1080/07060669509500700
https://doi.org/10.1080/07060669509500700
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://dx.doi.org/10.1016/j.ecolmodel.2006.05.003
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134
http://www.sciencedirect.com/science/article/pii/S0304380006002134


[19] L. Mailleret, V. Lemesle, A note on semi-discrete modelling in the

life sciences, Philosophical Transactions of the Royal Society of Lon-675

don A: Mathematical, Physical and Engineering Sciences 367 (1908)

(2009) 4779–4799. arXiv:http://rsta.royalsocietypublishing.org/

content/367/1908/4779.full.pdf, doi:10.1098/rsta.2009.0153.

URL http://rsta.royalsocietypublishing.org/content/367/1908/

4779680

[20] S. Gubbins, C. A. Gilligan, Biological control in a disturbed environment,

Philosophical Transactions of the Royal Society of London. Series B: Biolog-

ical Sciences 352 (1364) (1997) 1935–1949. doi:10.1098/rstb.1997.0180.

URL https://doi.org/10.1098/rstb.1997.0180

[21] L. V. Madden, F. Van Den Bosch, A Population-Dynamics Approach to685

Assess the Threat of Plant Pathogens as Biological Weapons against An-

nual Crops: Using a coupled differential-equation model, we show the

conditions necessary for long-term persistence of a plant disease after a

pathogenic microorganism is introduced into a susceptible annual crop, Bio-

Science 52 (1) (2002) 65–74. doi:10.1641/0006-3568(2002)052[0065:690

APDATA]2.0.CO;2.

URL https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.

0.CO;2

[22] L. Mailleret, M. Castel, M. Montarry, F. Hamelin, From elaborate to

compact seasonal plant epidemic models and back: Is competitive ex-695

clusion in the details?, Theoretical Ecology 5 (2011) 311–324. doi:

10.1007/s12080-011-0126-0.

[23] F. M. Hamelin, M. Castel, S. Poggi, D. Andrivon, L. Mailleret, Seasonality

and the evolutionary divergence of plant parasites, Ecology 92 (12) (2011)

2159–2166. doi:10.1890/10-2442.1.700

URL https://doi.org/10.1890/10-2442.1

43

http://rsta.royalsocietypublishing.org/content/367/1908/4779
http://rsta.royalsocietypublishing.org/content/367/1908/4779
http://rsta.royalsocietypublishing.org/content/367/1908/4779
http://arxiv.org/abs/http://rsta.royalsocietypublishing.org/content/367/1908/4779.full.pdf
http://arxiv.org/abs/http://rsta.royalsocietypublishing.org/content/367/1908/4779.full.pdf
http://arxiv.org/abs/http://rsta.royalsocietypublishing.org/content/367/1908/4779.full.pdf
http://dx.doi.org/10.1098/rsta.2009.0153
http://rsta.royalsocietypublishing.org/content/367/1908/4779
http://rsta.royalsocietypublishing.org/content/367/1908/4779
http://rsta.royalsocietypublishing.org/content/367/1908/4779
https://doi.org/10.1098/rstb.1997.0180
http://dx.doi.org/10.1098/rstb.1997.0180
https://doi.org/10.1098/rstb.1997.0180
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0065:APDATA]2.0.CO;2
http://dx.doi.org/10.1007/s12080-011-0126-0
http://dx.doi.org/10.1007/s12080-011-0126-0
http://dx.doi.org/10.1007/s12080-011-0126-0
https://doi.org/10.1890/10-2442.1
https://doi.org/10.1890/10-2442.1
https://doi.org/10.1890/10-2442.1
http://dx.doi.org/10.1890/10-2442.1
https://doi.org/10.1890/10-2442.1


[24] M. Beugnon, J. Champion, Etude sur les racines du bananier, Fruits 21 (7)

(1966) 309–327.

[25] K. Eckstein, J. C. Robinson, The influence of the mother plant on sucker

growth, development and photosynthesis in banana (Musa AAA; Dwarf705

Cavendish), The Journal of Horticultural Science and Biotechnology 74 (3)

(1999) 347–350. doi:10.17660/ActaHortic.2000.531.23.

[26] L. W. Duncan, D. T. Kaplan, J. W. Noling, Maintaining barriers to the

spread of Radopholus citrophilus in Florida citrus orchards, Nematropica

20 (1990) 71–87.710
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