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Abstract
Aims Belowground carbon transfer from plant to plant
has been extensively described, but such transfer for
nitrogen has been less thoroughly investigated when
the donor is a non-N2-fixing species. This study, applied
to forest regeneration, aimed to determine whether tree
seedlings facilitated neighbouring grass growth through

nitrogen transfer at an early stage of development, thus
facilitating nitrogen acquisition by understory species.
Methods Quercus petraea seedlings were planted in
pots either sole-grown or mixed-grown with Molinia
caerulea tufts or another oak seedling. 15N-urea pulse-
chase labelling (cotton wick method) was performed in
oak shoots and the fate of 15N in each soil and plant
compartment was tracked for one year. N transfer path-
ways were investigated using two degrees of physical
separation between root systems.
Results Molinia dry weight was higher when mixed-
grown with oak seedlings than when sole-grown. In-
crease in grass dry weight correlated with N transfer
from donor oak to receiver Molinia. Interestingly, the
presence ofMolinia increased N rhizodeposition of oak.
N allocation in donor oak towards root in winter and
shoot in spring was enhanced.
Conclusions Oak seedlings facilitated Molinia growth
through rapid N transfer, underlining the ability of non-
N2-fixing species to supply N to neighbours. 15N allo-
cation within donor oak and its rhizodeposition
depended on neighbour identity.

Keywords Facilitation . Nitrogen . Belowground
transfer . Rhizodeposition .Quercus petraea .

Molinia caerulea
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Mesh30 30 μm Mesh
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Introduction

Clements et al. (1929) describing plant interactions
defined resource competition as a “physical process”
and “a combined need in excess of the supply”. This
implies that plants compete for light, water and nu-
trients only when they occupy the same zone of air or
soil. Competition then occurs when one individual
successfully reaches and captures limiting resources
to the detriment of another individual. In this way it
lowers the performance of its neighbours in biomass
production, growth or reproduction. For many years,
work on interactions has mainly focused on strategies
of competition for resources (Bleasdale 1960; Grime
1974; Tilman 1990; Craine 2005; Craine and
Dybzinski 2013), seen as a passive mechanism by
which plants draw resources from a common reser-
voir (i.e. soil) with ranging efficiency.

Schreiner and Reed (1907) in an early literature re-
view on the capacity of living roots to excrete matter in
the soil pointed out that toxic excretions from roots
exhibited deleterious effects on the growth and devel-
opment of other plants. Allelopathy, or more generally
chemical interference, is the process by which plants
release allelochemicals into the environment that have
significant direct or indirect effects on other plant pro-
cesses (Molisch 1937; Muller 1969; Rice 1985; Grove
et al. 2013). Resource competition and chemical inter-
ference can thus occur simultaneously (Mallik 1998;
San Emeterio et al. 2007) and are species-specific
(Fernandez et al. 2016). For example, the presence of
beech (Fagus sylvatica) reduced the ability of maple
(Acer pseudoplatanus) to take up inorganic nitrogen,
so slowing its growth (Li et al. 2015), although the
precise mechanism was not described.

Chemical compounds can also exert a beneficial
influence (Rice 1985; Callaway 1995; Kohli et al.
1998). The molecular entities exuded by living roots
include metabolites that include carbon, phosphorus
and nitrogen compounds (Virtanen and Laine 1939;
Slankis et al. 1964; Rovira 1969). Recent studies have
emphasized that nutrient and information exchanges
among plants are more generalized than had been
thought (Pierik et al. 2013), and play a key role in plant
interactions. The process by which living and dead roots
exude substances in soil, shed fine roots and sloughed-
off cells and tissue, along with cell lysates and
decomposed root materials is termed rhizodeposition
(Philipps et al. 2006; Scandellari et al. 2010; Mommer

et al. 2016). Legumes offer a well-known case of posi-
tive substance release in the soil. Indeed, they can re-
lease about 50% of their total N into the soil by
rhizodeposition (Boulter et al. 1966; Shamoot et al.
1968; Friedrich and Dawson 1984; Khan et al. 2002;
Mahieu et al. 2009; Fustec et al. 2010). Some authors
have described the ability of neighbouring grass to take
up nitrogen released by legumes (Henzell et al. 1964;
Vallis et al. 1967; Whitney et al. 1967). N transfer from
legumes to non-leguminous species has been reported in
intercrops (Stagnari et al. 2017) such as soybean-weed
(Moyer-Henry et al. 2006), pea-corn (van Kessel et al.
1985; Bethlenfalvay et al. 1991), pea-barley (Jensen
1996; Johansen and Jensen 1996) and clover-ryegrass
(Haystead et al. 1988). Transfer of nutrients has mainly
been studied for N2-fixing plants, and only very few
examples (“less than a handful” – Teste et al. 2015) have
shown exchange of nitrogen between non-fixing plants.
These N transfers can be as high as 4% from donor plant
N, which is not marginal for a non-N2-fixing species
(Teste et al. 2015) especially in infertile soils (Eissenstat
1990). Haystead and Marriott (1978, 1979) concluded
that transfer was a complex multicomponent process
that could involve key actors such as soil microorgan-
isms. N transfer pathways can include root
intermingling, potential common mycorrhizal networks
or rhizodeposition of diverse molecular entities (Ek et al.
1996; Teste et al. 2015; He et al. 2019). All these
interactions may result in facilitation of the targeted
species. Studies on forest trees found that birch (Betula
papyrifera) and Douglas fir (Pseudotsuga menziesii)
were colonized by the same ectomycorrhizal fungi
(Simard and Perry 1997), allowing bidirectional carbon
transfer (Simard et al. 1997a, b).

Facilitation is defined as a positive effect of plants on
the establishment or growth of other plant species, and
that causes harm to neither (Hunter and Aarssen 1988;
Bertness and Callaway 1994; Callaway 1995; Bruno
et al. 2003). As an example for nitrogen, in a
silvopastoral systems in Patagonia, Gargaglione et al.
(2014) showed that Nothofagus facilitated grass N up-
take, probably owing to improved microclimatic condi-
tions or reduced competition for N between soil micro-
organisms and grasses. However, in some cases, both
competition and facilitation can occur between plants.
Antagonistic facilitation occurs when a species A has a
positive effect on a species B, while B has a negative
effect on the species A (Bronstein 2009; Schöb et al.
2014). In the context of forest regeneration, Vernay et al.
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(2018) described such a negative effect of the grass
Deschampsia cespitosa on Quercus petraea seedling
growth, while Q. petraea improved D. cespitosa bio-
mass production. The strong ability of grasses to take up
nutrients, and particularly nitrogen, has been demon-
strated in many cases (e.g. Coll et al. 2004; Balandier
et al. 2006), but the mechanisms underlying the facili-
tative effect of young oak seedlings on the grass are not
known. From the literature briefly reviewed above, we
hypothesized that nitrogen transfer between interacting
plants occurs, even in the absence of N2 fixation,
through facilitation ofMolinia growth by oak seedlings.
We specifically tested this hypothesis on Q. petraea
seedlings in competition with a common perennial for-
est grass in temperate forests, Molinia caerulea. Plants
were grown in pots under controlled conditions. 15N
pulse-chase labelling (He et al. 2009) was applied to
the oak, and 15N retrieval in soil and Molinia was
quantified after 3, 5, 8 and 11 months to characterize
N fate seasonally. N transfer pathways were also indi-
rectly investigated by inserting a mesh between the two
species. Two mesh sizes were used: 1 μm to allow only
chemical transfer (Mesh1), and 30 μm to prevent root
contact but allow both hyphae contact and chemical
transfer (Mesh30).

Materials and methods

Experimental design

The experiment was conducted in pots under outdoor
conditions in Clermont-Ferrand (Auvergne, France,
45°45’N 3°07’E, altitude 394 m a.s.l) from April 2017
to May 2018 (Tmean = 12.9 °C, Rainfall = 546 mm). 168
one-year-old bare-root oak seedlings (Quercus petraea
(Matt.) Liebl.) and 56 grass tufts (Molinia caerulea,
three tufts on average) were planted in plastic pots,
separately or together. Oak seedlings were sourced from
a local nursery. They were 21 ± 6.6 g (mean ± SE) fresh
weight, 41.47 ± 5.27 cm in height, and 4.94 ± 0.98 cm in
diameter on average. Molinia caerulea (three tufts on
average) was collected in a local oak forest at Paray-le-
Frésil (Auvergne, France; 46°39’N 3°36’E) with 2.04 ±
0.97 g fresh weight per lot. A total of 80 10 L pots and
64 5 L pots were filled with soil (typical luvisol-
redoxisol pseudogley, sandy loam) collected in the same
forest as the Molinia. Forest soil was used to preserve
natural colonization by mycorrhizae. Four treatments

based on root system separation or interaction were set
up (Fig. 1): (i) two 5 L pots containing either one oak or
one Molinia tuft were placed side-by-side such that no
root interactions were possible (root contact, hyphae
contact or chemical transfer) (sole-grown), (ii) oak and
Molinia tufts were placed in the same 10 L pots but their
rooting zones were separated by a nylon (Nitex®) cloth
with one of two mesh sizes: either 1 μm to allow only
chemical transfer (Mesh1) or 30 μm to prevent root
contact but allow both hyphae contact and chemical
transfer (Mesh30), and (iii) oak and Molinia tufts were
placed in the same 10 L pot to allow full belowground
interactions through both root and hyphae contacts and
chemical transfer (mixed-grown). Effect of species iden-
tity in the interaction, i.e. oak orMolinia as a neighbour,
was tested, replicating every treatment with receiver oak
instead of receiverMolinia (Fig. 1). Each treatment was
replicated four times with a random spatial pot arrange-
ment. To prevent interaction with water availability, the
pots were fitted with probes and irrigated to the field
capacity throughout the experiment. No fertilizer of any
kind was added to the pots during the experiment.

Oak shoot 15N pulse-chase labelling by the cotton wick
technique

To track possible nitrogen transfer from donor oak to
receiver Molinia or oak, 15N was supplied to donor oaks
using the “cotton wick” method. This method
supplies15N through stem injection. Oak stems were
pierced using a drill (1 mm hole 2 cm above the ground)
to push through a cotton wick, both ends of which were
dipped into a 15N solution in a 5 ml Eppendorf tube (15N-
urea, At.15N 98%) through two holes in a cap on the top
of the tube (Mahieu et al. 2007; Fustec et al. 2010).
Drying and loss of solution from the reservoir and the
cotton wick were prevented by sheathing the wick with
two silicone tubes sealed to the stem and cap (Terostat®,
Henkel Surface Technologies, Gulph Mills, USA).

15N-urea was applied on June 13 and 14, 2017. After
oaks seedlings had absorbed more than 3 mL of solution
(at 0.5%, weight/volume), the reservoir was replenished
with a further 3 mL of 15N urea solution at 0.375%
(w/v). When all the solution of 15N was fully absorbed,
the reservoir was washed with 1 mL of deionized water,
which was in turn absorbed by the plant. This procedure
supplied around 18 mg of 15N to oak shoots. 5 L pots
without cotton wicks were used as controls to determine
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the natural 15N abundance in each compartment (oak
shoots and roots, soil, Molinia shoots and roots).

Plant harvesting

Plants were harvested sequentially after total 15N
urea uptake was completed (August 2017), during
leaf senescence (October 2017), during dormancy
(February 2018) and after bud break (May 2018).
In winter, only sole-grown and mixed-grown condi-
tions were collected, to estimate 15N allocation, as
there is no transfer during dormancy. For this har-
vest, oak shoots were stem and marcescent leaves,
and Molinia shoots were senescent leaves.

Plant shoots and roots were collected for both spe-
cies. For Mesh1 and Mesh30 treatments, soils separated
by the meshwere collected individually, and soil in sole-
grown and mixed-grown pots was collected as a whole.
Soil was then sieved (2 mm) and visible roots were

collected. Roots were washed with 200 mL of a
0.5 mMCaCl2 solution to remove 15N from their surface
and to maintain cell membrane integrity (Epstein 1961).
This solution was then sieved and mixed with the soil.
About 200 mL of this mixture was used to determine N
content and isotope abundance. At each harvest and for
each treatment, four replicates of each compartment
were collected.

N content and isotopic analysis

Root, shoot and soil samples were dried at 60 °C for
at least 48 h, weighed and ground to a fine powder.
Total N content and 15N abundance were then de-
termined with an elemental analyser (vario ISO-
TOPE cube, Elementar, Hanau, Germany) in line
with a gas isotope ratio mass spectrometer (IsoPrime
100, Isoprime Ltd, Cheadle, UK) at the Silvatech
platform, INRA Nancy-Lorraine.

Fig. 1 Experimental set-up. Oak was mixed-grown with either
another oak plant or aMolinia tuft in one pot. Whenmixed-grown,
belowground compartments were either fully intermingled (root
contact; mixed-grown) or separated with a mesh of size 30 μM
(Mesh30) or 1 μM (Mesh1). Mesh limits (cross in the table) the
number of pathways of nutrient exchange between two root

compartments: hyphae and molecules could go through Mesh30
(check mark in the table), but only molecules throughMesh1. Oak
was sole-grown beside another oak plant or aMolinia tuft with no
root contact (sole-grown). Superscript 15N indicates oak was la-
belled with 15N urea through cotton wick application (see Mate-
rials and methods for details)
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Calculations

Total N amount (mg) was calculated as follows:

Ntot ¼ %Ntotal � DW

100
; ð1Þ

where %Ntotal is N content (% DW) and DW is dry
weight (mg).

15N amount (mg) in each tissue sample was calculat-
ed as follows:

15Namount ¼
At:%15N−At:%15Nunlabelled sample

� �� Ntot

100
; ð2Þ

where At. %15N is isotopic abundance in samples of
donor oak and receiver neighbour, defined as follows:

At:%15N ¼
15N

14Nþ15Nð Þ � 100: ð3Þ

Relative 15N allocation (supp. data, Figure S1 and
S2) was calculated as follows:

%15N ¼
15Namount in compartment i � 100

∑15Namount
; ð4Þ

where ∑ 15N amount is the sum of 15N amounts in each
compartment (shoots and roots in donor, receiver
Molinia, receiver oak and in the soil).

Statistics

Statistical analysis was performed using R software (R
studio, Version 1.0.153). Data are means of n = 4 bio-
logical replicates (± SE). All variables were tested for
normality and homoscedasticity using the Shapiro-Wilk
and Levene tests. Statistical analyses were conducted
using one-way ANOVA or t test. For factors with more

than two levels (seasons, root separation treatment and
compartment), ANOVAwas followed by Tukey’s hon-
estly significant difference post hoc test for mean com-
parison at a 90% level.

Results

Molinia dry weight increased when mixed-grown
with oak (Fig. 2 and Tables S1–S5)

Donor oak dry weight was constant across seasons either
sole-grown or mixed-grown with Molinia (Fig. 2).

By contrast, growth inMolinia tufts increased appre-
ciably from summer (7.95 ± 2.31 g for shoots and 6.62 ±
1.65 g for roots) to autumn (14.99 ± 1.11 g for shoot and
26.18 ± 4.3 g for root) in sole-grown (p = 0.01 for shoot
and p = 0.0007 for roots) and then remained constant
until spring (Tables S1, S2, S3 and S>4). In mixed-
grown conditions,Molinia shoot growth increased from
summer (8.11 ± 1.81 g) to autumn (24.61 ± 4.29 g, p =
0.005) (Table S1), but larger root biomass was only
observed in winter. Remarkably,Molinia shoot biomass
tended to be higher when grown with oak rather than
sole-grown in autumn (p = 0.07), winter (11.06 ± 0.12 g
in sole-grown and 16.7 ± 1.55 g in mixed-grown, p =
0.04) and spring (9.83 ± 0.8 g and 18.74 ± 2.37 g in
mixed-grown, p = 0.027) (Fig. 2 and Tables S1–S5).

Fate of rhizodeposed N from donor oak seedlings (Figs.
3, 4 and Tables S6–S14)

Overall, about 73% of the measured 15N amount in all
compartments was found in donor oak, either sole-
grown or mixed-grown with Molinia in summer (Fig.

Fig. 2 Above-and belowground
dry weight for donor oak and
receiverMolinia, for each season
(summer, autumn, winter and
spring). Plants were grown with
either no root contact (sole-
grown, white bars) or root contact
(mixed-grown, grey bars). Values
are reported as means ± SE (n =
4). *, ** and *** correspond to p
< 0.1, 0.05 and 0.01, respectively
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Fig. 3 15N allocation (expressed as % of total 15N measured in all compartments) among shoots, roots and soil in donor oak and receiver
Molinia. Species were sole-grown (a, b, c and d) or mixed-grown (e, f, g and h). Values are reported as means ± SE (n = 4)
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Fig. 4 15N allocation (expressed as % of total 15N measured in all compartments) among shoots, roots and soil in donor oak and receiver
oak. Species were sole-grown (a, b, c and d) or mixed-grown (e, f, g and h). Values are reported as means ± SE (n = 4)
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3a and e). 15N percentage in soil was statistically similar
among seasons, treatments and neighbours.

Sole-grown plants

Surprisingly, 15N was detected in receiver neighbour
(significantly different from zero) but at a very low level
(Figs. 3 and 4 – sole-grown and Table S15). In receiver
oak, 15N amount was significantly different from zero in
summer, autumn and winter in shoots, roots and soil
respectively. In spring, both donor oak shoots and soil
contained significant amounts of 15N. In Molinia, 15N
amount was significantly different from zero in all cases
except in roots in summer (p = 0.17). In donor oak, 15N
proportion in oak donor shoots decreased from summer
to winter (from about 75% to 50%, p = 0.004) while that
in the roots and soil rose (Figs. 3c, 4c, S1 – sole-grown
and Table S15 – Receiver Molinia) near either receiver
oak or Molinia.

Mixed-grown plants

When mixed-grown, 15N transfer from donor oak to
receiver neighbour, either Molinia or oak, was statisti-
cally significant. 15N allocation patterns in shoots and
roots were similar to that of sole-grown, but 15N amount
in receiver was higher (Fig. 3, 4 and S2). However,
decrease in 15N allocation to shoots and a concomitant
increase in roots in winter were much larger when
mixed-grown with receiver Molinia (Fig. 3e and 3g;
from about 70% to 20%, p < 0.0001) than with receiver
oak (Fig. 4e and g; from about 75% to 40%, p < 0.001)
(Figure S1j and k). In spring, 15N in donor oak was
reallocated to shoots more when mixed-grown with
Molinia (p < 0.001) than with another oak (p ≈ 1).
Allocation was much greater in receiver Molinia roots
from autumn onwards than in receiver oak (Figure S2k).
In autumn, 15N relative amount in shoots was higher in
Molinia than in receiver oak (Figure S2j).

Mesh (supp. data)

Overall, mesh had a very small effect on 15N allocation
in either donor oak, receiver oak or receiver Molinia
(Figure S1 and S2). However, inMesh30, 15N allocation
was greater in shoots in autumn in donor oak mixed-
grown with another oak than in donor oak grown with
Molinia (Figure S1g). 15N allocation to shoots was
much higher in receiver Molinia than in receiver oak

in summer and autumn (Figure S2g). 15N allocation
patterns in root and soil were not statistically different
according to receiver oak or Molinia (Figure S2h, i).

Discussion

Our results show that Molinia biomass was rapidly
favoured (within a few months) when mixed-grown with
oak. Tracking 15N fate validated our hypothesis that the
presence of Molinia in the same pot with oak drove
higher oak root N release for the benefit of Molinia.

Oak facilitated Molinia growth

The positive effect of oak seedlings onMolinia appeared
in the early stage of cohabitation. When mixed-grown
with oak, Molinia above- and belowground biomass
values were greater from autumn and winter onwards,
respectively, than those measured inMolinia sole-grown.
These results are in line with previous findings that
highlighted a facilitative effect of oak saplings on grass
(Vernay et al. 2018). Unexpectedly, we did not find a
detrimental effect of M. caerulea on oak seedling bio-
mass. These results are thus not consistent with antago-
nistic facilitation, which had been shown in a previous
experiment when Q. petraea and D. cespitosa were
grown together, possibly owing to higher density of tufts
in pots (Vernay et al. 2018). No significant biomass
difference was observed in oak among seasons, not even
when mixed-grown. Low growth may have failed to
reveal an effect of Molinia on oak seedling growth.

N allocation pattern in oak was affected by the presence
of Molinia

After oak shoot labelling by the cotton wick method, 15N
was rapidly found in oak stems and roots in summer. As
expected, a higher 15N allocation from shoots towards
roots was observed in autumn and winter irrespective of
the treatment (i.e.mixed-grown or sole-grown), in accor-
dance with the conservative strategy of oaks. 15N in roots
was then re-allocated towards shoots to sustain bud break
and early growth of emerging leaflets (Millard 1994).
Interestingly, Molinia presence accentuated both alloca-
tions of 15N to roots during winter and remobilization of
15N towards shoots in oak during spring, Larger N mo-
bilization to leaves might improve C capture, and ulti-
mately shoot and root growth in oak mixed-grown with
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Molinia (Bhatt et al. 2011). However, N distribution to
roots was uncorrelated with concomitant biomass incre-
ment, suggesting greater N storage. Such a conservative
strategy has already been reported, namely higher N
allocation in oak roots than in oak shoots mixed-grown
with D. cespitosa (Vernay et al. 2018). In spring, harvest
coincided with bud bursting and early foliar develop-
ment, a period generally associated with N remobilization
(see Millard and Gwen.-Aelle 2010 for a review), which
was particularly accentuated from roots to shoots in oak
grownwithMolinia. One explanation for this observation
might be a greater soil N depletion byMolinia, leading to
a higher demand for internal N remobilization in oak to
sustain budburst and leaf development (Neilsen et al.
2000; Bausenwein et al. 2001). It has been shown that
the level of N availability during bud break in oak is a
critical factor affecting leaf C capture (Bazot et al. 2016;
Vernay et al. 2016, 2018). Thus the magnitude of internal
N recycling from roots might not depend only on limited
soil inorganic N amounts but also on neighbour presence
and neighbour identity (Welker et al. 1991; Kaitaniemi
et al. 2018). Moreover, some internal N can be released in
soil according to neighbour presence and identity
(Dhamala et al. 2016).

A non-negligible part of 15N is found in the soil

Nitrogen rhizodeposition processes have been described
in legume and grass species and are known to occur a
few days after labelling (Ribeiro Paula et al. 2015).
Conversely, in fruit trees, N rhizodeposition is mainly
attributed to root mortality, so 15N is found in soil to a
large extent in winter (Scandellari et al. 2010). However,
in our study, oak seedlings exuded 15N during the first
weeks after labelling, and the presence of a neighbour
modified N flux from roots to soil. We hypothesized that
neighbours (both oak andMolinia) might exude specific
molecular entities to increase active exudation by oak
roots. Abiotic factors influencing root rhizodeposition
such as soil nitrogen availability or CO2 level (Hale et al.
1971; Philipps et al. 2006; de Graaff et al. 2007;
Tückmantel et al. 2017; Bowsher et al. 2018) and inter-
action through root exudates (Suriyagoda et al. 2012;
Semchenko et al. 2014; Mommer et al. 2016) are well-
described. Recent studies on belowground signalling
interactions have demonstrated that neighbour detec-
tion, response strategies and communication are medi-
ated by root-secreted signalling chemicals (Chen et al.
2012; Rasmann and Turlings 2016; Kong et al. 2018;

Fig. 5 Correlation between dry weight and 15N relative amount in
receiverMolinia in summer (a), autumn (b), winter (c) and spring
(d) and in receiver oak in summer (e), autumn (f), winter (g) and

spring (h). Dark point and regression line represent shoots and
grey triangle and regression line represent roots. Equation line (y),
r2 and p-value are reported above each graph
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Canarini et al. 2019; Huang et al. 2019). Intraspecific
neighbours can improve or impair nutrient uptake of
nitrogen, involving both a mutually beneficial coopera-
tive relationship and a competitive relationship among
neighbours (Hong et al. 2017). However, to our knowl-
edge, the effect of neighbour presence and identity on
nutrient rhizodeposition has not been described. This is
therefore probably the first time that such a flux from
roots to soil in oak-Molinia interference has been char-
acterized and given an ecologically sound basis.

In winter, the increase of 15N in soil was probably
due to the shedding of fine roots and sloughing of living
cells (Scandellari et al. 2010).

N transfer between plants may contribute to the growth
facilitation process

In Molinia, biomass increase was positively correlat-
ed with 15N relative amounts in shoots and roots (Fig.
5 and Table S16) especially in summer, autumn and
winter (Fig. 5a, b and c, respectively). Conversely,
the relationship was never significant for receiver
oak, whatever the season. Overall, these results sug-
gest that Molinia was able to obtain 15N from oak for
its own growth (Fig. 5e, f, g and h). These results
support our hypothesis of Molinia growth facilitation
by oak seedlings through N transfer. It emphasizes
the importance of the strategy and identity of neigh-
bours in influencing plant-plant N transfer.

Our experiment clearly shows that a significant albeit
relatively modest amount of 15N was transferred from
oak toMolinia (maximum 6.5% of the total 15N found in
all compartments). However, we used a pulse labelling
technique (at a given limited time) so that we do not
knowwhat the contribution of oak Nwas to the nutrition
of Molinia over the whole season with a permanent N
flux. Previous reports on the contribution of N released
by a donor to total N amount in a receiver species
showed that N amount varied widely according to com-
bination of species, species age and the method used to
estimate N transfer (Teste et al. 2015; Montesinos-
Navarro et al. 2017). This contribution ranged from
5% (Frey and Schüepp 1993) to 80% in soybean-weed
(Moyer-Henry et al. 2006). The cottonwickmethodwas
most often used on non-woody plants, but the technique
can succeed on tree seedlings as demonstrated. Such
transfer from plant to plant has been extensively de-
scribed for carbon (Simard et al. 1997b; Simard and
Perry 1997; Klein 2016) but this is the first time to our

knowledge that N transfer from a non-fixing nitrogen
species to a graminoid has been evidenced at the very
early stage of development in oak. This underlines the
importance of nutrient exchanges, such as that of nitro-
gen, occurring below ground.

What are the different possible pathways of N transfer
between plants?

When plants were grown with a 1 μm mesh as a barrier
to roots and mycorrhizal hyphae, 15N was found in
receiver neighbour and soil, suggesting that some N
transfer occurred as free molecules moving through
the mesh (Figure S2 and Table S6). Mesh30 was de-
signed to let through mycorrhizal hyphae, and a signif-
icant 15N amount was found on the other side, at a level
higher than in Mesh1, at least in autumn. This suggests
that mycorrhizae might contribute to N transfers, in line
with other studies (He et al. 2003, 2006, 2009;
Govindarajulu et al. 2005; Jalonen et al. 2009), but our
results do not enable us to conclude on the role of
mycorrhizae in N transfer between oak and Molinia.
Further experiments are now required to identify and
quantify mycorrhizal networks in both oak andMolinia
roots. We hypothesized that only vesicular arbuscular
mycorrhizae (VAM) were involved in N transfer be-
tween young oak and Molinia, as Molinia is only colo-
nized by VAM (Taylor et al. 2001). However, to our
knowledge, it is not known whether Q. petraea is colo-
nized by VAM, although it has been observed in other
oak species (Dickie 2001).

Unexpectedly, 15N was also found in the
neighbouring pot in the separate-pot treatment (sole-
grown). 15N amounts were significantly different from
natural abundance in many cases (Table S15), although
the difference was small (1% at most). In receiver oak,
15N was first different from zero in shoots (summer), in
roots (autumn) and then in soil (winter). In spring, 15N
was significantly different from zero in all compart-
ments. This N flux suggests emission of volatile nitro-
gen compounds from donor oak and uptake by its
neighbour, first in the aboveground part. The ability of
plants to take up nitrogen by leaves has been demon-
strated in several studies (Wittwer and Teubner 1959;
Eilers et al. 1992; Feng et al. 2015; Guo et al. 2017).
After above-ground uptake, N may have been trans-
ferred to roots and translocated from roots to soil during
dormancy. This spatial and temporal pathway from
shoot to root, and then to soil, suggests that volatile
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15N was first absorbed by shoots, then transferred to
roots in autumn, and rhizodeposed in winter.

InMolinia sole-grown, 15N amount was different from
zero in each condition except in roots in summer (p <
0.15) and in soil in winter (p < 0.095), supporting the
hypothesis of volatile nitrogen compounds. Emissions of
volatile organic compounds by plants is known
(Fehsenfeld et al. 1992; Guenther et al. 1995; Holzinger
et al. 2000), but only a few studies have described emis-
sions of volatile nitrogen compounds by above-ground
organs (Tukey 1966). To our knowledge it is not known
whether volatile nitrogen transfer between plants occurs,
or to what extent 15N in receiver neighbours could derive
from soil N volatilization. The belowground pathway is
still the main contributor to N transfer from oak to either
oak orMolinia (Table S17 – Ratio MG/SG). Additional-
ly, total 15N amount in all pots decreased across seasons
especially between August and October (June–August:
−9%; August–October: −31%; October–February:
−0.4%; February–May: −18%) supporting the hypothesis
of soil 15N loss. Involvement of microbial communities in
nitrogen transformation (Robertson and Groffman 2007;
Hayatsu et al. 2008) can explain 15N diminution across
seasons. Although the impact of rhizodeposits on soil
microorganisms has been well-studied in the past 20
years (Paterson et al. 2006; Wichern et al. 2008; Schenck
Zu Schweinsberg-Mickan et al. 2012), it would be of
interest to characterize more precisely (quantitatively
and qualitatively) their role in rhizodeposition processes,
according to species, and how it can impact on nutrient
transfer (Gorka et al. 2019).

Conclusions

Our experiment clearly demonstrates N transfer from oak
to Molinia qualitatively. However, pulse-chase labelling
only enabled us to track the fate of 15N supplied in
summer. A continuous supply of 15N throughout the
whole experiment would have allowed quantification of
the actual N amount effectively transferred from oak to
Molinia. Compartmental modelling based on testing dif-
ferent pathways of N transfer may help identify and rank
these fluxes. Soil properties and microorganisms such as
mycorrhizae need to be considered in further studies to
gain a better understanding of transfer processes between
plants. Some substances might be emitted by roots and/or
shoots: such allelopathic substances have not been well-
identified and their role in such interference is under-

researched. Applying exudates from Molinia roots
around oak seedlings to monitor any changes in growth
and functioning (such asmycorrhizal symbiosis) and then
analysing these exudates chemicallymay prove helpful in
identifying allelopathic substances.
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