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Valued Constraint Satisfaction Problems: Hard and Easy Problems*

In order to deal with over-constrained Constraint Satisfaction Problems, various extensions of the CSP framework have been considered by taking into account costs, uncertainties, preferences, priorities...Each extension uses a specific mathematical operator (+, max...) to aggregate constraint violations.

In this paper, we consider a simple algebraic framework, related to Partial Constraint Satisfaction, which subsumes most of these proposals and use it to characterize existing proposals in terms of rationality and computational complexity. We exhibit simple relationships between these proposals, try to extend some traditional CSP algorithms and prove that some of these extensions may be computationally expensive.

Introduction and related works

The CSP framework provides a very convenient framework for representing and solving various problems related to AI and OR (scheduling, assignment, design...). When a real problem is casted in the CSP framework, different types of knowledge have to be dealt with:

• Hard constraints: physical properties (eg. spatial or temporal constraints), which have to be necessarily satisfied, are naturally represented as constraints; • Preferences: properties which should be satisfied "when possible" (due dates, user preferences, cost...) are either represented as constraints or simply ignored; • Uncertainties: properties that are relevant in some situations which cannot be predicted with certainty; such properties are then ignored, or represented as constraints. Thus, such soft constraints can be either ignored, which naturally leads to a poor mean quality of the solutions or represented as hard constraints which may yield an inconsistent CSP. A better solution is to take the violation of these constraints into account in a specific criterion that should be minimized.

Various proposals have been made in this direction, extending classical CSP in order to express "soft" constraints with 'This work has been partially funded by the French Centre National d' Etudes Spati al es and by the European Euclid project CALMA. a dedicated semantics in terms of priorities [START_REF] Schiex | [END_REF][START_REF] Borning | Constraint hierarchies and logic programmi ng[END_REF], preference degrees [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF]Martin-Clouaire, 1992;Dubois et al., 1993;[START_REF] Ruttkay | Zsofia Ruttkay. Fuzzy constraint satisfaction[END_REF], costs [Shapiro and Haralick, 1981;Dechter etal., 1990;[START_REF] Freuder | [END_REF] or probabilities [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF][START_REF] Fargier | [END_REF]. The specific nature of the criterion optimized allows dedicated branch and bound algorithms to be defined.

In these approaches, hard constraints and preferably satisfied/uncertain constraints are expressed as constraints but a valuation (usually a number) is associated to each constraint c, or each tuple t of a constraint. This valuation expresses the impact of violating the constraint c or using the tuple t on the quality of the solution. These valuations are combined using an operator that gives them a specific semantics. For example, in [START_REF] Schiex | [END_REF], the valuations of violated constraints are combined using a max operator, which gives the valuations an interpretation in terms of priorities, while in [Shapiro and Haralick, 1981], the valuations are numbers combined using addition, with an obvious interpretation as costs.

In this paper, rather than choosing a specific set for expressing valuations and a specific operator, we observe that an ordered commutative monoid (an ordered set with an operator satisfying some properties), is enough to encompass most existing CSP extensions. The valuations are taken from the set of the monoid, combined using its operator and compared using the order. For the sake of simplicity, we consider that valuations are only associated to constraints.

Our aim is then to use this abstract framework to provide general algorithms and properties, to bring to light relations between previous proposals and to identify where the difficult problems are, and what property makes them difficult 1 .

The next section defines the valued CSP (VCSP) framework, rapidly justifies the algebraic structure used and gives some simple properties. Section 3 describes previous proposals as VCSP and shows how they relate to each other in terms of rationality and complexity. Section 4 considers the generic extension of different Backtrack based algorithms and ends with preliminary experiments on the related observed complexities of some types of VCSP.

This work is therefore related to [Shafer, 1991] which consi ders an axiomatic framework where hyper-tree structured probl ems are sol ved efficiently and to [Minoux, 1976;Bistarelli etal, 1995] where a semi-ring is used to study the possi bl e generalization of shortest path and k-consi stency enforcing algorithms respectively.
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bilistic VCSP, obtained in polynomial time and the problem of finding one optimal assignment for the Max-VCSP may be reduced to the problem of finding one optimal assignment of the corresponding Lex-VCSP. The partition between idempotent and strictly monotonic VCSP classes is also made clear at the level of polynomial classes: the existence of an assignment with a valuation lower than v in a strictly monotonic binary VCSP with domains of cardinality two is obviously NP-hard by restriction to MAX2SAT [Garey et al, 1976]. One of the few polynomial classes which seems to extend to all classes of VCSP is the class of CSP structured in hyper-tree (see [START_REF] Dechter Era | [END_REF]Shafer, 1991]).

4 Extending traditional algorithms 4.1 Local consistency In classical binary CSP (all constraints are supposed to involve two variables only), satisfiability defines an NP-complete problem, k-consistency properties and algorithms [Freuder, 1982] offer a range of polynomial time weaker properties: enforcing strong k-consistency in a consistent CSP will never lead to an empty CSP.

From the VCSP point of view, strong k-consistency enforcing defines a kind of lower bound of the CSP valuation: if strong k-consistency enforcing yields an empty CSP, then we know that the CSP valuation is greater than T and therefore equal to T, else it is simply greater than X, which is always true.

Arc-consistency (strong 2-consistency) is certainly the most prominent level of local consistency and has been extended to Max-VCSP years ago [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF]. In Max-VCSP, are-consistency can be defined as follows:

Definition 10 A VCSP V is said to be arc-consistent iff (1) there exists, for each variable, a value that defines an assignment with a valuation strictly lower than T and ( 2

) any assignment A of one variable can be extended to an assignment A' on two variables with the same valuation (Vp(A) = V-p (A')).

Polynomial worst-case time algorithms that enforce this property on Max-CSP are defined in [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF]Snow and Freuder, 1990;[START_REF] Schiex | [END_REF]. These algorithms yield an are-consistent Max-VCSP with the same valuation distribution on complete assignments, and a lower bound on the VCSP valuation can easily be derived from it.

Obviously, this definition could also be used in non idempotent VCSP. But it is useless if we can not define the corresponding arc-consistency enforcing algorithms that should compute, in polynomial time, a VCSP V which is both arc-consistent and in some sense "equivalent to the original VCSP V. The strongest level of equivalence one could achieve (stronger than our strong equivalence notion, def. 9) is the equality of the valuations in both VCSP for all complete assignments.

But the generalization of AC enforcing algorithms that consists in using min and ® respectively for projection and combination of constraints fails for non idempotent monotonic VCSP as it has been shown in a similar framework (see [Bistarelli et al., 1995], in these proceedings). The distribution of valuations may be modified and the algorithm may fail to terminate. However, it is still an open question whether more drastic modifications of the algorithms/properties, or a
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CONSTRAINT SATISFACTION weakening of the "equivalence" notion (as def. 9) would allow us to recover something related to arc-consistency.

Tree search

Following the works from [Shapiro and Haralick, 1981;[START_REF] Schiex | [END_REF][START_REF] Freuder | [END_REF]Dubois era/., 1993], we try to extend some traditional CSP algorithms to the binary VCSP framework to solve the problem of finding a provenly optimal assignment. The class of algorithms which we are interested in are hybrid algorithms that combine backtrack tree-search with some level of local consistency enforcing at each node. These algorithms have been called look-ahead, prospective or prophylactic algorithms. Some possible instances have been considered in [Nadel, 1989]: Backtrack, Forward-Checking , Really Full Look Ahead. We consider here that such algorithms are described by the type of local consistency enforcing maintained at each node: checkbackward, check forward, arc-consistency or more... In prospective algorithms, an assignment is extended until either a complete assignment (a solution) is found, or the given local consistency property is not verified on the current assignment: backtrack occurs. The extension of such algorithms to the VCSP framework, where the problem is now an optimization problem, relies on a transformation of the Backtrack tree search schema to a Depth First Branch and Bound algorithm. DFBB is a simple depth first tree search algorithm, which, like Backtrack, extend an assignment until either (1) a complete assignment is reached: a new "better" solution is found or (2) a given lower bound on the valuation of the best assignment that can be found by extending the current assignment exceeds the valuation of the current best solution found: backtrack occurs. The lower bound used defines the algorithm. Our aim is to derive a lower bound from any given local consistency property.

In classical CSP, seen as A-VCSP, the actual local consistency property used gives the "lower bound": for example, in Really Full Look Ahead, the inexistence of an arc-consistent closure of the CSP guarantees that the valuation of any extension of the current assignment will be greater than T and therefore equal to T. However, as we pointed out earlier, no arc-consistency enforcing algorithm is available for strictly monotonic VCSP. We will therefore use classical local consistency notions plus the notion of relaxation of a VCSP (which defines classical CSP) to define our class of bounds: Property 1 Given a classical local consistency property L, a lower bound on the valuation of a given VCSP V is defined by the valuation of an optimal relaxation of P among those that satisfy the "local consistency" property L used (consistency of the current assignment, absence of domain wipe-out after check-forward or arc-consistency enforcing...). This valuation is a lower bound of the valuation of an optimal assignment since the valuation of an optimal assignment is also the valuation of an optimal consistent relaxation and all the relaxations where the "local consistency" property L is not verified are non consistent.

These lower bounds verify two interesting properties:

• they guarantee that the extended algorithm will behave as the original "classical" algorithm when applied to a classical CSP seen as a A-VCSP (a classical CSP seen as a A-VCSP has only one relaxation with a valuation lower than T: itself);

• a stronger local consistency property will define a better lower bound, leading to a tree search with less nodes but possibly more computation at each node.

Extending Backtrack

Backtrack uses the local inconsistency of the current partial assignment as the condition for backtracking. Therefore, the lower bound derived is the valuation of an optimal relaxation in which the current assignment is consistent. This is simply the relaxation which precisely rejects the constraints violated by the current assignment (these constraints have to be rejected or else local inconsistency will occur; rejecting these constraint suffices to restore the consistency of the current assignment in the relaxation). The lower bound is therefore simply defined by: and is obviously computable in polynomial time.

The lower bound can easily be computed incrementally when a new variable x i is assigned: the lower bound associated to the father of the current node is aggregated with the valuations of all the constraints violated by X i using ®..

The generic VCSP algorithm defined encompass all the "Branch and Bound" algorithms defined for Max-VCSP or E-VCSP in [START_REF] Schiex | [END_REF][START_REF] Freuder | [END_REF][START_REF] Fargier | Hel ene Fargier. Probl emes de satisfaction de contraintes flexibles et application a V ordonnancement de production[END_REF][START_REF] Ruttkay | Zsofia Ruttkay. Fuzzy constraint satisfaction[END_REF]. Note that for Max-VCSP, thanks to idempotency, it is useless to test whether constraints whose valuation is lower than the lower bound associated to the father node have to be rejected since their rejection cannot influence the bound.

Extending Forward Checking

Forward-checking uses an extremely limited form of arcconsistency: backtracking occurs as soon as all the possible extensions of the current assignment A on any uninstantiated variable are locally inconsistent: the assignment is said non forward-checkable. Therefore, the lower bound used is the minimum valuation among the valuations of all the relaxations that makes the current assignment forward-checkable.

A relaxation in which A is forward-checkable (1) should necessarily reject all the constraints violated by A itself and (2) for each uninstantiated variable X i it should reject one of the sets C(x i , v) of constraints that are violated if X i is instantiated with value v of its domain. Since ® is monotonic, the minimum valuation is reached by taking into account,for each variable, the valuation of the set C(x i , v) of minimum valuation. The bound is again computable in polynomial time since it is the aggregation of (1) the valuations all the constraints violated by A itself (i.e., the bound used in the extension of the backtrack algorithm, see 4.3) and ( 2) the valuations of the constraint in all the C( xi , v). This computation needs less than (e.n.d) constraint checks and ® operations (e is the number of constraints); all the minimum valuation can be computed with less than (d.n) comparisons and aggregated with less than n ® operations. Note that the lower bound derived includes the bound used in the backtrack extension plus an extra component and will always be better than the "Backtrack" bound.

The lower bound may be incrementally computed by maintaining during tree search, and for each value v of every unassigned variable x i the aggregated valuation B(v, x i ) of all the SCHIEX, FARGIER, AND VERFAILLIE constraints that will be violated if v is assigned to X i given the current assignment. Initially, all B(y, X i ) are equal to 1. When the assignment A is extended to A' -A u {X J = u}, the B may be updated as follows:

) that takes into account all the constraints between x i and X j that are necessarily violated if, is assigned to x j . Upon backtrack, the B have to be restored to their previous values, as domains in classical Forward-checking. Note that the B offer a default value heuristic: choose the value with a minimum B.

The lower bound is simply obtained by aggregating, using ®, the valuations of all the constraints violated by the assignment and all the minimum B(v, X i ) for each unassigned variable. The aggregated valuation v(A'), A! -A U {XJ = u}), of all the constraints violated by the assignment A! is easily computed by taking the valuation v(A) computed on the father node ®'ed with B(u, Xj).

Additional sophistications include deleting values v of the domains of non instantiated variables if the aggregated valuation of v(A') and B(v,X i ) exceeds the upper bound (see [START_REF] Freuder | [END_REF]). The generic VCSP algorithm defined encompass the forward-checking based algorithm for Max-VCSP described in [START_REF] Schiex | [END_REF] or the Partial Forward-checking algorithm defined for _ VCSP in [START_REF] Freuder | [END_REF]. Note that for Max-VCSP, and thanks to idempotency, the updating of B can ignore constraints whose valuation is less than the B updated or than the current lower-bound.

Trying to extend Really Full Look Ahead

Really Full Look Ahead maintains arc consistency during tree search and backtracks as soon as the current assignment induces a domain wipe-out: the CSP has no arc-consistent closure. For a VCSP, the bound which can be derived from are-consistency will be the minimum valuation among the valuations of all the relaxations such that the current assignment does not induces a domain wipe-out.

Let us consider any class ®-VCSP of the VCSP framework such that ® is strictly monotonic and for any a, 6 € E,a,b -< be any valuation different from T and The decision problem corresponding to the computation of the lower bound in this class can be formulated as: Problem 1 (MAX-AC-CSP) Given such a &-VCSP and a valuation v, is there a set such that the relaxation has a non empty arc-consistent closure and a valuation lower than v?

Theorem 1 MAX-AC-CSP is strongly NP-complete. Sketch of proof: The problem bel ongs to NP si nce computing the arc-consistent closure of a CSP can be done in polynomial time and we have supposed that ® and are polynomial in the size of their arguments.

We give the polynomial transformation from MAX2SAT [Garey et al. t 1976] to MAX-AC-CSP. An i nstance of MAX2SAT is defined by a set of e 2-cl auses and a positive integer k, the problem being the exi stence of a consi stent subset of of cardinality larger than k. Let be the set of n prepositional variables occurring in , We consi der the binary CSP (X, D, C) which is composed For exampl e, Figure 1 illustrates the micro-structure of the CSP built from the set

The transformation is clearly polynomial. Furthermore, one may prove that the exi stence of a truth assi gnment that satisfies at l east k cl auses of $ is equivalent to the exi stence of a relaxation with a nonempty arc-consistent closure and a valuation lower than with occurrences of l This shows that MAX2SAT oc MAX-AC-CSP.

Therefore, extending Really Full Look Ahead seems difficult since computing the lower bound itself is NP-complete. For idempotent VCSP, the bound may be computed using polynomial time algorithms for enforcing are-consistency [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF]Snow and Freuder, 1990].

Experimentations

The Forward-Checking algorithm has been coded and applied to random VCSP generated as follows: a classical random CSP with 16 variables, domains of size 9 is generated as in [Hubbe and Freuder, 1992]. A first possibilistic VCSP is obtained by randomly assigning a valuation J, i, § or 1 to each constraint. A lexicographic VCSP is then built simply by using the transformation from possibilistic to lexicographic CSP described in section 3. This VCSP is a strong refinement of the original possibilistic CSP.

Because of limited space, we only report mean number of constraint checks performed to find an optimal assignment and prove optimality for a slice of the random CSP space (see Figure 2): constraint satisfiability is fixed to 60% and the constraint graph goes from tree structured CSP to a complete graph. At each point 50 classical, possibilistic and corresponding lexicographic CSP are solved with the follow-
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i.e., uselessly trying to anticipate a possible inconsistency, is relatively inexpensive, even for Lex-VCSP. On inconsistent CSP, possibilistic CSP are not much harder than classical CSP, but the transition phase is apparently extended to the left. Last, but not least, lexicographic CSP are incredibly more difficult which again shows the computational complexity of strictly monotonic ®: rationality seems expensive.

Stronger argument could probably be obtained using recent developments in complexity theory, the transformations of Section 3.1 defining metric reductions between optimization problems [Krentel, 1988].

Conclusion

The VCSP framework enables the expression of a large number of real constraint satisfaction/optimization problems. If idempotent VCSP have already received a lot of attention and most classical CSP algorithms/properties have been extended to this setting [START_REF] Fargier | Hel ene Fargier. Probl emes de satisfaction de contraintes flexibles et application a V ordonnancement de production[END_REF], the case of non idempotent operators, a desirable property as it has been shown, seems much harder to tackle and few CSP algorithms have been extended to this case [START_REF] Freuder | [END_REF]. Since local consistency enforcing algorithms are unavailable in this case, we have considered a general class of bounds, that could be used in a depth first branch and bound algorithm and which have been derived from classical local consistency properties. It appears that at the level of arc-consistency, the problem of computing the bound is as difficult as solving a VCSP itself and other types of bounds have to be considered.